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Abstract ,

We study several operations for constructing permutation networks
using smaller permutation networks as components. In particular the well-
known networks of Benes, Waksman and Green can be defined with these
operations. Finally we show that Joel's nested tree can be transformed
into Waksman's network by suitable permutations of the inputs and outputs

of the cells and of the network.
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§I Introduction,

A permutation network P on n bits is a switching circuit with n

data input terminals, IO""’In—]’ a certain number of control input terminals,

and n output terminals 0 On—l’ which can realize the n! following input-

o,..o,

output behaviours :

P(w) : For i=0,...,n-1 ,

(1,1 = [0;,] , (D

1im

where [Ii] and [Oj] are the signals on I.l and Oj respectively, w is an
arbitrary permutation of {0,...,n-1} , and ir 1is the image of i under 7 .
We say that P realizes m .

We will study several operations for constructing permutation networks
using smaller permutation networks as components. We will restrict ourselves
to loopless combinational circuits, although permutation networks can be
built froﬁ sequential networks.

In particular, permutation networks built from small prefabricated

permutation networks called cells, in other words cellular permutation net-

works, can be built with these operations. This is the case of the networks
of Benes [ 2] , Waksman and Green[6,8,13].

Finally our method allows us to compare the network of Waksman and
Green with Joel's nested tree. We show how one can be obtained from the other
by suitable permutations of the inputs and outputs of its cells, and finally
of the network itself.

We deduce then that the "looping"algorithm [ 13] used for the control
of Waksman's network can also be used for the control of a slightly modified

version of Joel's network (which is isomorphic to it).



§II Notations and definitions.

For brievity's sake, we will write "input" for 'data input terminal'',

"output" for 'output terminal", and "control line" for "control input termi-

nal'., The inputs, outputs and control lines of an n-bit network N can be writ-
ten Ii(N), Oj(N) and Ck(N) respectively (with i,j=0,...,n-1 and k=0,...,p-1

for some p).

For a positive integer n we will write Zn for the set {0,...,n-11}.
The image of an element i of Z by a permutation 7 of Zn is written im .

Let us now consider networks which realize permutations.

First consider the simple connection S with one input and one output.
It is the permutation network on ! bit.

For a positive integer n and a set Il of permutations of Zn’ a partial

permutation network P(n,w) on n bits is a switching circuit P with n inputs,

n outputs and, say, p control lines which can realize the input-output
behaviour P(w) for every m belonging to I (see (1)). As control variables

are binary, we must have :

p=> log,(|m)) . (2)

We will generally write P(n) for a (partial) permutation network on

n bits.



Given k partial permutation networks Pi=Pi(ni)

(where i=0,1,...,k-1) a set I = {I In-l} of terminals called inputs,

0’--0,

a set O ={OO,.--, On-]} of terminals called outputs (where n > n. for each
i=0,1,...,k=1) and a set T of connections between the terminals Ii’ Oj’
Ir(Pu)’ Os(Pv)’ let us call N(I,0; Py,...,P, _; I') the resulting network.

We suppose that T consists only of connections of the type (Ii’ Ir(Pu)),
(0,(Py), I (P)), (O (R,), O:) and (I;,0.). Then N(L,05 ByyeeoBr 3 T) is
a partial permutation network if :

(1) All connections are one-to-one,

(ii) The circuit contains no loop ; in other words there is an order

relation, say, '"is to the left ofu on Z such that 1if (OS(PV), Ir(Pu))EP,

k’
then v is to the left of u.
The first condition ensures that the input-output behaviours
are one—to-one. The second condition is necessitated by our restriction
to loopless combinational networks.
We call an m-cell a permutation network on m bits which is not
built by the above construction. In many cases restricts oneself to

2-cells (also called B-elements [7]).

.An m-cell is usually represented by a square or a vertical
segment, with the inputs on the left and the outputs on the right (this is
illustrated in Fig.l(a) for m=5. A 2-cell and its states are shown in Fig.1(b).
The designs of a 2-cell using multiplexers or logical gates are shown in
Fig. 2(a) and (b) respectively.

A cellular partial permutation network is a partial

permutation network P of the form N(I,0; PO,...,Pk_];F), where PO""’Pk-l



are cells. If P is a permutation network, then we say that it is a cellular

permutation network.

Consider two cellular partial permutation networks on n
bits having both the same number k of cells, say P=N(IL,O0; PO""’Pk-i; r)
1] 1
and Q=N(I,0; QO’ ey Qk_l; A) .
Y]
(1) P and Q are isomorphic and write P = Q if there is

a map ¢: {PO,...,P _1} -+ {QO""'Qk—]} such that :

k

(i) For i=0,...,k-1, Pi and Pi¢ have the same number of
inputs (or outputs)
(ii) The map ¢' induced by ¢ on I' , defined by
(13,006 = (1}, 0}
(1, T_(B )6 = (1}, I (P $))
(OS(PV), Ir(Pu))¢' = (OS(PV¢), Ir(Pu¢))

(0 (P), 0500 = (O (P 4), OF)

is a bijection T —+ A

(2) P and Q are equivalent and write P 2 Q if P is isomorphicg

to Q up to a relabelling of the inputs and outputs of Q.

(3) P and Q are quasiisomorphic and write P & Q if P and Q

are isomorphic up to a relabelling of the inputs and outputs of each Q..

(4) P and Q are quasiequivalent and write P v Q if P and Q

are equivalent up to a relabelling of the inputs and outputs of each Qi'

These concepts are illustrated in Fig.3(a), (b), (c) and (d).

These 4 relations are equivalence relations.



§III. Shuffles and generalized shuffles.

This section is a summary of [ 10]
When making connections between different stages of

cells, one often uses permutations called generalized shuffles. To define

them, one needs first to define mixed radix number representation systems.

Let b b be integers bigger than 1 ; let

0’ """’ n-1

q=bdK..J<bn_ . Then any integer comprised between O and q-! can be represented

in a unique way as a vector [an_l,...,aol with a; = Zb for i=0,...,n-1,

i
by the following rule;

-.\\
[an_l,...,a 1= an_]bn_zx...xb0+an_2bn_3x...xb0+...alb0+ao ; (_3 /
This representation of the elements of Zq is called
the mixed radix representation with respect to the basis [bn—l""’bo]
( See [3]).

If has the following property : Suppose that for i=0,...,n-I

b.=b. X...Xb ] as mixed radix

- . Let m€ Z . If mhas [a
i 1,0 q n

i,m(i)-1 g

representation with respect to the basis [bn—l""’bol and if for i=0,...,n-1,

,...,a. ] as mixed radix representation with respect to

a; has [ a i,0

i,m(i)-1

the basis [bi,m(i)-l""’bO]’ then m has

[a

n—l,m(n—l)—l""’an-l,O""’ai,m(i)-l""’ai,o""’aO,m(O)—]""’a0,0

as mixed radix representation with respect to the basis

[b b ...,b

i’o,...,bo,m(o)_l,...,bo’(;.
)
(5)

Let us now define the perfect shuffle. Let q=ab. Any element

n-l,m(n—])-]""’bn-l,O’"" i,m(i)-1’




m of Zq can be written as ib+j (with i € Z, and j € Zb) or as j'a+i'
(with i' € Za and j' € Zb)- The (a,b)-shuffle on Zq is the permutation

o(a,b) of Zq defined as follows (see [3]) :

og(a,b):m = ib+j » mo(a,b) = ja+i (i€2, j& z.).

Thus o(a,b) maps [i,j] (in the basis [a,b]) onto
[j,i] (in the basis [b,a])

Note that o(a,b) fixes O and g-1 and that o(b,a) is the
inverse of o(a,b).

We now define a generalization of the perfect shuffle,

called the generalized shuffle. Let q be an integer bigger than | and suppose

that q=bn x...xbo, where each bi is an integer bigger than I. Let m € Zq.

-1

If T € Sym(n), then we can write m in the mixed radix representation with

respect to the basis [b(n-l)n""’ bOw]:

i a(n—l)Tr b(n-Z)ﬁx"'xbOn T A Ay bOn Y a0n
n-1 i-1 6
= e 1. € .
‘I (aiTr 'H bjﬂ) , where a; Zb. for i Zn ( )
1=0 1=0 1
i-1
(For i=0 the empty product I  is equal to 1)
j=0

*Now, if p is another permutation of Z , then
n-1 i-1
a b X..Xb, +...+ + = . 1 . is th i
(m-1)p P(n-2)0 0p alpbOp ag, i£0 (alp e bJD) is the mixed

radix representation of a number m' € Zq with respect to the basis
[b(n—rp""'boo]

We define the (W 1)Tseres OMy_ 4 £€1e on Z_ as the
(n-)p,..., 0Op q

following permutation of Zq



1 i-1 n-1 i-1

(n-1)7,...,0my Ty >
9 n-1a,...,007 ° Zo(aiﬂ Lo bigd > L (e, T by (;)

It corresponds to the following change of basis in a

mixed radix representation of Zy ¢

If n=2, then U(bl’b0)= G(é’?) with respect to the basis
»

[bsbgl-

If n=3, then we will write b, o(b,,b.) for 0(2’1’0) and

d 2 1’70 2,0,1
2150 : : : .

o(bz,b!)b0 for 0(1,2,0) . It is easily seen that b2 o(b],bo) is the union of
b2 copies of o(b],bo), while U(bZ’bi)bO induces G(bz,b]) on bzb] sets of
size bO'

The generalized shuffles have the following two properties :

(I?): If m,p,T € Sym(n), then we have :

(n-1)7m,..., On (n-1)p,..., Op, _ (n=-)7m,0.., OT
(n=1)p,eeny Op) g((n-l)t,..., OT) - Cj((n-l)T,... OT) ( 6 )

)

o (

(n-1)p,..., Op (n-1)m,..., Om

In particular, U((n—l)ﬂ,..., On) 1s the inverse of U((n—l)p,..., OD)
. ' (n-1)m,..., Om \
I € =hy L avein i i 4 *
(2 ). If for 1 Zn, bl i,0 bl,m(l)-l’ then G((n—l)p,..., Op) (with

respect to the basis [bn~1""’b0])

= g

((n=Dm,m((n=1)m)=1 .., ((a=1)7,0), ..., (Om,m(Om)~1), ..., (OT,0) ([0)
((n—])p’m((n_l)p)_l)!""((n_])pso)s"°! (OD,m(OO)_]),---,(OD,O)

(with respect to the basis [bn-l,m(n—l)—]"" b

P h-1 0)"'!b
’

0,m(0)-1°""""Po,0! )

Example. If n=4, then 0(3’2’1’2)= 0(b3b b

1,0,3, 20by bp)-

Property (2°) is to be linked to (4) and (5).




§IV. Operations on partial permutation networks.

We will define here ten operations on partial permutation
networks.
() Dual. This operation is defined for cellular partial permutation networks

only. Let P=N(I,0; PO,...,Pk_];F), where PO""’Pk—] are cells. Then the dual

P* of P is built as follows : P =N(I,0; P P, _38), where

L 54 s
I., I_(P.)" =0_(P ) and 0 (P )*<1_(P.)
3 trvtud T Uty 2ne Vel TRy

[}

p={(Y*,x") | (x,Y) € T), with I:=Oi, o;

* . . . .
Thus P is built from P by inverting inputs and outputs
in all cells and all connections. This construction is illustrated in Fig.4.
. . . H
Clearly, if P realizes the set Il of permutation, then P

poalizas T e fa | =€ n} .

(44) Union. Let A A be partial permutation networks. Then we define

0’ " " n-1

the partial permutation network AO u...u An by taking pairwise disjoint

copies of A A, taking I(AO) u,..u I(An) as set of inputs and

0 Ay
O(AO) u...V O(An) as set of outputs and considering the resulting network.

(1) Left scalar multiplication. Let m be a positive integer and A a partial

(0)

. . -1 i ;
permutation network on n bits. Let A STy A(m )be m disjoint copies of A.

Label the ith input/output of A(J) (i€ Zn, j € Zm) nj+i. Then mA=A(O) U...

UA(m_l) with this labelling.

(tv) Right scalar multiplication. We do a$ -(p (“f), but label the ith

input/output of A(J) mi+j. Then we get the netwok Am. Note that mA and Am

are equivalent.



(v) Composition. Let AO,...,Am_] be partial permutation networks on n bits.

For i=0,...,m-2 and j=0,1,...,n-1, connect Oj(Ai) with Ij(Ai+ ).

|
Take I(AO) as set of inputs and O(Am_l) as set of outputs. Then the

A

resulting network 1is AO.A]... =1

In the five preceding operations, one can replace
a partial permutation network by a permutation (which can be considered
as a cellular permutation network without cell and without control line).
If 7 and p are permutations, then ﬂ*=ﬂ_1 and the composition m.p 1is the
group-theoretic product of m by p . Note that the definitions of mo(a,b)
and o(a,b)m given in §III are identical to the ones given in ﬁﬁ) and (iv)
of this section.

Let us now define five more constructions using the

perfect shuffle

(Vi) Product [ 9] . Let A and B be partial permutation networks on a and b
bits respectively. Then the product AxB is the partial permutation network

bA.o(b,a).aB.

(v1i) Extended product [9] . Take A and B as in (6). Suppose that A is
( P

»

cellular. Then the extended product AxxB is the partial permutation network
*
bA.o(b,a).aB.o(a,b).bA .
If A and B are permutation networks, then AXXB is a permu-

tation network by the theorem of Slepian and Duguid [2j4.)|1:],

(viit) The Goldstein-Leibholtz construction [5] .

Let A and B be as in (vil).
Then the Goldstein-Leibholz construction A A B is built as follows : Take

the extended product AxxB, delete the first copy of A¥ in the third stage



and replace it by aS, where S is a simple connection.

If A and B are permutation networks, then A A B is

a permutation network by Theorem | of [§].

ffx ) A construction of Benes [ 1,2 (p. 114, Theorem 3.10)] .

Let AO,..., An-l be cellular partial permutation networks on A eeesd

n-1
bits respectively. Let q=a0.....an_]. Then we define F(AO,...,An_1)=
B 9 O q_ ,*
TG A o, oA T eG— a, pdaD
=0 1 1 n-1 1=n 1

1
Benes showed that if AO""’An—l are permutation
networks , then F(AO,...,An_]) is a permutation network. We will show
later that F(AO,...,An_l) is equivalent to onx(Alxx(...xx(An_zxxAn_l)...))
(which generalizes Benes'result).

(x) The truncation method. This method, designed by several authors

([éi)gj)éCC-), can be used to build permutation networks on m bits when m
is of the form rn-k, with k € Z,n = 1 and &2 Is
‘Indeed, let r and n be integers larger than | and let
k € Zn' Let A, A', B and B' be partial permutation networks on n,n-k,r
and r-1] bits respectively (a partial permutation network on | bit is the
simple connection S). Suppose that A is cellular.
Now (A,A',B,B') is defined as follows : Take A A B. Replace
the first copy of A in the first stage by kS U A'. Replace the k first copies
of B in the second stage by k copies of S U B'. Then Ii is connected to Oi

for 1 € Zk. Remove these k inputs, outputs and all interconnections between the



There remains a partial permutation network on rn-k bits, written
(A,A',B,B").

We will show later that if A,A',B and B' are permu-
tation networks, then (A,A',B,B') is a permutation network. Note that for
k=0, we have (A,A,B,B')=A A B.

The constructions (Vi),(V“),(VﬁDand (%) are illustrated
on Fig. 5,6,7 and 8 respectively.

Let us now prove the two announced results. We need
first the following :

LEMMA 1. If B is a partial permutation network on n bits and if m € Sym(m),
1

then nn.mB.(vn)_ mB.

The proof is elementary and is left to the reader.

PROPOSITION 2. Let AO,...,An_1 be cellular partial permutation networks.
Then F(AO’°°"An-1) is equivalent to AOXX(AIXX(...XX(An_zxxAn_l)...)).
Proof. We can suppose that each Ai is on a; bits. Let q=ag...a - Then
we can write F(AO""’An-l) as :

n-2 0 -

T @A, g(i,ivl)) —3 A . T (8Gi+1,1) A0 ,

: a. 1 a n-1 . d, 1

i=0 i , n-1 i=n-2 1

9 and e TRt )

i+1

where B(i’l+])=0(ai+l’

By induction, we verify that AOXX(AIXX(...x(An_ZXAn_])...))
can be written as
e 5 q . 9 4*
1 (a. Ai.ﬂ(1,1+|)). 2 An—! : 1 (ﬂ(l+l,1).a' Ai) 5

1=0 1 n-1 i=n-2 1



o(a l.

where n(i,i+1)=a R o

-1 ""'an-l’ai) and w(i+l,i)=n(i,i+1)

(0 B i+1

With respect to the basis | a__ .,aO] , We can write

1’

for 1i=0,...,n-2 :

Siwe w3 il NEls ssimey 1 )

. 0
HCLERL) SO i w D T eum DT

i+l,.v +vv.y, n=1,0, ..., 1 )

and B (i,i+]) =0 (].-+2 =il fa]
3oy 3 Yy cee eeey

For i=0,...,n-2, define :

o 0, vouy, i=1, n=1, .u., i
v (1) G(i+l, vyl le 0 5 swewy i)

Let ¥ (n-1) be the identity. Then we can easily check that
for i=Q...,n-2, we have :
(i) (i,i+1) =w (i,i+1) .y (i+1) .
Thus we get :
B(i,i+1) =y (i) aw(i,i+1) W (i+1) and

B(i+1,i) = ¢ (i+1) Lm(it1,1) (D)

,Hence F(AO,...,An_])
n-2 - 2 -] *
= 1 LA ap@ D YERD) . S— A LT @D T, ) A
. a. 1 a n-1 ._ a, 1
1=0 1 n-1 i=n-2 i
=i n-2 0 5
= (0) n (B..m(i,i+!)) . B .. T (m(i+1,i).B.) .¥(0) ,
: 1 n-1 . 1
1=0 i=n-2

where B, =p(i). gz A, v for i€ 2.
Now for i € Z_, y(i)=¢(i)a; for some ¢(i) € Sym(%;).



By Lemma |, it follows that B, = 3— A,. Thus F(A,,...,A _.)
1 a, 1 0] n-1
-1 n-2 0] %
= ¥(0) T (3= A, n(i,i+1)) ;ﬂ——A oy T @G A0 W(0)
i=o % * n-1 " i=n-2 i
- 0 . A_xx X X A XA ) 0
2007 (A (A xx (e (A A 1)) $(0).

Therefore the proposition follows.

Let us now prove our second announced result:

PROPOSITION 3. Let A,A',B and B' be the permutation networks on n, n-k, r and

r-1 bits respectively, where r and n are integers bigger than 1 and k € Zn.
Then (A,A',B,B') is a permutation network.

Proof. Consider A A B. It is a permutation network. It can therefore realize
all permutations of N={m € Sym(rn) | im=i for i € Zk]. Let T € II. If A A B

is in a state realizing 7, then Ii(A A B) must be connected to Oi(A A B)

for i € Zk. Now Ii(A A B) is connected by A(O) (O%, which 1s con-

(1),

to some Oj(A
nected to IO(B(j)), where j € Zn. Now Oi(A A B) 1is connected to OO(B
As IO(B(j))must be connected to OO(B(i)), we have i=j. Thus for i € Zk’

Ii(A A B)=Ii(A(0)) is connected to Oi(A(O)) and IO(B(i)) is connected to

OO(B(l)). Thus, if we replace A(O) by kS U A' and each B(l)(i € Zk) by a co-

’

pYy of S U B', then the resulting network realizes N . If we delete for each
i€ Zk Ii(A A B), Oi(A A B) and the connections between them, then the re-
sulting network, which is (A,A',B,B'), can realize every permutation of
Sym(rn-k), and so it isla permutation network.

The following result links the different operations

studied up to now. The proof is elementary and is omitted.



PROPOSITION 4. For any partial permutation networks A and B on a and b

bits respectively, for ol positive integers m and n, we have :
(i) (au B =A% U,
(i)  @* = m@H
(iil) am* = @Hn .
Giv) (A« B)S =B . A" (when a=b)
(v) G By w8 % a® .
(vi) (AxxB)* = AxxB®

(vii) Am = o(a,m). mA. o(m,a) .

(viii) m(A.B) = (mA) . (mB)
(ix)  (A.Bym = (Am) . (Bm) .
(x) m(nA) = (mn)A

(xi)  (Am)n = A(mn) .

m(An) .

(xii) (mA)n

Note that in these equalities, one can replace A or B

by a permutation.

The following result is due to Pippenger [ 9]

PROPOSITION 5. Let A,B and C be partial permutation networks. Then :

(i) Ax(B x C) = (A x B) x C

(ii) If A and B are cellular, then Axx(BxxC) Y (A x B)xxC



Proof. Suppose that A,B and C are on a,b and c bits respectively. Then it
is easy to check that :

(A x B)xC bcA.co(b,a).acB.o(c,ab).abC.

L}

Ax(B x C) beA.o(be,a).caB.ac(c,b).abC.

Now o(bc,a) co(b,a).o(c,a)b and

ac(c,b) = (o(c,a)b)_!.o(c,ab).

By Lemma 1, caB < c(c,a)b.acB.(o(c,a)b)_] and

e

so (A x B)xC bcA.co(b,a).(c(c,a)b.acB.(o(c,a)bYB-o(c,ab).abC

[}

Ax(B x C)

Hence (i) follows. Now (ii) is proved in the same way.

§V. The network of Waksman and Green and Joel's nested tree.

These cellulat permutation networks use 2-cells. For any positive in-
teger n, Waksman's network W(Zn) and Joel's nested tree T(2n) are cellu-
lar permutation networks on 2" bits. For any integer m > 2, Green defined
a cellular permutation network G(m) on m bits ; for m=2n, we have G(m)=W(m).

We will show that T(2™) is quasi equivalent to the dual of W2 )

A. The network of Waksman—-Green.

Waksman's network W(2™) (n=1,2,3,...) is defined inductively as
follows

- W(2)=P(2), where P(2) is the elementary 2-cell

= For n=2,3,4,..., set W(2M=P(2) A W™ 1.



Green's networkG(m) (m=2,3,...) is defined inductively as follows :

- G(2) = P(2)

- For m > 2, set : G(m)

Il

P(2) A G(%) if is even.

®(2),s,c(=Ly, G(E%io) 1E 5 B9 wdd

G(m) 5

(Here S is the simple connection on | bit).
It is easily seen that for m=2n, G(m)=W(m) .

mn mn

Remark. G(m) has an inductive control algorithm, called

looping
(see [8,13]).

B. Joel's nested tree If}].

Let P(2) be the elementary 2-cell. Define Y(2)=P(2) and

v (2% av(2¥ Yy xp(2) for k=2,3,4,...

Joel builds the nested tree T(Zk) (k > 1) as follows

. For n=1,...,k, take a copy of Y(2n)

k
3 % Fmil and 2~ outputs O0.,...,0
& ke | 0 ol

. Take 9 inputs I
. Make the following connections :

(19) For n=1,...,k-1 and m € 2 - connect

: 2
Izk'“(2m+1)-1 with I, (Y(2") .
Izk_n(2m+]) with I,  (¥Y(2") .
0, (¥(2%)  with L a1y (¥ (2'))
0, 4, (¥(2")  with L s cames @) . ()



(2°) Connect : I. with IO(Y(2k))

0
I with I, (¥(2%)
2k_ ) 2k

and Oj(Y(Zk)) with Oj for every j € Z e ( LZ )

2
This construction is illustrated in Fig. 9 for k=4.

Joel's nested tree T(Zk) is not equivalent to the dual
W(Zk)* of Waksman's netwak. This can be seen in Fig. 10 for k=2. Indeed,
if all the cells are but in the O-state, then two outputs (in both
T(4) and W(4)*) are reached after two stages. But in T(4), these two
outputs are not connected to the same cell, while in w(&)* they are.

In fact, we can prove the following :

*
PROPOSITION 6. For any k = 2, T(2%) ~ w2*.

The proof of this result is long and intricate. It can be found
in the appendix.
The idea is to use induction on k. Define T(2)=P(2). We replace

7(2%)  (k=1,2,...) by T'(25), which is built as follows

-T'(2)=T(2)

-For k > 1, we replace Y(2n)

(n=1,...,k=1) by Z(2M=Y(2™* in the design of T(25).

As Z2(2™) is isomorphic to Y(2n), T'(Zk) is isomorphic to T(Zk).

Now for k > 1 T'(2k) has a first stage of 2k_1—1 2-cells and a last

-1
stage of 2k 2-cells. If one deletes these two stages, then one gets two

coples of T'(Zk_l).

By induction hypothesis, T'(Zk_l)nu W(2k~1)+, and we extend this to :

T‘(Zk) n W(Zk)*. Indeed, W(Zk)* has also a first stage of 2k_l—1 2-cells

and a last stage of Zk_l 2-cells ; if one deletes these two stages, then

one also gets two copies of W(Zk_l)*.
It follows that the looping algorithm can be applied for the control

of T'(25).



Conclusion. The operations that we have defined in §IV can successfully
handle binary cellular permutation networks such as the networks of Benes,
Waksman and Green, and Joel's nested tree. In particular, the algebraic
formalism that we introduce allows us to prove equivalence properties between

different networks, especially between Green's network and Joel's nested tree.

Appendix. Proof of Proposition 6.

Let us define T(2)=P(2). Then clearly T(2)=N(2)*. Define Z(2)=P(2)
and 2(2%9=p(2)x2(25""y for k=2,3,4,... Then 2(2X)Z¥(2%) for any k > |
by Proposition 5(i). Thus we can replace T(Zk) (k = 1) by T'(Zk), which
is built as follows
- T'(2)=T(2)
- If k > 1, then for n=l,...,k-1, replace Y(2™) by z(2™) in the construc-
: 'k
tion of T(27). .
L okove ok .
Now clearly T'(27)=T(2"). The rest of the proof consists
of 8 steps :

Lr

Step 1. The following eight maps are permutations of Z e 3

2
(1) al) = (0,251 (k=1,2,3,.00 )

2y B = 2a(k-1)=(0,2 1-1) @*7,2%-1) a2 B i, 555
(3) §k) = (1,2)...(2%3,2%2) (k=2,3,6,...)
(4) e = (0,1)...(2%2,2%-1) G285 5 )



le—1

) Tk) : x> x® 25! (mod 2% Gl o2, Byus)

6) n(k) fixes 0,257 11, 27!, 2%-1 and for n=2, ..., k-1 (if k > 3)

€
and v Zzn_z, m(k) maps

2K Muue1)=1 on 2K PQ2v+D)-1 ,

S Diiisi on. 25 T(2vED).

Zk-n(ﬁv+1) on k1, Zk-n(2v+1)—]
and 2% M 4ys3)  on 257'+ 2XTP(2ve) (k=2,3,4,...)
(7) p(k) maps 0 on O, 2k-l on I, and for n=1,...,k-] and m € Z n-1
2
(if k = 2), p(k) maps :
k-n n
2 (Zm+1) -1 on 2 +2m
and 2K o) on 2M2m+] Biemd , 2 B}
(8) v(k) =p(k=1) Y (a(k-1).p(k=1)) (k=2,3,4,...)
k-1
It can be checked that y(k) maps O on O, 2~ -1 on I,
Zk_] on 2k-]+], 2k—l on 21(_'I and for u=2,...,k-1 and m € Z u=2 (if k = 3),
2
it maps :
2% Uome1)=1  on 2°7'+ 2m,
2%"Y 2m+ 1) on - 2% 1+ 2mel1
2%~ 1ok 8 ane1y=1 on 25Xl 297N 2m
and 21 4 KUy on 287 N2 one (k=2,3,4,...)

k=1

Step 2. If k ® 2 and if x € Z k\\{o,zk']a1, i L S
ZEEP £ ok -

then x8(k) m(k) = xun(k) t(k)



Indeed {x,x8(k)} is a pair of the form {2m-1,2m} .

Now it is easily checked that w(k) maps such a pair on a pair

]

{n,n+2k_1}={n,nr(k)} , where n € Z =1 As 6(k)=6(k)_] and T(k)=1(k) ,

2
the result follows.
k-1 k-1
Step 3. If k 2 2, then t(k) 0(2,2 )=0(2,2 Ye (k).
This is due to the fact that if m € Z K=1° then 0(2,2k-]) maps m on
2

2m and m+2k—1 on 2m+], and that t(k) permutes the pairs {m,m+2k_]] , while

¢ (k) permutes the pairs {2m,2m+1}

Step 4. If k = 2, then a(k)§(k)m(k) =m(k)t(k)B(k).

Proof. Clearly, both n(k) and 1(k) preserve the set (0,2 ',27! 2%} .
It follows that if x € Z Q\{O,Zk_l—l, 2k71 2k 1} | then xm(k)T(k)#

g2t g, P, Thui 1 (k) T (k) B (k) =x7 (k) T (k)

= x§(k)n(k) (by Step 2)

xa(k)S6(k)n(k) since a(k) fixes x.
Now we check that :

0a(l) 8 (k) (k) = (2K-1s)m(k) = 25-1ynk) = 251

_ 2k—! B(k) = 0t(k)B(k) = Om(k)t(k)B(k).
s k-1

2 e s T = @ -nsaT =2t = 2

- %DM = T Drasm) = DR TR BK)

2% astorm = 25 sayra) = & -nra = 257-

k=1

]

= 0p(k) = 25" NraoB k) = 2 Trao) T () B (K)

(2% 1)a (k)6 (k) 1 (k) = 06(k)m(k) = Om(k) = O

zk—l

- 2 hem) = DT@B®) = @D 1) TR BK)



Step 5. If k = 2, then ﬁ(k)Y(k)=Q(k)U(2k_],2)-

Proof. If m€ 2Z k=1 then U(Zk‘I,Z) maps 2m on m and 2m+] on m+2k_ .

2
Now we check that :

Om(k)y(k) = Oy(k) =0 ,

5 by =1,

27y = 2y = 2N

@-Dr oy () = 2y = 257

e lnrayao = @

and for n=2,...,k-1 and v € Z 19 if (k 2 3), we have :
2

M hvr ) -D 1Y () = X @vr -1y = 27 a2y |

@G =D )Y = (2K 2ue 1))y () = 2% Tezue |

k—]+ k-1+ n-|

R e o Sy = 2 Y

k=1 .n-1

5P v 1)) 1 (k) ¥ (K)

(2

k-1

X M3 n )y (k) = (2

Thus wm(k)y(k) is known. Then we check that :

0p (K)o (2% 1,2) = 00(2X7),2) = 0,
@ lnpae* T, 2) = 2002% N2y = 1
2 Vo0, 2) = 302872y = 2Ny

Do )o2¥ 2y = 102%)2) = 2K

and for n=2,...,k-! and vE€ 2 - (if k =2 3), we have :
2

2@ -1e o271, 2) = @%avo ¥ 2) = 27 gy |

(2%+4y+2)0 (2% 2) = 207!

,2) = (2%av+1)e2KT) 2y = 210

1 k=1 _.n-1

2 Gv3)-1)p (00 (257!, 2)
k-1

(@ 136ty (2

| 2)=(2%+4v+3) 0 (2K

k=1

25 M vy ) o (K)o (257

We see then that mw(k)y(k) =p(k)o(2 »2).

+2v,

+2k_n(2v+]))y(k) =2 +2 +2v+],

+2v+1,
+2v ,

,2)= 2 +2 +2v+1



1

i k- k-1
Step 6. For k = 2, define Rz(k)=2 P(2) and R](k) =SY((2" -1)P(2))Us.

Then we have the following :

k-

7' (2%) = Rl(k).ﬁ(k).(ZT'(2k—])).0(2,2 ]).Rz(k).

Proof. Delete the last stage of copies of P(2) in Y(Zk). Then there remains

two copies of Y(Zk_’). For n=l,...,k-1, delete the first stage of copies of

P(2) in Z(Zn). Then there remains two copies of Z(2n—1) if n 2 2 and 2 copies

of S if n=1. Now, by definition of T'(Zk), it is easily seen that the copies

of Z(2n_]) (n=2,...,k=-1) and Y(Zk_!) form together two copies of T'(Zk_l).

Clearly, the first stage of copies of P(2) which has been deleted is equal

to Rl(k)’ while the last one is equal to Rz(k). Thus
T (25 = R, (k) 2T (25 YY)y er, 00

i . ; . . k
where o is the interconnection permutation in the last stage of Z(2™) and

T is the interconnection permutation linking the first stage of copies of

l ]

). Now 2(25y=z (2% Hyxp(2)=2¢2*¥ Vy.0(2,2%

.Rz(k) by definition of the product x. Thus c=o(2,2k_]).

P(2) to the two copies of T'(Zk_

Let us now look at w. Clearly = fixes O and Zk—]. Now
Zk_l~l and Zk—l are also fixed by m, since I and I , = are connected to
okl sl
2(2). 1f x € z \{0,2%1, 271, 27!}, then I_ is connected to some I (z(2"),
2
and I is connected to I (Z(2n)), because 0(2n 1,2) is the inter-
X n-l
uo (2 »2)

connection permutation between the first stage of copies of P(2) and the
two copies of Z(Znﬁl) in Z(2n). Thus we get the following for n=2,...,k-1

and v € Z

2n—2



X > u- uc(Zn_l,Z) + XT

Kyt 1)=1 » 4y + 2v + 25T(2u+1)-1
2N 43y =1 > hya2 > 2vt] o 2TP(2ya1)

2T 4ua1) o hyrl > 2942870 5 2K aue2™ ey -

1 1

SN iy s ke Drcbiag™ 2k 5542% a1y

Thus w=m(k) and the result follows.

Note : Step 6 is illustrated in Fig. Il.

Step 7. For any k > 1, T'(2%) % al) T'(2%)
Step 7

Proof. We use induction on k. The result is obviously true for k=I.

Suppose that k > | and that the result is true for k-1. By Step 6, we have :

11 (2% =R, (). 100 . 21 (2F71)) 0 (2,271 R,y ()
R, .m0 100 21 25T 1 (002,27 Ry (0

by Lemma 1, since T(k)=T(l).2k_]. By Step 3, we get :

k-

T (29% R, (0. 10T 2T (2FT)) 02,27 (600 Ry ()

! R](k).w(k)r(k).(2T‘(2k_])).U(Z,Zk_l).Rz(k)

k-1
) Ry (k)

& a(k).Rl(k).u(k)-].ﬂ(k).T(k).(2T'(2k-])).0(2,2
since Rl(k) does nbt act on O and Zk—l. Using induction hypothesis, we
have T' (25 Da(k-1).7' (2%71) and so 21" 2 )22 (a(k-1). T (2X N (2a - 1)).
QT 2 )yre) . 21! 2571)) by Proposition K(ridd) .« THS 3

v

1 2% ¥ a0 R, (0.a00” (0. 100800 1" (2X7)).0(2,27 ) Ry ()

53

a(k).Rl(k).a(k)_l.a(k).é(k).n(k).(2T'(Zk_l)).o(2,2k_1).R2(k)

ee

@)« (R (0.8 (K)) (k). 2127 1)) 02,2571y Ry (0

by Step 4. Hence :



k_

2e

7' (25 a(k).Rl(k).n(k).(2T'(2k_])).0(2,2 ]).Rz(k)

o

a(k) T'(25)
and the result follows.
Step 8. For any k = 1, T'(Zk) N p(k).w(Zk)*.

Proof. We use induction on k. Theresult is true for k=1. Suppose that

k > 1 and that the result if true for k-1. Then we have :

2y X p(k—i).w(zk'])* and
T2 Y o= T2 ¥ ak-1).pk-1).w(2*H*
by Step 7. It follows that :
a1t (257N = 12Ky U2
Y o =1).02 ") U (ak=1) .0 (k=1) 025y,

R (p(k=1) U (a(k=-1)p (k=1))). (22" 1%y,

(k) . (2w25 Y%

Using Step 6, we get :

2%y % R](k).ﬁ(k).Y(k).(2W(2k-])*).0(2,2k_]).R2(k).

k=1 k-1
)¥

& Rl(k).p(k).o(zk"l,z).(2W(2 ).0(2,2° ). Ry(k)

by Step 5.

Now let Ro(k)=28 v ((Zk_]—i)(P(Z)). Then

Rl(k) e p(k).RO(l‘;).p(k)_1 and so we get :

k_

T (2% N o (k) Rk .0 () o). 02X 2y 2w H®) 02,27 iR 0
0 2

oc

p(k).RO(k).o(zk“',Z).(zw(zk'l)*).g(z,zk").Rz(k)

o (k) W25 ™.

e

It follows then that T(2X) ~ w(2%)™.



Remark. From Step 6 it follows that the "looping" algorithm used for
the control of Wsaksman's network [ 13] can also be used for the control
of T'(25).

It could perhaps be possible to design nested trees on nk bits with
copies of the n—cell P(n). Then the result might be quasiequivalent

to P(n) A (P(n) A (... A(P(n) A P(n)) ...))
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