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ABSTRACT

A multiconnection network is a switching network which can connect
each of its outputs to some input. We investigate designs able to realize
any connection of the outputs to the inputs. The complexity bounds are
O(N log N) for the cost and 0(log N) for the delay, but in practice, a network
with an easy architecture and algorithm requires a cost and a delay of the

form O(Nz) and O(N) respectively.



MULTICONNECTION NETWORKS

I. Introduction

Let M and N be two positive integers. Consider a switching network

S with M data inputs IO""’IM—I’ N data outputs OO,. 0 and several

PN
control inputs which can realize input—output behaviors of the following
type

There is amap £ : Z, + Z_  such that for any x € 2

N M

(S
N and y ZM’ IY

is connected to 0x if and only if y = f(x). (1)
(Here Zk = {0,...,k=1} for any integer k > 0).

We call such a connection a multiconnection, because an input can be

connected to several outputs. We say also that S is a multiconnection

network., The multiconnection (1) can be written [f ] and we say then that
S realizes [£ ] (or simply : S realizes f).

The number of multiconnections realized by S is called the multipli-
city of S, If S can realize all multiconnections, then S is total. Its

multiplicity is then equal to

e (2)

Finally, we say that S is square if N=M.

Note. We use the same notation as in[2 ].



II. Design methods

A. The direct desig&

Suppose first that S has multiplicity k, where k < M. Then S can be
built with N multiplexers on k bits having the same control inputs.

Indeed take N such multiplexers MO""’MN—I' Suppose that S realizes

the multiconnections [£, 1,..., [f Then we make the following

0 k=1 I

connections :
- For i=0,...,N-1, the output of Mi is connected to Oi'

- For j=0,...,k-1 and i=0,...,N-1, the data input j of Mi is connected to

Ifj (i)
Then if the control inputs of MO""’MN—I are set in the state j

(where j=0,...,k-1), then each Mi (i=0,...,n-1) connects its output to its

data input j and so Oi is conmnected to I Thus S realizes fj'

£.(1)°
]
Suppose now that the multiplicity k of S is larger than M. Then S

can be built with N multiplexers on M bits having pairwise distinct

control inputs. We take such N multiplexers M M and for i=0,...,

0% " N=-1"
N-1 and j=0,...,M-1, we connect

- The output of Mi with 0,

- The data input j of Mi to Ij.

Then the resulting multiconnection network is total. Indeed, for

any map f : ZN > ZM’ if we set each Mi in the state f(i) (i=0,...,N-1),

then 0. is connected to I.,.. and Srrealizes f.
i f(i)

These two methods are illustrated on Figures 1 and 2 for N=4, M=5

and k=3 in the first case.



B. The three stage design

This design for total multiconnection networks was found in [4 ].

Although only square networks were considered, it is also valid for N < M,

It consists of three stages
(1) A permutation network on M bits.

(2) A branching network on N bits.

(3) A permutation network on N bits.

A branching network on N bits is a particular square multiconnection

network on N bits which can realize every multiconnection [f ] such that

There are k positive numbers Agseeesdy such that
1 <
0 a0<.. <ak_]\N
and f(x) = max{ai (0<1i< k--l)|ai < x}. (3)

Such a multiconnection f is called a branching. An example of
branching is given in Figure 3 for N=7. The three-stage network is illus-
trated in Figure 4 for N=4 and M=5.

We will now describe briefly the control algorithm of this design.

A map £ : ZN - ZM can be described by a sequence of N elements of
ZM’ which are the images by f of 0,1,...,N-1, Now f can also be described
in the inverted form, that is by a sequence of M subsets of ZN’ which are
the inverse images by f of 0,1,...,M-1. Any of these two forms can be

obtained from the other by scanning through the sequence. This operation

has cost equal to N.



Suppose now that £ is given in the inverted form. There are k
-1 . .
numbers N/ LRERES S such that f (yi) = {x € ZNIf(x)=yi} is nonvoid.

Write :

-1 _ i i
£ G = {xo,...,xbi_l} (4)
for i=0,...,k-1.
Then set :
ay = 0 (5)
and for i=l,...,k-1
i-1
a, = Z b. (6)
i . i
=0

We make then the following operations on the three stages
(1°) In the first stage, we connect for i=0,...,k-1 the input y; to the
output a. and complete the connection in order to get a permutation.
(2°) In the second stage, we operate the branching (3) determined by the

values of agreeesd chosen in (5) and (6)

k=1
(3°) In the third stage, we connect for every i=0,...,k-1, the input

a,+u (0 S u<b.) to the output xt.

i i u

Then the network realizes f.

An example of this decomposition is given in Figure 5 for N=4 and
M=5.

For M < N, the network can be designed by adding N-M iddle inputs,

so that we get M = N,

Now we have only to describe possible designs for a branching network

on N bits.



Figure 6 gives the design of a branching network on 2 bits, also
called a branching cell, using one multiplexer. It also gives its two
states : "through'" and "branching".

In[4 ], the authors give a design for a branching network on N
bits for N > 2, It is illustrated in Figure 7 for N=6.

This designs consists in N-1 branching cells placed in N-1 stages.
If we label these cells 1,...,N-1 (as in Fiugre 7), then the branching (3)

can be realized by setting the cells alsyens,a in the "through" state,

k-1
and the other cells in the "branching" state. In other words, we set a
cell i in the "through" state if £(i-1) < f(i) and in the "branching"
state if f£(i-1) = f£(i), where [f ] is the branching that we want to
realize.

There is also another design having cost around N log2 N and delay
2 logzN in terms of branching cells. We will describe it here :

For any number u, let ru1 be the smallest integer larger than or

equal to u. Let n = rlogzN". Then we get a branching network by connec-—

ting successively the following 2n-1 stages :

k

300 ey

Stage 2k (k=0,...,n=2) : For every i € {0,...,N—1—2k} such that i = 2

k+ + . .
]—1 (mod. Zk ]), we connect the levels i and 1+2k by a branching cell.

2

Stage 2k+1 (k=0,...,n-2) : For every i € {O,...,N—I—Zk} such that
k+

1= 0,...,2k—1 (mod 2 I), we connect the levels i and i+2k by a branching

cell.,

Stage 2(n-1) : For every i € {O,...,N-]—Zn_]}, we connect the levels i

and i+2n-1 by a branching cell.

This construction is illustrated in Figure 8 for N=10.



The control algorithm is easy. Given a branching cell between the
levels i and j (where i < j), we set it in the following states :

- If £(i) = £(j), the "branching state.

- If £(i) < £(j), the "through" state.

(Here [ £ ] is the branching that we want to realize, see (3)).

Let us explain briefly why this design works. The choice of the
congruences in the stages 2k and 2k+! for k < n-1 ensures that every level
is connected to at most one branching cell by stage.

Suppose that £(j) = i for j=i+ nzl dr 2", Then the stages 0 and 1,

r=0
2 and 3,...,2(n-2) and 2(n-2)+1, and finally 2(n-1), will connect together

; ; . . , n-3
the levels i and 1+d0, 1+dO and 1+d0+2d1,...,1+d0+...+dn_32 and
: n-3 n-2 ‘ : n-2 g
1+d0+...+dn_32 +dn_2 2 and finally 1+d0+...+dn_3 2 and 1+d0+...
+d 2n—] = j. Thus the output j will be connected to the input i by a

succession of branchings.

This network has 2n-1 stages. Let us now count the number of cells
it contains.

For every k=0,...,n-1, there is a branching cell between the stages

i and i+2k if and only if :
3 k
i€ {0,...,N-1-27}, (7)

Thus the number of cells is

n-1 Kk n—1
] W-2") =aN - § 2
k=0 k=0

Il
=]
=2

1
(gl

=]

+

(8)



This number is asymptotically equal to N logzN.
Note that for N=2, a total multiconnection network can be built
with only two stages : first a permutation cell and then a branching cell

(see Figure 9).

C. The use of Clos and related networks

Let A and B two switching networks on a and b bits respectively.
Then we can construct the Clos Network BxxA by taking three stages con-
nected by perfect shuffles, the first one consisting of a copies of B,
the second one of b copies of A, the last one of a copies of B (see Figure
If A and B are multiconnection networks, then BxxA is also a multi-
connection network. But when is BxxA total ? We have the following

result :

Theorem I. Let A and B be total multiconnection networks on a and b bits
respectively (a,b = 2). Then BxxA is total if and only if a=2.
To prove it, we will consider three cases :
(1°) 3 < a < hb.
(2°) a > b.

(3°) a

I
[a~]

We will write B . for the a copies of B in the first stage

0" a-1

of BxxA, AO""’Ab—l for the b copies of A in the second one, and Bé,...,
B for the a copies of B in the third onme.

Let us take the first case : 3 < a <b., We can write b = a+c,
Suppose that we want to realize the function f defined in the following

way :

€ €
For any x Za and y Zb’

10).



f(xb+y) = xb+y if v & {c,c+l,c+2}, (9)
=c if y=c. (10)
= b+c+x if y=c+1. (11)
= c+x+1 if y=c+2. (12)

. . 1
It is easily checked that for any x € Z_and y, y € Zy s f (xb+y) #

f(xb+y1) whenever y # yl. Thus Bé,...,B;_]

As 0,...,2b-1 are all in the image of f, BO and B] must be in the

are in the permutation mode.

permutation mode.

Thus, the input c of BO is connected to only one output of BO’ say
%, Thus it is connected to the input O of Ax. Now the output c of each
Bi is connected to only one input of Bi, which must be connected to the
input 0 of Ax' Thus it is the input x of Bi and so Ax is in the branching
mode : every output is connected to the input 0.

As B1 is in the permutation mode, its output X must be connected to
one of its inputs, say y, and it is the only output connected to this
input. But then no path can go from this input to the third stage,
because no output of Ax is connecfed to its input 1. But this contradicts
the fact that b+y € Imf.

This case is illustrated in Figure 11,

Let us take now the second case : a > b. Then we define f in the
following way :

For any x € Za and y € Z

b!
f(xb+y) = 0 if y=0, (13)
= b+x if x < b and y=1. (14)
=y if x = b+l. (15)

xb+y  otherwise. (16)



Then we apply the same argument as in the first case; but where we
replace c by 0.
Let us now consider the third case : a=2, We will show that BxxA is

total. We first prove the following result :

Lemma 2. Let n be a positive integer. Let XO, Xl, YO and Yl be sets such

that X, N X =Y, NY =0 and |Y [Y,| = n>max{|X,|,[X,[}. Let £ be

0| =

0 0
a map X, u X, > YO U Y. Then either :
a) Imf N Y] = 0,
b) Imf N YO =0,
or ¢) there exist Yo € YO’ ¥ € Y], ZO - XO and Z, c X, such that :

(1) {f(zo), f(Zl)} c {@,{yo},{yl}}.
(ii) n-1 = max{|x0|—[zo|,|x1[—]z]]}.
(iii) If g is the restriction of f to (XO\ZO) U (Xl\zl)’ then

n-1 > max{|Y0 N Imgl|, [Y, N Img|}.

Proof. Suppose that (a) and (b) do not hold. We have the following five

cases

(1°) For some j=0 or 1, there exist y € Yj and yl € Yl—j such that

f_l(y) NXy#t 04 f_l(y) N X, and f"l(yl) = 0.

Then we take Zi = f_](y) n Xi (i=0,1) and so (c) holds with y = yj

and yl = y]“j because vy, y] & Img.

(2°) For some j=0 or 1, there exist z € Y. and 1 € Y ., such that
Y i y 1-]

@) =0, £ Nx 04 E ) NX amd P # (5 X, for

1

some 1=0 or 1.

=l nx

Then we take z, = fnl(yl) and Zl 3

- and so (e¢) holds

with Y=y and y]=y1_j, since z,y1 & Img.



(3°) There exist y € Y, and vl e Y, such that D # f—](y) & Xj and

0 # f_](yl) E X for some j=0 or 1.

1-]

Then we take Zj = f_l(y) and Z - = fhl(y]) and so (c¢) holds with

1
Yy =¥, and y] =Yy because y,yl & Img.

(4°) For some i,j € {0,1}, X, = @ and there exist y € Yj and yl € Y]-j

such that f_](y) = @ and f_l(y]) # 0.

Then we take Zi = @ and Zl—i = f_l(yl) © Xl-i since Xi = P). Then
. 1 .
(¢) holds with y=Y; and y =Y,-j» since n~1 & IXi' = |Xi]-|Zi| and
1
¥,y ¢ Img.

(5°) None of the preceding cases holds. Then we show that we have a con-
tradiction. As (3°) does not hold, f may not be a bijection and so
for some j=0 or 1, there is some z € Yj\Imf. As (a) and (b) do not
hold, there exist some y € Yj N Imf and yl = Yl—j N Imf,. As (1)

does not hold, P # f_l(yl) C X, or X.. Now, as (2°) does not hold,

0 1
1,1

or X,. But (3°) does not hold. Thus f_l(y) Uf (y)

-1
p£E () CX, ;

c Xi for some i=0 or 1. Now this argument can be repeated if we

replace y by any ; S Yj N Imf or y] by any ;1 € Y]-j M Imf. Thus
=1 -1

f (Yj)LJf (Yl—j) E-Xi and so Xl—i = @, and so (4°) holds, which is

a contradiction.

Now the following result will allow us to prove Theorem 1.

Proposition 3. Let b be a positive integer. Let XO’ X], YO and Yl be sets

such that XO N X, = P = Y, N Y, and |Y0] = |Y1| =b > max{|X0|,|Xl|}. Let

i S
f be a map XO U Xl -+ YO U Yl. Then there exists yO,O""’YO,b—l YO and

Yy 0rt oY) be € YI (in each case not necessarily pairwise distinct),
H] H

ZO,O""’ZO,b—l - XO and Z],O""’Zl,b—] - X] such that :



I

™
Cc
c
N

(i) X, =

]
S
@

. U
(ii) X] 1,0 . Z .

(iii) For every i=0,1,...,b-1, {f(ZO,i)’f(Z],i)} c {@,{yo,i},{yl,i]}.

Proof. We use induction b. The result is obvious for b=I. Suppose now
that b > 1 and that the result is true for b-1. Then we can apply Lemma 2
with n=b.
If (a) holds, then write yj,i for the ith element of Yj (3=0,1;
i=0,...,b=1) and take Z. . = f~](y .) N X.. Then the result holds.
j,1 0,1 ]

A similar argument works if (b) holds. Suppose now that (c) holds.

. 1 1
. =27, . =V, = . C
Set ZJ ZJ,b—l and yJ Y5 b1 (j=0,1). Choose some Y0 C YO and Y] c YI
such that |Y(l)| = |Y}| = n-1, Yé 2 Y, N Img and Y} 2 Y, N Img. If we write
1 1 . ; :
XO = Xd\ZO and XI = Xl\zl’ then XO’XI’YO’YI and g satisfy the hypothesis

of the Proposition, but with b—1 instead of b. Then we can find Yo. 0% 0
2

yo’b_z, y1’0:0o-3y1,b_25 ZO,O,.--,ZO’b_Z, ZI,O,...,Zl’b_Z satlsfylng (1)’

(ii) and (1ii). As Z Y. and Y satisfy result (c) of Lemma 2, and

0° 210 Yo ]

as g is the restriction of f to Xé ) Xi, (1), (ii) and (iii) hold also for

XO, X] and f.

In fact, we can derive from Proposition 3 the fact that if XO’ Xl’

Vs ¥

IRAL BO""’Bb—] are total multiconnection networks, then the multicon-

nection network shown in Figure 12 (which is slightly more general than the

Clos network with a=2) is total.

Indeed, let f be a map Zb0+b] - ZZb'

In XO, we realize the map :
EO it k>1 if k € ZO,i' (17)

In Xl, we realize the map :

EI t k>b+1 if KE Z_ ., (18)
143
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In B, (i=0,...,b-1), we realize the map Bi defined as follows

B,(0) =0 if f(ZO,i) = {yo,i} or §. (19)
=1 if f(zo,i) = {yl,i} (20)
B, (1) =1 if f(Zl,i) = {yl,i} or f. (21)
=0 if £(z) ;) = {yy ;) (22}

In VO’ we realize the map :

ng * iy g 23D

In Vl, we realize the map

n, ¢ b - V1,40 (24)

Then it is easy to check that the resulting map if f.

Now let us describe the algorithm for the determination of the maps
EO’ El, Ngs My and Bi (i=0,1,...,b=-1). As in Proposition 3, this is done
by induction, and we get 5 cases, corresponding to the result (a) or (b)
of Lemma 2, and to the cases (1°) to (4°) in the proof of it.

Suppose that for some n < b, all Zj : and yj ; (j €2Z,, i = n) have
’ 2

2

been determined.

In the first case, where Yj N Imf = P for some j=0,1, then all Z. i
]

and yj i (1 < n) can be determined as shown in Figure 13.

?

In the last four cases (illustrated in Figures 14 to 17), we deter-—
mine Z

0 =032 By ™ Py pers Ty = Ve O Py = Ty, 80d We glve

the things which must be deleted in order to pass from n to n-1.
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Let us give an example (with b=4).

Let us define f by the following matrix

w N
[NCRRWL)
o -
~ U
N O
~ ~
~

(25)

(a) First we have f_I(O) = {0,1,4} and f~](6) = ). We apply then case 2
with y=0 and y1=6. We delete 0,1 and 4 on the right, 0 and 6 on the
left, and the box 53. Then f is reduced to a function g.

(b) Then we have g_1(3) = {2} and g-](7) = {5,7}. We may thus apply case
4 with y=3 and y]=7. We delete 2,5,7 on the right, 3 and 7 on the
left, and the box 82. Now g is reduced to a function h.

(c) Then we'get b (2) = [3,8] and B @) = ;. We apply case 2 with ye2
and y]=4. We delete 3 and 6 on the right, 2 and 4 on the left, and
the box Bl' Then h is reduced to nothing, and we can set BO in any
state and connect the outputs 0 of the two boxes on the left to any
input.

This procedure is illustrated in Figure 18.

There are other networks which resemble to the Clos Network, for
example Waksman's network [2 ]. M. Davio has shown that for N=4, this
network, both in the direct and the reverse form, is not a total multicon-

nection network (see Figure 19).

D. Sorting networks as multiconnection networks

A sorting network is built with 2-cells with two states and decentra-
lized control : each cell is equiped with a comparator which compares

signals associated to its inputs and determines from it the state of the

cell (see[11]).
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We wish to use similar networks for multiconnection. First we use
them in the reverse order (since we must realize a function from the
outputs to the inputs, contrarily to what happens in a sorting network).
Secondly we use 2-cells with more than two states (see Figure 9). We
will use a multiconnection 2-cell with three states in the first case and
four in the second one (these states are illustrated in Figure 20).

We illustrate the decentralized control in Figure-Zl. Here s is
the signal associated to the output Oi (i=0,1). The comparator produces
the signal si (i=0,1) associated to the inputs Ii and determines the state
of the cell.

Let us consider the first case. To every output Oy’ we associate

the signal

s(y) = £(y), (26)

where f is the map that the network must realize. Each cell can have

three states, as explained below :

(N o < S Then we set s; = iy and sé 502 and switch the cell in the

"straight" mode.

(2) sg > Sy Then we set s; = s, and 56 =5, and switch the cell in the
"eross' mode.
(3) 89 = 8;° Then we set sé = si =8, =8, and switch the cell in the

"down' mode.

Suppose that we have :

Imf = {xo,...,x 1, (27)

k-1

where we set the xi's in increasing order, and for i=0,...,k-1, we write
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F. = f (xi) (28)

and b ‘ (29)

I
)

Then it follows from [3 ] that the network realizes the map g

defined by

]
o

g(y) if y € FO

i-1
J b, if y € F., where 1 < j < k-1, (30)
j=0 J J

This is due to the fact that our network realizes in the reverse

order a regular fusion-sorting (see [3 ]).

The procedure is illustrated in Figure 22 for N=4. The signals 5;
are indicated by numbers affixed to the inputs and outputs of the cells.

Now if we look at our formulas (3), (4), (5) and (6), it is clear
that the network realizes the same map as the two last stages of the three
stage design.

Thus one can realize f by connecting a permutation network to the
inputs of our network. If we want decentralized control, then we can
choose for it a sorting network (built from 2-cells with 2 states) set in
the reverse order.

Let us now introduce the second case :

One of the drawbacks of the preceeding network is that we need to
connect two cellular networks derived from sorting networks in order to
be able to realize all multiconnections.

One might wonder wether one could have a better result by choosing
multiconnection cells with 4 states (as in Figure 20) instead of 3 and 2

respectively., The problems reduces then to choosing the correct Oy asso~



ciated to Oy and the behavior of the multiconnection cell in function of

its signals 50 and s, associated to its outputs.

1

Suppose that we choose to take s(y) = f(y) and set the cells in the

following modes

- If s > S then s; =8 and sé = 50 and the cell is in the straight
mode.

- If 5, < 0> then sb = s and si = 54 and the cell is in the cross mode.

= Tf S; = Sp» then we choose sé and s; according to our convenience, and

the cell is in the up or down mode.
(This is the most general extension of the case where f is a permutation
and where we use the normal sorting procedure).
Then the network does not always realize f. We give two examples in
Figure 23, where f is impossible to realize and where we get instead two
maps f] and f2.

Thus we have to choose another method. We will define the fictive

permutation method, which works only for certain types of sorting networks.

Again, we use (27), (28) and (29). 1In each Fi’ we choose an element

Yi» called the representative of Fi'

We call then a fictive permutation associated to f and the represen-
tatives Ygree+sYpoy» any permutation g of ZN such that

8(}7]-_) = f(yi) for i=03"'9k_1 (31)

We will now choose our associated signals in Z_ x Z

N N Indeed, we

associate to every output 0y the signal

s(y) = (g(y), £(y)). (32)



For any distinct y, y'

€ Zys we have one of the following three
possibilities

(i) v € Fey y' € F., and either i #1i' or i = 1i' and y # Vs #y'.
Then £(y) = g(y;), £(y") = g(y;+), 8(y;) # g(y") and g(y;,) # g(y). Thus
we have :

£(y) # g(y")

and f(y') # g(y). (33)

» _ ' e .
(ii) y Yi» ¥ Fi\{yi} and then :

f£(y) # g(y")
and £(y') = g(y), (34)

since £(y) = g(y), g(y") # g(y) and £(y') = £(y).

(iii) y' = yi» ¥ € Fi\{yi} and then we get by symmetry with (ii) :

£(y) = gy")

and £'(y) # g(y). (35)

As (33), (34) and (35) are mutually exclusive, they are equivalent
to (i), (ii) and (iii) respectively.

Suppose now that we perform on the network the sorting in relation
with g, in other words if we set each cell in the following state (where

s; = (gi, fi) for i=0,1) :

- straight for g, < g
- cross for g, > 8

and if we do the same for the determination of the si (i=0,1), then the

network will realize g.



Now suppose that we can shoose g in such a way that for any

i=0,...,k-1 and f y v € FA\{y. th ths 0. + I d0. =71
i=0, , and for any y ; {yl}, e paths O ) o0 v g(yi)

pass at least once through a common cell. Then we change the connection

from the output of the cell corresponding to Oy and we connect it to the

same input as the output of the cell corresponding to O . Then Oy will
i
be connected to I =T . It follows that the network will realize
8(y;) £(y)
£

This transformation is illustrated in Figure 24,

Of course this possibility is not guaranteed for every type of
sorting network. For example the network of Figure 22 cannot in any way
realize the map

£f:0-=+0

32 (36)
wether with a centralized or a decentralized control. However, it is a
sorting network set backwards.
Now let us give the input-output behavior of the cells shown in
Figure 2. We suppose that we have s; = (gi, fi)'

First, for every y € Zn’ the signal associated to it is (32).

For any relation F, we define the truth function §(F) by

1 if F is true.

§(F)

0 if F is false. (37)

We have thus the following two tables
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> 1 1

S(gp ~ &) 50 g
0 Sy s, (38)
1 Sy e

§(gy > &) | 8(gy = £)) | (g, = £4) | Cell mode
0 0 0 straight
1 0 0 Cross
0 I 0 down (39)
1 1 0 up
0 0 1 up
1 0 1 down

The first table is obvious. Let us explain the second one. Suppose

that sg = s(y) and s, = s(y') for some y,y' € Z

1 In the first two lines,

N
(33) holds, and so the cell must be in the sorting mode. Thus one get

"straight™ for g > &g and "cross" for gg > g+ In the next two lines,

(34) holds, and so y = y; and y' € Fi\{yi} for some i=0,...,k-1. We must

then change the input connected to 0,. Thus "straight" becomes 'down' and

"cross" becomes "up". In the last two lines, (35) holds, and so y' = ¥;
and y € Fi\{yi} for some i. We must then change the input connected to OO'

Thus "straight'" becomes "up'" and "cross'" becomes "down".
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Suppose that the multiconmection 2-cell is built as in Figure 9,

using two binary variable cy and c e Then the 4 states are given in the

following table :

Cl CO state

0 0 straight

0 1 cCross (40)
1 0 down

1 i up

Then the inmer control of the 2-cell (see Figure 21) is illustrated
in Figure 25, where "P.N.'" means "permutation network" and "B.N." means

"branching network", and where & is a switching network realizing the

input-output behavior :

(G(go > 8,)» é(g]=f0), 6(g0=f!)) > (cl,co). (41)

From (39) and (40) we have :

(2]
|

| = 8(g=f) v 8(g,=E,) (42)

and

cg = 8(gy>8) & 5(g1=f0)- (43)

As we said above, it is not guaranteed that we can choose g in such
a way that it satisfies the condition on the paths 0= Ig(y)’ where
y € Fi\{yi}. When g satisfies that condition, we say that g is a

suitable fictive bijection .
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Let us make the following definition :

Let N be a switching network having n inputs and n outputs (n > 0),
which is built with 2-cells, i.e. smaller networks with 2 inputs and 2
outputs. Then we say that N is adjacent if we can decompose N in r

stages (r = 1) NO""’Nr—l having n inputs and n outputs each, such that

(i) For every z € z and for any i=0,...,r-2, the output z of Ni is

connected to the input z of Ni

+1°
(ii) For each i=0,...,r-1, the stage Ni consists of :
- straight connections IZ - 0z (z € Zn), or
= 2-cells with inputs Iz, I and outputs Oz’ 0

(z € Zn—l)’

z+1 z+1

where IZ and OZ represent the input z and the output z (z € Zn) of
N

i
We give an example in Figure 26,

We have the following result

Lemma 4, Let N be a multiconnection network with N inputs and N outputs
built from an adjacent sorting network. Let f be a map ZN > ZN' Let g

be a fictive permutation associated to f. Then a sufficient condition for
g to be suitable is that

For any i=0,...,k-1 and y € Fi\{yi},

g(y) < g(yi) if and only if y > ;e (44)

Proof. As the network is adjacent, we can suppose that there are N levels
0,...,N-1 and that a binary cell connects each of its output to an input
on the same or an adjacent level. Suppose that (44) holds. We have the

r stages of the definition, going from the outputs to the inputs (since
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we have taken the sorting network in the reverse order). Let j be the
highest integer such that after passing through all the stages Nu (u < 3j)

the paths starting from Oy and Oy are at levels Ly and Ly such that
L <L iff Y <y, (45)

Then clearly 0 < u < r by (44). Thus there is a stage Nj' After

that stage, we pass to levels L; and L' such that :
1;
L' <L iff . >
y. <y v >y

iff L >1L (46)
y y

As the network is adjacent, we have :

.

0<|L' -1 - L | <
Ity = Lyls Ity | < | (47)

L. -1 | =1,
¥i ¥
L =1,
y; Y
and Ly = L; (48)

This means that the paths from 0y and Oy pass through a common cell.
i
Thus g is suitable,

We have then the following :

Lemma 5. (M. Davio). For any map f : ZN -+ ZN’ there is a fictive bijec-

tion g satisfying condition (44).
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Proof. We determine g(y) for y € Fi by induction on i. Suppose that for
any j <1 and y € Fj’ g(y) is determined (this condition is trivial for

i=0) in such a way that g(y) # f(z) for z € Fr’ r>j.

Define :

T = {x € lex#g(y) for any y € F,, j<1i

}
x#£(z) for any z € F,r>1i (49)
We have by (27), (28) and (29) :
lrf =w- ] b.-] Y £(@F)]
i <i J r>i
>N- ) b.- ] b_=h, (50)
i<i 3 r>i ¢ 1

We take a subset Ti of T such that |Ti! = bi and X, € Ti (see (27)).

We can write :

W = T s

i
i
with
1) o @) =
Yy Ve for u < v, (51)
and
Tl { l(l),.--’ él)},
i
with
z(l) > z(l) for u < v, (52)
u v

Then we define for u=1,...,bi :

g(yii)) - zii). (53)
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If ' is the element of Fi mapped by g on X, then Vs satisfies (44)
for any y € Fi\{yi}'

Thus for any y € Fi, g(y) is determined and g(y) # £(z) for z € Fr’
F

r > i, Thus this construction can be applied to Fi and so

+170 TRk

the result holds.

This construction is illustrated in Figure 27 for N=6,

Two well-known adjacent sorting networks are (see [1,2 ])
- the diamond array, which exists in two forms (similar up to a rotation

of 180°) and is illustrated in Figure 28 for even and odd n.

- the triangular array (see Figure 29).

In Figure 30, we apply our algorithm to the triangular network for
N=5. The control signals s; = (gi, fi) are written gifi’ i.e. as number
in radix 5. We write them at the inputs and outputs of the 2-cells.

Although this algorithm has decentralized control, it requires a
centralized operation, i.e. the determination of a suitable fictive permu-
tation. The algorithm used in Lemma 5 and illustrated in Figure 27 has
cost of the form O(Nz). Note that the cost of the diamond and triangular

arrays in terms of 2-cells is N(N-1)/2, which is also of the form O(Nz).

III. Complexity.
We will study the cost, delay and complexity of the control algorithm
in total multiconnection networks. We will limit ourselve to square

networks (i.e. with M=N).

A, Theoretical complexity bounds

. 5 . 5 N
Consider a total multiconnection network S on N bits. It has N

distinct states. If the control inputs use m—ary logic (m = 2), then
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N 1ogm(N) control inputs are needed. Now we count the cost of S in terms
of logical gates of bounded fan-in. As the sum of all fan-ins of these
gates includes the N 1ogm(N) control inputs, and as the fan—in of every

; ]
gate is bounded by a number b, there are at least - N 1ogm(N) gates. Thus

the cost is at least proporticnal to N log (N). Now the three-stage
network has cost asymptotically equal to N logZ(N) (2y + yl), where vy is
the cost of a permutation 2-cell and Yl is the cost of a branching 2-cell,
if one uses Green's permutation network (see [2 ]) and the second branching
network described above, which is illustrated in Figure 8.

Thus the minimal cost of an N bit total multiconnection network is
asymptotically proportional to N log(N).

If we build our network with cells, then an argument similar to
Proposition 0 of [2 ] shows that the delay of S is at least proportional
to N log N. Now the three stage network using the components described
above has delay asymptotically proportional to logz(N) (468 + 261).

Thus the minimal delay of an N bit total multiconnection network is
asymptotically proportional to log(N).

It is easily shown that a branching network on N bits has cost at
least N-1 and delay at least 1og2(N) in terms of branching 2-cells. The
bound is attained by the first type of branching network (illustrated in
Figure 7), while the delay bound is asymptotically half the value attained
by the delay of the second type of branching network (illustrated in

Figure 8).

B. Comparison of the different designs

The direct design has cost proportional to N2, and its control algo-
rithm is very easy. If the multiplexers are built with multiplexers on

2 bits, then the delay is in log(N).
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The three stage metwork using Green's network [2 ] as permutation
network has cost and delay of the types N log(N) and log(N) as seen above,
but the control algorithm of the permutation network is very costly.

If one uses the first type of branching network and diamond networks
as permutation networks in the three stage network, then one get a very
easy control algorithm (it is completely decentralized), but the cost and
delay are then asymptotically N2 and 3N in term of 2-cells.

If one uses the Clos network with a=2 in iteration, then such a
network built from 2-cells has asymptotic cost and delay equal to % N2 and
2N respectively. Moreover, its control algorithm is very difficult.

The two designs of section II.C. have the following asymptotic cost
and delay in terms of 2-cells if one uses diamond networks as sorting
networks

= N2 and 2N

I .2
- =N and N.
2
The first one has trivial decentralized control. The second one
uses decentralized control but requires a preliminary operation costing

N,

Conclusion. For cheapness in cost and delay it is better to take the
three stage design using Green's network. For cheapness of the control
algorithm, it is better to take the three stage design using a sorting
network, or the first design based on sorting networks of section IIL.C.
The Clos network is very impractical, but it is the only design for the
expansion of total multiconnection networks (a problem which one encoun-

ters directly because of the limited size of microprocessors).
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