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I. Introduction

One of the simplest probabilistic models for one-dimensional signals is the nth order
(cansal) Markov chain: the state A; at time ¢ is uniquely determined by the transition
probabilities p(A, /A, —;, 1 < ¢ < n). It has found applications in several domains, especially
speech recognition (see in particular [10]). This model has been refined by supposing that
the states A; are unknown (or rather hidden), and that one has for each ¢ an observation &
which depends upon the sequence of all A, by the probability p(&;/A+) only. One speaks then
of a hidden Markov chain. The choice of the most probable \; given the entire observation
can be computed in linear time thanks to Baum'’s forward-backward algorithm.

Several researchers have attempted to generalize this methodology, which is central
in speech recognition, to image processing, in other words to extend Markov chains in one
dimension to Markov fields in two or more dimensions [1,3,5,6,7,8]. As such a field is causal
(like Markov chains), it relies on an ordering of the pixels of the image.

In this working document we study Markov fields on arbitrary hierarchical structures,
which can be a one-dimensional chain, an ordered two-dimensional grid, a quadtree, ete.; the
transition probabilities are expressed in terms of predecessors in the hierarchical structure.
We formulate in a general framework certain results obtained in particular cases (mainly
chains or two-dimensional images) and extend some of them; in particular we give several
equivalent definitions of Markov fields on a hierarchical structure. We show also that the
forward-backward algorithm can be applied to the case where a Markov field is defined on
a tree whose causal ordering is from the leaves to the root.

Moreover we have adopted a new notation which, according to us, is more compact
and less ambiguous than the one used in most works dealing with computations on hidden
Markov fields.

In Chapter II we introduce the basic mathematical ground for the general definition
of a causal Markovian model on an arbitrary hierarchical structure and analyze the possible
definitions of a Markov field and the relations between them.

In Chapter III we apply this framework to several particular cases, and show for
example that the forward-backward algorithm can be applied to trees, or to certain fields
whose states are vectors of states in the original field (for example in a 2-D image, one can
define a Markov chain on the rows, the columns or the diagonals of the image, see [3]).



II. Markov fields on hierarchical structures

This chapter is concerned with various general definitions of a (causal) Markov field or
hidden Markov field on arbitrary hierarchical structures, and with the equivalence between
these definitions.

I1.1. Hierarchical structures

We take a finite set V' whose elements will be called points. In practice V' can be a set
of consecutive integers (for a 1-D Markov chain), a rectangular grid consisting of pixels, the
set of nodes of a quadtree, or any discrete image structure. As we will define on V a Markov
field, we will require an ordering of V' together with a neighborhood relation in terms of
which we will describe the dependence between points of V. This will be done by endowing
V' with a precedence relation <.

This relation consists in a set of ordered pairs (p,¢), with p,¢ € V. Given any such
pair (p,q), we will write p < ¢ or ¢ > p and say that p is a predecessor of ¢ or that ¢ is
a successor of p. As it should be expected from a precedence relation, < has no loops nor
cycles. In other words:

— forany p€V, p A p;
— for any pi,...,pp €V (with n > 2),if p; <+ < p,, then p, # p;.
Here A means the negation of <; the definitions of %, <, >, # and ¥ are straightforward.

The precedence relation < induces on V' an ordering relation <. For any p,qg €V, we
write p < g or ¢ > p and say that p is before g or that ¢ is after p if there exist p;,...,p, €V
(with n > 2) such that p = p; < --+ < p, = ¢. The relation < is a strict order. In other
words, for any p,¢q,r €V,

— P ADp;
— if p < g, then g £ p;
— ifp<gand g <r thenp<r.
Again, the meaning of £, ¥, <, 2, £ and ? should be clear. Note that we can have p ¥ g,

p # g and p £ ¢ at the same time; thus £ is not equivalent to >.

Examples. 1) V is a rectangular grid with pixels labelled (i,j) (1 <i<m,1<j<
n); this labelling is consistent with matrix notation (i.e., the i axis points downwards and
the § axis points rightwards).

We have (i',j') < (¢,j) iff i < i and ;' < j. We have two possible choices for <,
corresponding to the two adjacency relations on V:

a) For the 4-adjacency,
(#,7') < (4,4) it (57")=(-1,j)or(i,j—1).
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b) For the 8-adjacency,
(5 < GJj) it (@5)=({-17), (ij-1)or(i-Lj-1)
2) IfV is the set of nodes of a quadtree, then we have two possibilities:
(@) p < ¢ if pis a child node of ¢;
(b) p < ¢ if ¢ is a child node of p.

Here (a) corresponds to the case where the quadtree is processed from the bottom to
the top (analysis), while (b) corresponds to the case where the quadtree is processed from
the top to the bottom (synthesis).

3) In speech processing, the sequence of phonemes is considered as a Markov chain.
One could envisage the use of a syntactic Markovian model; for example, one can choose V
as a set of utterances (phonemes, words or sentences), and write p < ¢ if ¢ is a word and p
is a phoneme of ¢, or if ¢ is a sentence and p is a word of q. Here < induces on V a tree
structure.

Given an element p of V, we can define the following subsets of V:

Plp)={g eV |q¢=<p};
Sp)={g€V |qg>p}
PE(p)={g€V |g=2p}=P(p)u{p};
SE(p)={g €V |qxp}=S(p)u{p};
B(p)={g €V |q¢<p}
(
(

Il

»

Alp)={g eV |qg>p};
BE(p)={g€V |¢<p}=B(p)U{p}
AE(p)={q€V |q2>p}=Alp) U{p}
NB(p)={geV |q£p}=V - B(p)
(p) 2
)
)

Il

I

NA(p)={qeV |q¥p}=V - Alp);
={g €V |g£p}=NB(p)-{p}=V - BE(p);
={g€V |q2p}=NA(]p)-{p} =V — AE(p).

Here the letters P, S, B, A, E and N are mnemotechnical abbreviations for predecessor,
successor, before, after, equal and not.

NBE(p
NAE(p

For the example 1) above (the rectangular grid), given a pixel p = (i, f), BE(p) is the
set of pixels (i, 5') with i < i and j' < j, AE(p) is the set of pixels (', ;') with i’ > i and
J' 2 §, NBE(p) is the set of pixels (i, ;') with i’ > i or j' > j, and NAE(p) is the set of
pixels (¢', j') with ¢’ < i or §j' < j. This is illustrated in Figure 1.

Given a subset V' of V', we will say that V' is before-closed if for any z € V', B(z) C V'
(or equivalently if P(z) C V'). The intersection or union of before-closed subsets of V' is
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Be(o) NAE (p)

BE(p) AE (p)

—
s
-

Figure 1. BE(p), NBE(p), AE(p) and NAE(p) in the rectangular grid.

before-closed. For example, for any z € V', BE(z) is the smallest before-closed set containing
z (in other words, the intersection of all before-closed subsets of V containing ), while
NAE(z) is the largest before-closed set not containing « (in other words, the union of all
before-closed subsets of V' not containing z).

The following result will be useful in the next two sections, because it will allow us to
prove by induction several results concerning before-closed subsets of V':

Lemma 1. Letk>1andletU, C...C U, =V be non-void before-closed subsets
of V. Set v =|V|. Then there is a one to one numbering map n: V — {1,...,v} such that
for every p,g €V, n(p) < n(q) if p< g or if p € U; and ¢ ¢ U; for some i. In particular, if
we set u; = |Us| (i =1,...,k), then n(U;) = {1,...,u;}.

Proof. We use induction on v. If v = 1, then the result is trivial. Suppose that
v > 1 and that the result is true for v — 1. As V is finite, Uy — Ui~ contains an element z
which is maximal for <, in other words such that z £ y for any y € Uy, — Up—y; as Up—; is
before-closed and z ¢ Uy_;, £ y for any y € Up—;. Thus z £ y for any y € V, in other
words V — {z} is before-closed. We can now apply induction hypothesis on V — {z}: there is
aone to one numbering map n: V —{z} — {1,...,v—1} such that for every p,q € V — {2},
n(p) < n(g) if p< g or if p € U; and ¢ ¢ U; for some i. We extend then n to V by setting
n(x) = v, and clearly n is still one to one and for y € V — {2}, n(y) < n(z); moreover we
cannot have z < y or # € U; and y ¢ U; for any i. Thus for every p,q € V, n(p) < n(g) if
p<qorifp€eU; and g € U; for ¢ < j. Thus the result holds for v too.

For each U;, as n(q) > n(p) forpe U; and g€V - U;, n(U;) = {1,...,u;}. B

II.2, Standard definitions of the Markov field

We assume that we have a set I' of possible states which can be associated to elements
of V. For example, if V is a set of pixels, I' can be the set of possible grey levels.

Let S be a subset of V, and suppose that to every # € S we associate the state
4(z) € T'. This induces amap v: S — I': z > 7(z). For the purpose of our discussion,
such amap 7 : S — I', associating a state to each element of S, will be called a configuration
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for S. To this map corresponds a probability, namely that each z € S has state v(z), and
we will write it p(y). The set of all configurations for S will be written C[S].

Consider n pairwise disjoint subsets Sy,..., S, of V (n > 2), and suppose that to each
S; one associates a configuration ;. Then we obtain a joint configuration for S; U---U S,,
which will be written 7y, ...,%,; its probability will be written p(vy,,... Yo

If T is a subset of S and + is a configuration for S, then the restriction of v to T is a
configuration for . We will write it y7; when T' = {z}, we will write ~, for v(}.

Note that in [9], the authors give similar definitions and notations for a configuration

and the restriction of a configuration to a subset.

Given two events X and Y, the conditional probability of X given Y is written p(X/Y).
In order to avoid quotients of the form g in the conditional probabilities p(As/Ar)
(5,TCV,SNnT =0), we will assume that p(A) # 0 for every A € C[V].

In the sequel, the following two results will be widely used:

Lemma 2. Let A and B be two disjoint subsets of V, and let B' be a subset of B.
Consider a configuration « for A. If for every configuration § for B, p(a/@) is a function of
a and fp only, then p(a/B) = p(a/fBs).

Proof. Let § be a configuration for B. Given 4 € C|B — B'|, then the joint configu-
ration fp:,7 € C[B| and so there is a function f such that

p(a/Bp:,7) = p(a/B) = f(a, Br:).

We get then:

pla/fe)= Y plo,v/fe)= Y. ple/,8s) p(v/bs)

¥EC[B-B'] 2EC|B-B]
= Y, [leBe)-p(1/8s)=fle,fp)- Y. p(v/Be) = fla, Bm).
vEC[B-B] "EC[B-B']

Thus p(a/fp) = f(a, fp') = p(a/B). B

Corollary 8. Let A and B be two disjoint subsets of V, and let B" C B' C B.
Consider a configuration a for A. If for any configuration § for B, p(a/8) = p(a/Bs»),

then p(e/B) = p(a/fp’).
This follows immediately from the fact that p(a/@p~) is a function of « and fp+ only.
We will now define a Markov field on V. We will generalize the definitions made by

Abend, Harley and Kanal in the case of the rectangular grid [1]. Consider the following
three hypotheses:

[y ]



p:  Forevery x € V and every configuration A for V,
p('\z/’\NAE(:c)) = p(Ax/AP(z))
p' : For every before-closed subset U of V and every configuration A for V,

plAv) = H P(Az/Ap(z)).

zeU

For every # € V and every configuration A for V,

PBe@) = J[ P(A:/Apx)-

2EBE(z)

Here p and p* correspond to equations (14) and (15) in [1]. As every BE(z) (z € V) is

before-closed, p* is a particular case of u'. It was shown in Theorem 1 of [1] that p implies

p* in the case of the rectangular grid; however we can prove the following more general

result:
Theorem 4. p is equivalent to p'.

Proof. 1) p implies p':
Let u = |U| and let » be the numbering map defined in Lemma 1, with U; = U and

n(U) = {1,...,u}. The elements of V can be labelled z,...,2,, where n(z) = i for
i=1,...,v. Then U = {z,...,2,}. Foreach i =1,...,u we set

Si={z|j<i}
We recall that the map n gives n(p) < n(g) for p < g. Let 1 < i < u. Then
P(Z,’) C S,' C NAE(Z,‘). (1)

{zr | h < i} = S;. On the other
n(z); thus S; = {z; | j < i} C

Indeed, for z, € P(2), 2, < z and so h < i; thus P(z)
hand, for j < i, z; Z 2, otherwise we would have n(z;)
NAE(#). This justifies (1). Now g implies that

P(Azi/ANaE(z)) = P(Azi/AP(z)-

c
2

By (1) and Corollary 3, this implies that

p(AZ-'/’\S.') = p(‘}‘zi/AP(zi))° (2)

Using (2), we obtain then the following by adding successively 2, ..., z, to §:

P[/\U) = H p(Azi/AS-‘) = Hp(‘)‘z;/)‘}’(z;))'

=1 =1
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2) ' implies u:
Take z € V. Given y, z € V with y < z, by the transitivity of > and >, z ¥ z implies that
y # =, and z 2 z implies that y #? . Thus NA(z) and NAE(z) are before-closed. By p/,
for any configuration A for V' we have:

P(Ana(x) = H P(A:/Ap(2));
2ENA(z)

PAvaew) = I P:/Ape).
2ENAE(z)

As NA(z) = NAE(z) U {z}, we get then:

II p(:/2p(x)

P(Anva(z)) _ zeNA(a)

P(ANAE@) II  p(:/rp)
2ENAE(z)

P(As/ANaE()) = =P(A:/Ap(z))-

Thus p and u' are equivalent. i
Let us now build a particular window around elements of V. For z € V, we define
W(z)={z€eV|IyeV,z=y =z}
= |J PE(@).

YESE(z)

In other words, W () is the union of all sets PE(y) (y € V) which contain z. For example,
in the case of the rectangular grid, with the two choices of < corresponding to the 4- and

8-adjacencies respectively (see Section I), W () takes the two forms shown in Figure 2 (see
also Figure 3 (a,b) of [1]).

* % £ k%

* T % x T ¥

¥ % * %k
4-adjacency 8-adjacency

Figure 2. The window W(z) in the rectangular grid.

Other windows W () based on different choices of P(z) for the rectangular grid are
shown in Figure 3 (c,d,e) of [1]. It was shown in this particular case that p* implies the
following (see equation (16) of [1]):

o

p#°:  For every x €V and every configuration A for V,
p()‘x/’\v—{z}) = P(Az//\W(z)—{:c})'

7



This result can be generalized as follows:

Theorem 5. Suppose that either p' holds, or u* holds and V contains some z such
that y < z for every y € V — {z} (in other words V = BE(z)). Then p° holds.

Proof. For every configuration A’ for V', we have

p(N) = T p(X,/Xy))-

yev

This follows from p', and from p* if we have V = BE(z). Let # € V. Let X be a configuration
for V and let A be the set of all configurations A’ for V such that A{,_{g} = Ay —{z}. Then

P(Av—{z}) = Z p(\')

MEA
and so
0 1T p(As/2p@y)
P yeV
p(f\x//\v—{z}) = = .
ory YOI P(Ay/Ap()
MEA MEA yev

Now when y ¢ SE(z), ¢ PE(y), in other words A}, = ), and Np(y) = Ap(y); but
then p(A;/A5(,y) = P(Ay/Ap(y)). Thus these terms cancel out in the above expression, and

we get
IT e(u/rpw))
yESE(z)

E H p(A;/’\;’(y))'

NEA yeSE(z)

p(f\w/AV—{z}) =

The right-hand expression depends only upon the restriction of A to lJ, ¢ ¢ E(z) PE (¥) =
W (z). By Lemma 2, this implies that p(Az/Av —{z}) = P(Az/Aw (z)~{z})- B

Theorems 4 and 5 are valid for arbitrary hierarchical structures. It is thus possible to
apply them to some substructures of V' when V satisfies 4 or #'. We have the following:

Proposition 6. Let V' be a before-closed subset of V. Consider the restriction of
< toV'. IfV satisfies p, y' or p*, then V' satisfies it.

Proof. Let z € V'. We have
P(z) C NAE(z)nV' C NAE(z). (3)
Suppose that V' satisfies p. Then for every configuration A,

P(Az/ANap(a)) = P(Az/Ap(z))-
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By Corollary 3 and (3), this implies that

P(/\x/ANAE(m)nV’) = P(AZ/AP(m))y

and so V' satisfies p.

It is obvious that if U is a before-closed subset of V', then U is before-closed in V.
Thus V' satisfies p' if V' satisfies it.

As BE(z) CV', it is obvious that if V satisfies p*, then V' satisfies it too. i

Before-closed subsets of V' will intervene several times the next chapter, for example
in the analysis of the case where < induces on V' a tree structure.

II.3. Separators and new definitions of the Markov field

The concept of a separating set, which will be introduced below, is an important one.
From a theoretical point of view, it leads to equivalent definitions of the Markov field. For
practical purposes, it will be used in the definition of Markov chains on some subsets of V
and to the application of the forward-backward method to trees (see Chapter III).

Given two disjoint subsets S and T of V' and a subset R of S, we say that R separates
S from T if for every 2 € T, P(2) N S C R. We call R a separator of S if R separates S
fromV - S.

For example, for every z € V, P(z) separates NAE(z) from z. Now p states that for
every z €V and for every configuration X for V, p(A; [Anag(z)) = P(M2)/Ap(s)). In fact,
NAE(z) and NA(z) = NAE(z) U {z} are before-closed, and an interesting fact is that this
equality can be generalized to separating subsets in before-closed sets:

p#s: Let S and T be two disjoint subsets of V' such that S and SUT are before-closed,
and let R be a subset of S separating S from T. Then for every configuration A
forV,

P(Ar/As) = p(Ar/Ar).

We have indeed the following:

Theorem 7. p is equivalent to pg.

Proof. As pis a particular case of pg (with S = NAE(z), T = {z}, and R = P(z)),
we have only to show that g implies us. Let 8 = |S| and ¢ = |T|. Consider the numbering
map n defined in Lemma 1, with Uy = S and Uy = S UT. We can label the elements of V
as #p,...,2y, where n(z;) =i for i = 1,...,v. Then the elements of S are z,,...,2, and
those of T are @y4y,...,254¢. Foreachi =s-+1,...,8+¢, we define

S;:{zj|15j<i};
Ri=S5;n(TuR)=Ru{s;|a<j<i}.
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We recall that the map n gives n(p) < n(g) for p < ¢. Let i = s+ 1,...,58 +{. For
z; € P(z;) we must have j < 1; thus P(x;) C S;. Now as #; € T, P(#;) n S C R, in other
words P(x;) C T U R; thus P(z;) C S;n (T'U R) = R;. Finally, it is clear that for j < i,
zj ¥ a;; thus S; C NAE(z;). Hence:

P(.’L‘,‘) Q R;‘ Q S,' Q NAE(.Z,‘).
By p and Corollary 3, this implies that

P(Az;/Ar;) = P(Xe: /As))- (4)
By adding successively Zs41,...,%s4¢ to S, we obtain
s41
p(AT/AS) == H p(AI.‘/ASf)' (5)
i=s+1
But by adding successively z543,...,%54¢ to R, we obtain
s+t
p(Ar/Ar) = ] p(Ae;/Ar,)- (6)
i=s+1
Combining (4,5,6), we get p(Ar/As) = p(Ar/Ar).

A major consequence of this result is the following:

Corollary 8. LetS and T be two disjoint before-closed subsets of V. Then p implies
that

P(Asur) = p(As) - p(Ar)
for every configuration A for V.

| Proof. Clearly SUT is before-closed and the empty set @) separates S from T. Thus
Theorem 7 implies that

p("T! ’\S)

p(As) P(Ar/As) = p(Ar/Ag) = p(A7),

and the result follows then by multiplying the first and last member of that equality by
p(v\g). ]

We will now define another Markov field hypothesis which, like pg, is equivalent to p,
but is nevertheless an extension of p to some subsets of V. This will require the extension
of some definitions made in Section II.1.
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Given X CV, we define:

PE(X)={yeV|IzeX,y=<z}= ] PE(x);
zEX

BE(X)={yeV|TzeX,y<z}= U BE(z);
z€X

NBE(X)={yeV|VzeX,yZLz}= )| NBE(z) =V - BE(X);
z€X

AE(X)={yeV|IzeX,y>z}= | AE();
zEX

NAE(X)={yeV |VaeX,y ¥z} = [| NAE(z) =V — AE(X).
zeX

It is easy to see that BE(X) is the smallest before-closed subset of V' containing X,
while NAE(X) is the largest before-closed subset of V' disjoint from X.

We have now the following:

Lemma 9. Let X be a non-void subset of V. Then the following conditions are
equivalent:

({) There does not exist z,2' € X and y €V — X such that z < y < z'.
(¢¢) BE(X) - X C NAE(X)
(i) BE(X) CNAE(X)u X

(fv) BE(X) — X is before-closed.

(v) NAE(X) U X is before-closed.

(vi) There exist two before-closed subsets U and U' of V such that U cU', X CU' - U
and BE(X)-X CU.

Proof. (i) implies (ii):
Given y € BE(X) — X, there is some 2’ € X such that y < 2. For any z € X, = # y (since
y¢ X),and z £ y, otherwise z < y < z' and (¢) is contradicted. Thus z £ y, in other words
y € NAE(X).

(i) implies (giz):
This follows by adding X to each member of (i2).

(#4) implies (v):
Let y € NAE(X)UX and ¢ < y. If y € X, then y' € BE(X), and as BE(X) C
NAE(X)UX, y € NAE(X)UX. If y € NAE(X), then y € NAE(X), since NAE(X)
is before-closed. Thus y' € NAE(X) U X in any case, in other words NAE(X) U X is
before-closed.
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(v) implies (vi):
We take U = NAE(X) and U' = NAE(X)U X. As X C U’ and U’ is before-closed,
BE(X) C U’ and so BE(X) - X CU' - X =TU.

(vi) implies (iv):
Let y € BE(X)— X and y' < y. Then clearly y' € BE(X), since BE(X) is before-closed.
Similarly, as BE(X) — X C U and U is before-closed, y’' € U. Thus y' € BE(X)nU C
BE(X)-(U'-U),andas X CU-U', y' € BE(X)—-X. Thus BE(X)— X is before-closed.
(iv) implies (¢):
Ify <2’ for z' € X and y ¢ X, then y € BE(X) — X. Then for z < y, z € BE(X) - X,
since BE(X) — X is before-closed; in other words z ¢ X. Thus (i) holds. B

A set X satisfying the conditions of Lemma 9 will be called regular. For example, in
a two-dimensional grid, rows and columns are regular. For a regular set X we define:

P(X) = PE(X) - X;
B(X) = BE(X) - X;
NA(X) = NAE(X)UX.

By (iv) and (v), B(X) and NA(X) are before-closed (while BE(Y) and NAE(Y') are
before-closed for any ¥ C V). Now P(X) separates NAE(X) from X. Therefore p# implies
the following by Theorem 7:

pr:  For every regular subset X of V for every configuration A for V,
P(Ax/Avaex)) =P(Ax/Apx))-

But for every x € V, x is regular, and so pg yields p. We have thus the following:

Proposition 10. p is equivalent to pg.

II.4. The hidden Markov fleld under memoryless noise

Let us consider the following situation: the states in I' corresponding to the elements
of V are not known, but we have a set A of observable states, and for every * € V one
measures a corresponding state £(z) € A. One has thusamap £€: S — A: z +— §£(z),
which for the purpose of the present discussion will be called an observation. Qur goal is
to find a highly probable configuration A corresponding to the observation £. (In practice,
we will attempt to maximize the probability p(Az/¢) for each z € V.) For this purpose,
we assume that A satisfies the Markov field hypothesis p# (or p'), and that the transition
probabilities p(A; /Ap(s)) and the dependence p(£/A) are known for any configuration A.

The configurations A form thus what one calls a hidden Markov field. A particular
case is when A =T, and so £ can be seen as the result of the corruption of A by noise.
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However this not the only possibility. For example, A can be a set of possible grey levels and
¢ can be the measurement of grey levels of pixels on a rectangular grid; then I' can be a set
of textures which can be assigned to pixels by A, or we can have I' = {0,1} and A consists
then in a binary image extracted from £ by some form of probabilistic segmentation.

We will make the simplifying assumption that the dependence p(£/A) corresponds to

a memoryless transformation. This can be expressed by the following hypothesis:

v: Forevery DCC CV and z € C — D and for every configuration A for V,
P(Ez/ED, A(’2') = P(Sz/)\x)

We will then consider the following apparently stronger hypothesis:

V': TForevery S CT CV and R CV such that RnS = §) and for every configuration
AforV,

p(¢s/tr, A7) = [ p(£:/2:) = p(€s/As).

2ES
Proposition 11. v is equivalent to v/'.

Proof. 1) p implies v':
We use induction on the size of S. If S = §, then ¢/ is trivial. If S = {z} for some z € T,
let R"=R\T=R-RnNT. Then we have

P(é/€rdr) = Y. Pl&/Er bR AT) P(SRr/ER) AT)- (7)
¢r1EC[R']
Now by applying » with ¢ = R'UT = RUT and D = R, we have p(£:/¢r, $rr, Ar) =
p(&2/Az), and so (7) becomes:

p(€/ErAT) = D  Plé/Xe) P(drr/ér,)Ar)

$r1EC[R']
=p(&/Ae): Y, Plrr/tr AT) = P(&/2).

¢rtEC[R']

Thus »' holds for S = {z}. Suppose finally that |S| > 1 and that the result is true for
any proper subset S* of S and any R* C V such that R* N S* = . Let z € S and let
§' =8~ {«}. We have:

P(és/ér, A1) = P(ést, €2/ €R, AT) = P(€s1/ &2, €Ry AT) - P(€2/ €R) AT);
=p(€s1/bs, ér, A7) - P(€2/2z)  (by v with S* = {2} and R* = R);

= (TI p(&:/A:)) -P(&e/As)  (by » with §* = ' and B* = RU {a});
zES!

= H p(Ez/'\Z)-

ZES

13



We can apply the same decomposition to p(€s/As), and we obtain then the same result.
Thus p(és/As) = p(és/€r,As) and ¢’ holds for S.

2) v implies v:
This results from taking S = {¢}, R=D and T =C. i

Now ' implies an interesting result, which will be applied several times in the next

chapter:

Prc;position 12. Let S and T be two disjoint subsets of V', and let R C S. Suppose
that the observation ¢ satisfies v' and that for every configuration X for V, p(Ar/As) =
P(Ar/AR). Then, given L, X C S and M,Y C T such that R C L, for every configuration
A for V' we have p(Aar, €y [AL, €x) = p(Anr, €y [AR)-

Proof. Weset A=S5—Land B =T — M. Then for every 6p € C[B] and 04 € C|A]
we have by hypothesis

P(Ar,08/AL,04) = (A, 0B/AR), (8)

and 2/ implies that

P&y, &x/An,08,AL,04) = P(éy [An, 08, AR) - P(Ex /AL, 04). (9)
Applying (8) and (9) we get:

PO &y, éx)= Y. Y. p(Am 0B, €y, AL, 04, x);
6pEC[Bl04EC]A]

= Y Y p(wi0s,Ar,04) - p(Ey, Ex /A, 08, AL, 04);

05€C|B]64EC[A]

= ). 2 P(08,2r,04) P(Ey /.08, Ar) - P(€x /AL, 0a);
05€C|B]04EC|A]

= E Z P(AM,08/AL,04) - P(AL,04) - P(Ev/An, 08, AR) - P(éx /AL, 04);
05€EC[B]04EC[A]

= ), > p(Ar,08/Ar) - P(AL,04) - (v [An,08, AR) - P(Ex /AL, 04);
05€C[B]0€C[A]

= Y P, 08/Ar) P(éy [AM, 08, AR) - Y p(AL,04) - p(Ex /AL, 04);

05€¢[B] 0.4€C[A]
= Y. P05, Ev/Ar) Y P(Az, 04, €x) =P, by /AR) - P(AL, €x).
GBEC[B! GAGC[A]

Dividing the first and last member of that equation by p(Ar, £x), we get the desired result. @

Note that if we assume p and v, then we can combine Proposition 12 with Theorem 7
and Corollary 8:

14



Corollary 13. Assume that V satisfies p and v. Let 5 and T be two disjoint subsets
of V such that S and SUT are before-closed, and let R be a subset of S separating S from
T. Then, given L, X C S and M,Y C T such that R C L, we have

(A, €y AL, €x) = p(Anr, €y [AR)

for every configuration A for V.

Corollary 14. Assume that V satisfies 4 and v. Let S and T be two disjoint before-
closed subsets of V. Then, given L, X C S and M,Y C T, we have

p(Aua Exuy) = P(An, €v) - P(AL, €x)

for every configuration A for V.
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III. Applications

We will now assume that V satisfies the hypotheses p (or equivalently ', pt5, pr) and
v (or equivalently '), and we will examine some methods for finding a probable configuration
A corresponding to the observation &. In fact, as we said at the beginning of Section II.4,
we will attempt to maximize for each point = the probability of A, given &. This is opposed
to “Viterbi type” methods, where one-chooses the most probable A given €. As explained
in [5], there are several possible methods for choosing X, for each # € V when ¢ is known:

(1°) Closest value method [§]
We choose A, such that p(&,, ;) is maximum.

(2°) Block constraint method [8]
We choose A; such that p(€pp(z), Az) is maximum.

(8°) Sequential compound method [4,5]
We choose A, such that p(épg(q), Az) is maximum.

(4°) One step look-ahead method [4,5]
Given U(z) = BE(W (z)) (the smallest before-closed set containing W (z)), we choose
Az such that p(£y(s),As) is maximum.

(6°) Global method [4,5]
We choose A; such that p(év, ;) is maximum.

Let us give a few comments on this. Method (1°} does not use the context, and
according to [8] it should represent an upper error bound for the choice of A. Method (2°)
takes into account a small part of the context and can be implemented in linear time for
any hierarchical structure. It can be generalized in order to incorporate a wider context; for
example one can take A, in such a way that one maximizes P(épEn(a)s Az), where we define
PE'(z) = PE(z) and for n > 1,

PE"(z) = PE(PE" Y(z))={y €V |3z, ..., tn1 EV,y 221 X+ R 2y—1 < 7).

In the case where V' is a rectangular grid, this is called in [8] the “(n, n) block constraint”.

Method (3°) can be implemented with an exponential time complexity for an arbitrary
hierarchical structure, but this complexity reduces to a linear one in the case of a Markov
field in one dimension (i.e., a Markov chain) [2], and even for a 2-D rectangular grid (provided
that one makes certain additional assumptions [5]). Method (4°) takes into account the fact
that p(Az/Av_(2}) = P(Az/Aw(4)—{c}) for any configuration A (see p°). Its complexity is
essentially the same as that of (3°).

Method (5°) has a linear time complexity for a Markov chain, thanks to Baum’s
“forward-backward” algorithm [2,10]. In the case of a 2-D rectangular grid, to our knowledge
no method exists for reducing the time complexity from exponential to linear [5].
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Baum's forward-backward method was originally defined in the case of (1-D) Markov
chains, but we will show that it can be applied to Markov fields on tree structures. Moreover,
given any Markov field, Markov chains can be built on certain partitions of the hierarchical
structure, for example on the set of rows, columns or secondary diagonals (that is, diagonals
along the SW-NE direction) in a two-dimensional image [3]; here the states in a configuration
are vectors of states in the original configuration. Thus the forward-backward method can
also applied to these chains.

These partial results will be integrated in a general framework.

IIL.1. Markov chains built on sets of points

‘We will show how the hierarchical structure and two hypotheses p and v defined on
V can be extended to certain types of partitions V* = {V},...,V,.} of subsets of V' (for
example in a two-dimensional rectangular grid, the set of all rows, of all columns or all
secondary diagonals, as in [3]), in such a way that V* will be a first order hidden Markov
chain. In this way it will be possible to apply to V* the forward-backward method.

Let us describe our choice for V*:

Proposition 15. LetV be partitioned into k (non-void and pairwise disjoint) sets
Vi,..., Vi such that for each i = 1,...,k, PE(V;) C V; UV;_;, with V; = . For each
t=1,.:,k; set

.
]

v = |Jv;

j=1
and set Uy = (. Then fori=1,...,k,
() Vi is regular;
(¥7) Vi is a separator of U;;
(¢ié) U; is before-closed.
Setting V* = {V1,...,Vi}, we have the following:

(#v) V* is endowed with a hierarchical structure determined by the precedence relation
Vicy <V; fori =2,...,k. Every configuration X for V induces a configuration \* for
V*, and an observation ¢ for V induces an observation £* for V*.

(v) IfV satisfles pt, then V* is a (one-dimensional) first order Markov chain.
(vi) IV and ¢ satisfy v, then V* and ¢* satisfy it.
Proof. (i): Given z,2' € V; and y' € V —V;, y < 2' implies that y € PE(V;) - V;

in other words that i > 1 and y € V;_y; but then P(y) C PE(V;—;) C Vi—y UV;_5, which is
disjoint from V;; this means then that z £ y'. Thus V; is regular by Lemma 9(i).

(#6): If = ¢ U, then = € V; for some j > i, and so P(z) C PE(V;) C V;UV;_;. Thus
P(z) NV, =@ for r < i, in other words P(z) N U; CV;. Hence V; is a separator of U;.

17
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(#éf): If z € Uy, then = € V; for some j < i, and P(z) CV; UV,_; C U;. Thus U; is
before-closed.

(¢v) is obvious. Given S* C V*, it is induced by some S C V, where S is the union
of all V; € §*; then for a configuration A for V, we define naturally p(A%.) = p(As), and

similarly for the observation ¢ we define p(¢%.) = p(&s).
(v): Assume that V satisfies g. It is clear that for i = 1,...,k,
P(V;) CVi_1 CU;_; C NAE(V)).
As V; is regular, Corollary 3 and pg imply that
P(Av./Apvy) = P(Avi/v,_,) = P(\./du._,) = P(Avi /AN aE(v,))-
We get thus
p(A;’.‘/‘\‘*/;_J = p(A;./A* ;_1)'
As Ul ={V;|j <i}, V* is a first-order Markov chain.

(vi): Assume that ¢ satisfies v w.r.t. \. Take D* Cc C* CV* and V; € C* — D*. To
C* and D* correspond D ¢ C CV, with V; CC — D. We can apply ¢/ with S =V;, T =C
and R = D, and so we get:

p(év;/ép,Ac) = p(&v,/Av;).

Therefore
P(&V,/€Dw Mce) = P&, /,),

and so V'* satisfies v. §

Thus one can apply to V* the treatment applied to first order hidden Markov chains.
This is done in [3] with V' being a two-dimensional square grid and V* the set of rows (or
of columns) of V. As suggested by Devijver, a more promising approach is to chose for V*
the set of all secondary columns (i.e., those along the SW-NE direction), because it is then
possible to make assumptions of relative independence between the A, for z € V;, something
impossible when V; is a row or a column.

III.2. The forward-backward method

Given a hierarchical structure V satisfying p and v, we will see to which extent Baum’s
forward-backward method can be applied directly to V, and not only to the Markov chain
V* described above.

Let us first give a very brief description of that method in the case of Markov chains.

Here V = {1,...,n}, and we define for i = 1,...,n and for a configuration X the two

numbers ¥(i;A) and B(i; ) (Baum’s o and f respectively [2]) as follows:
?('.;A)=p(xi’611'“a€i) (3.:1)"-:”),
B(i;)\)=p(€g+1,...,é’v/)\,-) [i:l,...,v—-l),
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with B(v;A) = 1. Here ¥ and B are abbreviations of “forward” and “backward”. Indeed, it
can be shown that:
(f) Fori=1,...,v, p(év,Ai) = F(; A) - B(i; A);
(i)
(¢¢¢) B(#;A) can be computed by a forward iteration from { = v to i = I;
v)

(iv) Thanks to (i), (#), and (iii), the set of all p(&v,A;) (i = 1,...,v, A € C[V]) can be
computed in linear time.

F(#;A) can be computed by a forward iteration from ¢ = 1 to i = v;

We can generalize these quantities to an arbitrary Markov field. Given S C V and a
classification ¢ for S, we define the following two numbers:

¥(5;¢) = p(€Br(s) 9);
B(S;0) = p(énBE(s)/9).

When S = {z}, we write 7(2;¢) and B(z;¢) for F({z}; ¢) and B({z};¢) respectively (as
we did above for V = {1,...,n}).

We did not restrict the definitions of # and B to points, but did also consider sets, in
light of what was done with the set V* at the end of the previous section. Let us note as
an example that the function §, »(r,s) introduced in [5] for the rectangular grid is in fact
F(P,A), where P is the pair {(a — 1,b), (a,b — 1)}.

We can now give the basic forward and backward decomposition rules for ¥ and B;
they can be applied only when S satisfies certain requirements. Let us beforehand make the
following obsevation:

If S is regular, then B(S) = BE(P(S)). Indeed, if z € B(S), then = < y for some
y€ S, and z ¢ S; there is thus a chain z = z; < ... < 2z, = y (r > 1); take the smallest
u € {1,...,r} such that 2, € S; then v > 1, z,_; € P(S) and = € BE(z,). Hence
B(S) € BE(P(S)). Now P(S) C B(S), and as B(S) is before-closed (see Lemma 9(iv}),
BE(P(5)) C B(5).

We can now give three results corresponding to the properties (i) to (i) stated above
for 7 and B in the case of Markov chains.

Proposition 16. For any regular subset S of V' and any configuration Ag for S,

F(S;xs) =p(€s/As)- D  pl(As/e)- F(P(S);9).
$ECIP(S)]

Proof. As S is regular, B(S) = BE(S) — S is before-closed (see Lemma 9(iv)),
and P(S) = PE(S) — S separates B(S) from S. Thus Corollary 13 implies that for every
¢ € C[P(S)),

P(As/ép(s), #) = P(As /o). (10)
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As observed above, B(S) = BE(P(S)). Hence BE(S) = B(S)u S = BE(P(S))U S and
we obtain thus the following decomposition:

F(8;As) = p(€BE(s): As) = P(és, EBE(P(3))) As);
= p(€s/As) -P(€BE(p(s))As)  (by ¥');
=p(€s/As) - z P(éBE(P(5))1¢: As);
¢EC[P(S)]

=p(€s/rs): Y. P(As/Esrp(s)9) PEsrr(s) 9);
$EC[P(5)]

= p(€s/As) - Z P(As/9) - PésE(P(s)),¢)  (by (10));
oEC[P(9)]

=p(€s/As)- Y. P(As/9)-F(P(5);0). B
¢€C[P(S)]

Let us make one further definition. A set R will be called before-separating if R is a
separator of BE(R), in other words if for every y € NBE(R), P(y)n BE(R) C R.

Proposition 17. For any regular and before-separating subset S of V and any con-
figuration Ap(s) for P(S),

B(P(S);Ap(s)) = D plés/0)-p(8/Apsy) - B(S;0).
0€ClS)

Proof. As S is before-separating, Corollary 13 implies that for every 8 € C|[5],

P(énvBE(s)/0, Ap(s)) = PlénBE(s)/0) (11)

As S is regular, BE(P(S)) = B(S). We have thus NBE(P(S)) = V — BE(P(S)) =
V -B(S) =V —(BE(5)-S) = NBE(S)u{S}. Hence we get the following decomposition:

B(P(S); Ap(s)) = P(énvmE(P(s)/Ap(s)) = P(EnBE(s), £s/AP(s));

= Y pévsr(s) £s,0/Ap(s));
6€C|S)

Y~ Plés/énbr(s), 0 Ap(s)) - PEnr(s) /0, Ap(s)) - PO/ Ap(s));
0€C[S]

= Z P(és/0) - p(énvpEr(s)/0,Ap(s)) - P(O/Ap(s))  (by v');
0€c]s]

= Y pl€s/9)-p(énprs)/0) - P(0/Ap(s))  (by (11));
0eC|s]

= 3" pl€s/0)-p(6/Ap(s)) - B(S;0). B
0EC[S]
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Figure 3. A tree with a root

Proposition 18. For any before-separating subset S of V and any configuration Ag
for S,
p(&V: )\S) = 7(5; )\s) . B(S; AS).

Proof. As S is before-separating, Corollary 13 implies that for any configuration A
for V,
P(énBE(s)/€BE(s):As) = P(EnBE(s)[As)- (12)
We obtain thus:
P(év,As) = P(énBE(s) €BE(s)) As) = P(ﬁNBE(s)/éag(s), As) ' p(éBEr(s): As);
=p(énsr(s)/As) - Plésr(s),As)  (by (12));
= B(S;As)- F(S;As). 0

In the case where V = {l,...,n} mentioned at the beginning of this Section, every
point i is before-separating and regular. Thus the assertions (i¢), (¢¢i) and (i) made there
follow from Propositions 16, 17 and 18 respectively. These three propositions indicate also
how the forward-backward method can be applied to a one-dimensional Markov chain, for
example to the set V* = {V1,...,V;} mentioned in Proposition 15.

In the case of a 2-D rectangular grid, if one chooses the rows, columns or secondary
diagonals as elements of V'*, it is easy to see that the subsets V; are regular and before-
separating; thus Proposition 15 follows from Propositions 16, 17 and 18 in this case.

We will also be able to apply the forward-backward method to Markov fields on trees,
thanks to new formulas giving a decomposition of 7(S5; As) and B(S; As) (where S is regular
and before-separating) in terms of F(z; A;) and B(#;A;) for z € S. This will be the object
of the next section.

II1.3. Bottom-up trees and forests

A non-oriented graph G is called a forest if G contains neither loops, multiple edges,
nor cycles; it is called a tree if it is a connected forest.

In many branches of computer science, one generally associates to a tree a particular
vertex called the root, and views that tree as if it was oriented from the leaves to the root in
a bottom-up fashion (see Figure 3). In fact, every vertex of a tree can be chosen as a root.
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Given an oriented graph 7, we will call it a bottom-up tree if the corresponding non-
oriented graph is a tree (with a root) and the arrows of G are oriented from the leaves to
the root. We illustrate this in Figure 4. We will call it a bottom-up forest if it is the disjoint
union of bottom-up trees; or equivalently if from every vertex of G points at most one arrow.

‘e

Figure 4. A bottom-up tree

For the set V' endowed by < with a hierarchical structure, we make the arrows point
from every point to its successors. Thus V is a bottom-up forest if for every z € V, z has at
most one successor. An equivalent condition is that for every 2,y €V, eitherz < y, z > y,
or BE(z) N BE(y) = §. Moreover V' is a bottom-up tree if it is a bottom-up forest and if
there exists some 2z € V such that V = BE(z).

We will consider the case where < induces on V a bottom-up tree or forest structure,
and we will show that it is possible to implement the forward-backward method in that
situation. This will be possible thanks to a few decomposition formulas which will be
proven below. Let us make beforehand one more definition:

For §,T CV, we say that S and T are before-disjoint if BE(S)NnBE(T) = 0.

We have then the following two results:

Lemma 19. Let Ry,...,R, be pairwise before-disjoint subsets of V' and let R =
Rl U"'URn. Then

?(R; r\R) = ﬁ .?(R;'; AR.-)-

i=1
Proof. We use induction. The result is trivial for n = 1. Suppose that n > 1 and

that the result is true for n — 1. Then R' = R, U-.- U R, _y and R, are before-disjoint.

By Corollary 14, p(éBE(r'), €BE(R,)s ARy AR,) = P(éBE(rY, AR) P(éBE(R,)) AR, ), in other
words

f(R;/\R) = ?(R’ U Rn;/\R’uRn) = ?(R';z\Rr) . f(Rn; '\Rn)'

Now by induction hypothesis
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The result follows then by combining both equations. i

Lemma 20. Let Ry,..., Ry be before-separating and pairwise before-disjoint subsets
ofVandlet R=R,U---UR,. Thenfori=1,...,n,

B(RHAR.)= E B(R;AR.)'?)'H?(R];QRJ)
nEC[R—R;] J#i

Proof. Weset S=BE(R;), T=BE(R-R;),and N =V —(5UT). We have then
BE(R)=SUT, NBE(R) = N and NBE(R;) = NUT. Let  be any configuration for
R — R;. As R — R; and R; are before-disjoint, Corollary 13 (or 14) implies that

plér,n/Ar;) = p(é1y ). (13)

As each R; is before-separating, R = R; U+ U R,, separates BE(R) = SUT from N and
Corollary 13 implies that

P(én/érn, Ar;) = P(én /1, AR,)- (14)
We get thus:

B(Ri;Ar;) =p(évur/Ar) = ).  plén.érin/Ar.);

7EC[R—R;]
= Z p(éN/fTa’?,/\R;)'P(ET,H/AR’.);
nEC[R—-R;]
= Y. plén/nAr;) p(ér,n) by (13) and (14);
n€C[R-R;]
= 3. B(RAg,n)-F(R—Ryn).
n€C[R-R;]

The result follows then by applying Lemma 19 to (R — R;; 7). B

We can now use these two results, together with Propositions 16, 17 and 18, in order
to implement the forward-backward method in the case where < induces on V' a bottom-up
tree. Here R,,..., Ry, will be the elements of P(z) for z € V:

Theorem 21. Suppose that V is a bottom-up tree, i.e., there is some z € V such
that V = BE(z) and for every y € V — {2}, |S(y)| = 1. Then for every x € V,

p(&/a f\m) == ?(2; '\m) y B(x;-‘\x)a

where
F(23X2) = P(€BE(2)) Ae)s

B(2;Xz) = p(énBE()/A2),
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and the quantities ¥ (x; A,) and B(x; \;) can be computed iteratively as follows:

?(:C; Az) :p("\m)'P(é_:fc/Az) ifP(x) =f;
=p(&:/Az) Z p(X; /o) - H F(y; 0y) otherwise.
GEC|P(x)) YEP(z
B(Z§)\z) = 11
Bz Az)= Z Z (€w/0) - P(0/ Az, 1)
nEC[P(w)—{z}] 6&C|w]
Bw;o)- I Fim) if $(z) = {w).
yeP(w)—{z}

Proof. The first equation follows from Proposition 18. We have only to justify the
last equations giving the decomposition formulas for 7(z, ;) and B(z, A;).

The decomposition of F(z,A;) is trivial for P(z) = 0. If P(z) # 0, we have by
Proposition 16 (with 5 = z):

Flaide) =p(&/2a) D2 P(Aa/9) F(P(a);0).
$€C[P(2)]
By Lemma 19 (with R,,..., R, being the elements of P(z)), we get:
H F(y; dy)-
YEP ()
The decomposition follows then by combining these two equalities.

The decomposition of B(z, ;) is trivial for $(z) = @ (in other words for z = z). If
S(x) # 0, then S(z) = w for a unique w € V. By Lemma 20 (with Ry,..., R, being the
elements of P(w)), we get:

Blade)= Do BPhrem- J[  Flwm).
n€C[P(w)—{z}] VEP(w)~{z}
We have by Proposition 17 (with S = w):
B(P(w)ideyn) = ) p(w/0)-p(0/Aeyn) - B(w;0).
delw]

The decomposition formula follows then by combining these two equalities. §

Let us now consider the case where V is a bottom-up forest. Here V can be partitioned
into the bottom-up trees V; = BE(z1),...,V, = BE(z,). Then Theorem 21 is still valid if
we replace in it “V — {z}” by “V — {z1,..., 2. }" and “B(z,A,)" “B(zi,A:)" (i=1,...,n).
However, there is a more economical solution, because we can restrict the computation of
¥ and B to the sets V;, as follows:
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Given 5 C V; and a configuration A, we write 7(S; As) and B;(S; Ag) for the values
of 7 and B computed in V;; in other words

7i(S;As) = p(€E(s)nvi» As)-
Bi(S;As) = p(énpE(s)nv,[As)-

Then it is clear that %(S;As) = #(S;As). On the other hand, we will have

B(S;As) = Bi(S;xs) - [] p(&v,)- (15)
J#
This follows from Corollary 14, because NBE(S) = (NBE(S) nV;) UU,..; V; and the sets
Vi,...,V, are before-closed and pairwise disjoint. We obtain then the following result:

Theorem 22. Suppose that V' is a bottom-up forest which can be partitioned into
the bottom-up trees Vy = BE(z),...,V, = BE(z,). For z € V;, write %(z;\,) and
Bi(x; \;) for the ¥(x; ;) and B(=z; ;) of Theorem 21 computed in the tree V;. Then

P(év,As) = Fil@; X)) - Bi(mi Xe) - [ p(év,),
P
with
p(fV,')= Z Fi(2530z;)-

B,J.GCIZJ']

Let us now give an interpretation of Theorem 21. The numbers ¥(z;A;) (z € V) can
be computed iteratively from the bottom to the top of the tree; afterwards the numbers
B(2;X;) (= € V) can be computed iteratively from the top to the bottom of the tree with
the help of the #(y, Ay). Thus the forward-backward method can be applied to the tree.
Moreover, if the feature space I' has size ¢ and if the number of children nodes of a node in
the tree is at most u, then the computational complexity of the decomposition of 7 (% Az)
and B(z; ;) is in at most ¢*, and so the computation of all p(&y,A;) (z € V, X, € Clz])
can be achieved with a complexity in O(v - c*).

Let us now make a few practical remarks. In a bottom-up tree, the children nodes of a
node z are the elements of P(z), while the parent node of z is the successor of . One might
argue that the transition probabilities p(A; /A p(m)) are too restricted, that the feature state
on a node should be determined by the feature states not only of its children nodes, but
also of the nodes having the same parent. In other words, the transition probabilities could
take the form p(A; /Ap(a), AP(S(z))~{z}) One can remedy to this limitation by modifying the
signification of the state A, on a node z: we can assume that this state describes features
of the children nodes of z; in other words, if the children nodes of z are yy,...,#, then
A: = (A,,-..,Ay,), where each f\y.. is a feature state for y;. In this way, the features on
yi depend on those on y; (j # i) thanks to the dependence of A, = (},,,...,A,,) upon
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(Ayys-++rAy,). Note that for leaf nodes (those having no children), the state A, is then
undefined.

Second, an interesting question to investigate is the possibility of applications of
Markov fields to bottom-up trees. Consider for example the quadtree of an image. Here
the nodes represent image portions having various sizes, and the states A, corresponding to
them belong to the same set I', irrespectively of their size. One should thus choose features
whose interpretation is independent of the size of these image portions.
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