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Cellular Permutation Networks : A Survey

§1. Introduction.

A permutation network P on n bits is a switching circuit

with n data input terminals IO, Il’ — In—l’ p control input terminals

C C

- C

312298505 and n data output terminals O

O],..., 0 ,» which can

0’ n—1

realize the n! following input—output behaviours

P(m) : For i=0,1,...,n-1, [L,] =[0; ], *)

where 7 is an arbitrary permutation of {0,1,...,n-1} and im 1is the image
of i under m. We say then that P realizes T .

We consider that the control variables are binary.
Therefore p = log2 (n!).

We will study the design of permutation networks on an
arbitrary number n of bits, using as components smaller prefabricated per-

mutation networks called cells. A cell on m bits is called an m-cell.

We are specially interested in designs using only 2-cells

(also called B-elements [ 10]).

Two important problems confronting designers are the minimi-

zation of the cost and delay.

If T is a terminal, then [T] is the signal on T.



We will describe and compare several designs and study
their minimization (with respect to cost and delay). In some cases, we will

give an algorithm for the control of the network.

§II. Notations and definitions.

Lower—case Latin letters will be used to denote numbers,
and in particular positive integers.

Capital Latin leﬁters (except Z, C, I and 0) will denote
switching networks. We will always write "input" for "data input terminal",

"output" for "data output terminal' and "control line'" for "control input

terminal"”. If N is a switching network with n inputs, m outputs and p control
lines, then we will write Ii(N)’ Oj(N) and Ck(N) respectively for the ith
input (i=0,1,...,n-1), the jth output (j=0,1,...,m=1) and the kth control
line (k=0,1,...,p-1) of N. Let I(N) = {I,(N) | i=041,¢..,0~1} ,

o= {0, (M) | 3=0,...,m-1} and C(N)= {C, (N) | k=0,...,p-1} . If

|I(N)| = |O(N)| = n , then we can write N(n) for N.

If n is a positive integer, then let Zn={0,],...,n~1}
and let Sym(n) be the group of all permutations of Zn. An element of
Sym(n) will be written as a lower—case Greek letter (except A,¢,¥,8,v,8,
and o). If 1 € Zn and w € Sym(n), then im will be the image of i by .

Let n be a positive integer and let Il be a subset of

Sym(n) . A partial permutation network P(n,Ill) on n bits is a switching

circuit P with n inputs, n outputs and p control lines (where p = 1og2(|H|)),

which can realize the |T| input-output behaviours



P(n) : For i=0,1,...,n~1, [Ii(P)] = [Oiﬂ(P)]’

where T is an arbitrary element of II. By analogy with mechanical switching
devices, one says that Oin(P) is connected with Ii(P).

Given k partial permutation networks Pi=Pi(ni)
(where i=0,1,...,k=1) a set I = {IO""’In—l} of terminals called inputs,
a set O ={OO,..., On—l} of terminals called outputs (where n = n, for each
i=0,1,...,k=1) and a set I of connections between the terminals Ii’ Oj

I') the resulting network.

H
Ir(Pu)’ OS(PV), let us call N(I,O; PO,...,Pk_l;
We suppose that T consists only of connections of the type (Ii, Ir(Pu)),
(OS(PV), Ir(Pu)), (OS(PV), Oj) and (Ii,Oj). Then N(I,0; P o5l 3 T) is

0" -

a partial permutation network if

(i) All connections are one—to-one.

(ii) The circuit contains no loop, in other words there is an order € on Zk
such that if (Os(Pv)’ Ir(Pu)) € I' , then v € u.

The first condition ensures that the input—output behaviours
are one-to-one. The second condition is introduced in order to avoid asynchro-
nous sequential networks.

An m-cell is usually represented by a square or a vertical
segment, with the inputs on the left and the outputs on the right (this is
illustrated in Fig.1(a) for m=5. A 2-cell and its states are shown in Fig.1(b).
The designs of a 2-cell using multiplexers or logical gates are shown in
Fig. 2(a) and (b) respectively.

A cellular partial permutation network is a partial

permutation network P of the form N(I,O; PO,...,Pk_l;F), where PO""’Pk—]



are cells. If P is a permutation network, then we say that it is a cellular

permutation network.

Consider two cellular partial permutation networks on n

bits having both the same number k of cells, say P=N(I,0; P r)

sraaip L, H
o**""? k__]’
and Q—N(I',O'; QO, “eey QI 1; A)-

n,
(1) P and Q are isomorphic and write P = Q if there is

a map ¢: {PO""’Pk—l} > {QO""’Qk—]} such that :

(i) For i=0,...,k-1, P, and P.¢ have the same number of
inputs (or outputs)
(ii) The map ¢' induced by ¢ on T , defined by
(Ii,Oj)¢' = (1, Oj)
(L;, T (B )¢" = (I, I(P ¢))
(0 (), T(R))¢" = (O (P ¢), I (P ¢))
0 (), Oj)¢' = (0,(P_9), Oj)

is a bijection T + A .

(2) P and Q are equivalent and write P ¥ Q if P is isomorphic

to Q up to a relabelling of the inputs and outputs of Q.

(3) P and Q are quasiisomorphic and write P & Q if P and Q

are isomorphic up to a relabelling of the inputs and outputs of each Q; -

(4) P and Q are quasiequivalent and write P ~ Q if P and Q

are equivalent up to a relabelling of the inputs and outputs of each Qi'

These concepts are illustrated in Fig.3(a), (b), (c) and (d).
These 4 relations are equivalence relations.

Lastly, let S be the simple connection between 1 input and

1 output.



§III. Shuffles and generalized shuffles.

This section is a summary of [ 16] .
When making connections between different stages of

cells, one often uses permutations called generalized shuffles. To define

them, one needs first to define mixed radix number representation systems.
Let bO,...,bn_l be integers bigger than 1 ; let
q=bO ..... bn_l. Then any integer comprised between O and gq-1 can be represented

in a unique way as a vector [an_],...,a 1 with a; S Zb for i=0,...,n-1,
i

by the following rule

[an_]s"'sa()]:a b s.o 0 05D e +...alb0+a

n-1 n-2 O+an—2bn—3"' 0 o

This representation of the elements of Zq is called

the mixed radix representation with respect to the basis [bn—l""’bO]
( See [4]).
If has the following property : Suppose that for i=0,...,n-1,
.=b, ... b, . . €Z. ces i i
b, bl,O bl,m(1)~1 Let m Zq If m has [an_l, »a5l as mixed radix

representation with respect to the basis [bn_l,...,bol and if for i=0,...,n-1,

a. has [ a, ; se++sa, -] as mixed radix representation with respect to
i i,m(i)-1 i,0

the basis [b.

1,m(i)—1""’b0]’ then m has

[

an—],m(n—])—]"'"an—l,O""’ai,m(i)—l""’ai,O’""aO,m(O)-l""’a0,0]

as mixed radix representation with respect to the basis

[b bo1,00 Py m(iy-1 " Py 07 e B ol s

n-1,m(n-1)-1>"""? 0,m(0)-1""""""0,0

Let us now define the perfect shuffle. Let g=ab. Any element




m of Zq can be written as ib+j (with i € z, and j € Zb) or as j'a+i'
(with i' € Za and j' € Zb). The (a,b)=-shuffle on Zq is the permutation

o(a,b) of Zq defined as follows (see [4])

o(a,b)im = ib+j > mo(a,b) = ja+i (1 €2, j €2).

Thus o(a,b) maps [i,j] (in the basis [a,b]) onto
[i,il (in the basis [b,al)

Note that o(a,b) fixes 0 and gq-1 and that o(b,a) is the
inverse of o(a,b).

We now define a generalization of the perfect shuffle,

called the generalized shuffle. Let q be an integer bigger than 1 and suppose

that q=bn_l.....bo, where each bi is an integer bigger than 1. Let m € Zq

If m € Sym(n), then we can write m in the mixed radix representation with

1%

respect to the basis [b(n—l)ﬂ""’ Do

= a(n~1)1r b(n—Z)W e bOﬂ e 1 bOH . Ao
n-1 i-1
= z (a. I b. ) , where a. € Z for i € Z .
ol im . jm 1 by n
1=0 j=0 i

Now, if p is another permutation of Z , then

n-1 i-1
a b vee b +...+a, b+ a = a. I b.
(n-Dp ~(n-2)p Op Ip"0p  "0p izo ( Sl

radix representation of a number m' € Zq with respect to the basis

) is the mixed

[bapy byl -

(n=1)myun.,

We define the ((n-l)p

O el om . a9 fhe
Op q

following permutation of Zq



(a=1ym op  E51 i-1 n-1 i-1
yeees _
(=D e 0p) Y (a, T b > Y (a, T b

i=0 " j=0 i=0 P j=0

a( )

jo

It corresponds to the following change of basis in a

mixed radix representation of ZN s

(b yymsees Dogd > [ yoseesby]

If n=2, then U(bl,b0)= U(é’?) with respect to the basis

[bl,bol.
If n=3, then we will write b, o(b,,b.) for 0(2’1’0) and
’ 2 1°°o D0
d(bz,b])bO for G(?:é:g . It is easily seen that b, O(bl,bo) is the union of

b2 coples of d(bl,bo), while d(bz,bl)bo induces o(bz,bl) on b2b1 sets of
size bO.
The generalized shuffles have the following two properties

(1) + If m,p,t € Sym(n), then we have :

(n-D)m,e.., On (n-1)pyee., Op, _ (n-D)mw,..., O7
((n—l)p,..., Op) U((n-l)w:,..., OT) - G((n-l)T,..., OT)

(n-1)p,..., Op
(n-D7m,..., OT

(n=1)mTyees, OW

In particular, of (n=1)p Op
3 5 & B

) is the inverse of of(

)

(n=1)m,...,

. Om .
: = .=b. _.ieen . .
(2) : If for i Zn’ bl bl,m(l)—l’ then 0((n‘1)p,---, Op) (with

respect to the basis [bn—l""’bo])

((n_l)ﬂsm((n—l)v)_])r- .,((n—l)vr,O),. ey (OTT,III(OW)—I),. . .,(O'IT,O).

) U(((rrl)p,m((n—])p)—l),...,((n—-])p,O),..., (Opsm(Op)-l)s"',(Opso)

)

(with respect to the basis [b . ,b b b

n-1,m(n-1)-1""""*"n~-1,0"""">"0,m(0)-1°"""? o,o])‘

3,2,1,0
Example. If n=4, th g(7°:?.2)= o(b,b,,b;,b.).
Example. If n=h, then a(jg 5’5)= o(bgby,bysbp)



§IV. Operations on partial permutation networks.

We will define here ten operations on partial permutation
networks.
(1) Dual. This operation is defined for cellular partial permutation networks

only. Let P=N(I,0; P I'), where P are cells. Then the dual

g rePp g 002 Py

P* of P is built as follows : P*=N(I,O; P A), where

O""’Pk—];
* % ; * # ¥ *
A={(Y",X") | (®,Y) € 1), with I3=0,, 051, I.(P)" =0(P) and O_(P ) =I_(P ).
* . . . . i
Thus P is built from P by inverting inputs and outputs
in all cells and all connections. This construction is illustrated in Fig.4.

; : : *
Clearly, if P realizes the set Il of permutation, then P

realizes T '= {x | | =€ m

(2) Union. Let AO,...,A be partial permutation networks. Then we define

n-—1
the partial permutation network A, U...U An by taking pairwise disjoint

copies of Al""’An , taking I(A]) u,..u I(An) as set of inputs and

O(A]) U...u O(An) as set of outputs and considering the resulting network.

(3) Left scalar multiplication. Let m be a positive integer and A a partial

(0)

permutation network on n bits. Let A seecy A(m_l)be m disjoint copies of A.

Label the ith input/output of A(J) (i € Z s b= Zm) nj+i. Then mA=A(O) U, ..

UA(m_]) with this labelling.

(4) Right scalar multiplication. We do like in (3), but label the ith
(1)

input/output of A mi+j. Then we get the netwok Am. Note that mA and Am

are equivalent.



(5) Composition. Let AO""’Am—] be partial permutation networks on n bits.
For i=0,...,m-2 and j=0,1,...,n-1, connect Oj(Ai) with Ij(Ai+1).

Take I(AO) as set of inputs and O(Amrl) as set of outputs. Then the
resulting network is AO.A]... Am—l'

In the five preceding operations, one can replace
a partial permutation network by a permutation (which can be considered
as a cellular permutation network without cell and without control line).
If m and p are permutations, then W*=ﬂ_l and the composition m.p 1is the
group—theoretic product of m by p . Note that the definitions of mo(a,b)
and oc(a,b)m given in §III are identical to the ones given in (3) and (&)
of this section.

Let us now define five more constructions using the

perfect shuffle :

(6) Product [ 15] . Let A and B be partial permutation networks on a and b
bits respectively. Then the product AxB is the partial permutation network

bA.g(b,a).aB.

(7) Extended product [ 15] . Take A and B as in (6). Suppose that A is

cellular. Then the extended product AxxXB is the partial permutation network
bA.o(b,a).aB.c(a,b).bA¥.
If A and B are permutation networks, then AXXB is a permu-—

tation network by the theorem of Slepian and Duquid [5,17]

(8) The Goldstein-Leibholtz construction [6] .

Let A and B be as in (7).
Then the Goldstein-Leibholz construction A A B is built as follows : Take

the extended product AxxB, delete the first copy of A* in the third stage



10.

and replace it by aS, where S is a simple connection.
If A and B are permutation networks, then A A B is
a permutation network by Theorem | of [ 6] . We prove this result in the

Appendix.

(9) A construction of Benes [1,2 (p. 114, Theorem 3.10)]

Let AO,..., An—l be cellular partial permutation networks on agseeesd

bits respectively. Let q=age-eesd - Then we define F(AO,...,An_])=
2 g q 0 q q ¥
T GRAy olayp o)i— A T (0= oy, )= Ay
1=0 i i n—-1 i=n-2 1+1 i

Benes showed that if A .,...,A
0 n—1

networks , then F(AO,...,An_]) is a permutation network. We will show

are permutation

later that F(AO,...,An_l) is equivalent to onx(A]xx(...xx(An_zxxAn_l)...))

(which generalizes Benes'result).

(10) The truncation method. This method, designed by several authors

[7,11,12,13] , can be used to build permutation networks on m bits when m
is of the form rn-k, with k € Z,n > 1 and r > 1.

Indeed, let r and n be integers larger than 1 and let
k € Z . Let A, A', B and B' be partial permutation networks on n,n-k,r
and r—1 bits respectively (a partial permutation network on 1 bit is the
simple connection S). Suppose that A is cellular.

Now (A,A',B,B') is defined as follows : Take A A B. Replace
the first copy of A in the first stage by kS U A'. Replace the k first copies

of B in the second stage by k copies of S U B'. Then I is connected to Oi

for 1 € Zk' Remove these k inputs, outputs and all interconnections between them.



There remains a partial permutation network on rn-k bits, written
(A,A',B,B").

We will show later that if A,A',B and B' are permu-
tation networks, then (A,A',B,B') is a permutation network. Note that for
k=0, we have (A,A,B,B')=A A B.

The constructions (6), (7), (8) and (10) are illustrated
on Fig. 5,6,7 and 8 respectively.

Let us now prove the two announced results. We need
first the following :

LEMMA 1. If B is a partial permutation network on n bits and if m € Sym(m),
then ﬂn.mB.(wn)_IgmB.

The proof is elementary and is left to the reader.

PROPOSITION 2. Let A « A

=1 be cellular partial permutation networks.

0’ "

Then F(AO""’An-l) is equivalent to AOXX(AIXX(...><><(An_2><><An_])...)).

Proof. We can suppose that each Ai is on a; bits. Let q=ag...a . Then

n-1
we can write F(AO,...,An_]) as :
n-2 0 *
TGy B+ = A . 1 (BGi+1,1) LA
i=o 2i 4h-1 n i=n-2 aj

where B(i,i+l)=o(a,, , —+—) and B (el iy=htt 1oy ;

b
1 i+1

By induction, we verify that AOXX(AIXX(...X(An_ZXAn_l)..
can be written as :
n-2 0 "
T A, .on(d,it])). 2—aA . 0 (w@i+1,i).L- ATy ,
, a. 1 a n—-1 : a. 1
1=0 i n—1 i=n-2 i

)



12,

1

where w(i,i+1)=a 0(ai+1,...,an_l,ai) and w(i+l,i)=w(i,i+1) .

srarg g
’Ti-1

0’
With respect to the basis [ an—l""’aO] , We can write
for i=0,...,n-2 :

Osveesi=ly M=ly sisaney 1

TALAtL) ™0 (g s o By B1svvas Bl

)

Lklyeas aweny D104 ewey 1

and B (i,1i+1) =U(i+2 n-1, O i+1
3%y ] ¥ 238, RS

)

For i=0,...,n-2, define :

n-1, ..., 1
0 5 «uny i) ’

Let ¢ (n—1) be the identity. Then we can easily check that

for i=Q...,n-2, we have :
Y (L)p(1,i+1) =7 (i,i+1) . (i+1)

Thus we get :

8(i,i+1) = (i)~ ar(i,i+1) 4 (i+1) and

1

B(i+tl,i) =y (i+l) .m(i+l,i) .Y (i)

Hence F(AO""’An-l)

n-2 -1 2 -1 "
= 1 A @ T D YED) . A LT DT (LY ()L AT
i=o % ¢ -1 "7 i=n-2 o

1 n-2 0 "
= 1 (0) I B anli,d#=1)] « B e T (mwli+l4) .8, ) (0
; i n-1" . 1
1=0 i=n-2

where Bi=¢(i).-gz Ai w(i)_] for i € Zn'
Now for i € Z_, y(i)=¢(i)a; for some ¢(i) € SymC%;).



13.

By Lemma !, it follows that B. 29 A.. Thus F(A.,...,A )
1 ai 1 n-1
-1 n-2 0 "
=907 T (A rE D) A T (@l,i) R A0 (0)
i=0 %1 * n-1 % i=n-2 i

DO (A X (e (A XA )12))) H(0).

Therefore the proposition follows.

Let us now prove our second announced result:

PROPOSITION 3. Let A,A',B and B' be the permutation networks on n, n-k, r and

r-1 bits respectively, where r and n are integers bigger than 1 and k € Zn'
Then (A,A',B,B') is a permutation network.

Proof. Consider A A B. It is a permutation network. It can therefore realize
all permutations of I={7 € Sym(rn) | im=i for i € Zk}' Let m € II. If A A B
is in a state realizing T, then Ii(A A B) must be connected to Oi(A A B)

(0) (0)

for i € Zk' Now Ii(A A B) is connected by A to some Oj(A ), which i1s con-
nected to IO(B(j)), where j € Zn' Now Oi(A A B) is connected to OO(B(i)).
As IO(B(j))must be connected to 00(B<i)), we have i=j. Thus for i € Zk’
Ii(A A B)=Ii(A(O)) is connected to Oi(A(O)) and IO(B(i)) is connected to
OO(B(i)). Thus, if we replace ACO) by kS U A' and each B(i)(i = Zk) by a co-
Py of S U B', then the resulting network realizes II . If we delete for each
i€ Zk Ii(A A B), Oi(A A B) and the connections between them, then the re-
sulting network, which is (A,A',B,B'), can realize every permutation of
Sym(rn-k), and so it is a permutation network.

The following result links the different operations

studied up to now. The proof is elementary and is omitted.



PROPOSITION 4. For any partial permutation networks A and B on a and b

bits respectively, for every positive integers m and n, we have :

(i) (AU B)* = A% U B~.

(ii)  @)* = mn@h .

(iii)  am* = @Hm .

(iv) (A - B =B* . A% (vhen a=b) .
(v) (A x BY* = B% x A¥ .

(vi) (AxxB)* = AxxB® .

(vii) Am 2 c(a,m). mA. o(m,a)

(viii) m(A.B) = (mA) . (mB) -
(ix) (A.B)m = (Am) . (Bm) .
(%) m(nA) = (m)A .

(x1) (Am)n = A(mn) .

(xii) (mA)n = m(An)

Note that in these equalities, one can replace A or B
by a permutation.

The following result is due to Pippenger [ 15]

PROPOSITION 5. Let A,B and C be partial permutation networks. Then :

(1) Ax(B x C) =¥ (A x B) x C

(ii) If A and B are cellular, then Axx(BxxC) L (A x B)xxC



Proof. Suppose that A,B and C are on a,b and c bits respectively. Then it
is easy to check that :

(A x B)xC

beA.co(b,a).acB.a(c,ab).abC.

Ax(B x C)

beA.o(bec,a) .caB.ac(c,b).abC.

I

Now o(bc,a) co(b,a).o(c,a)b and

aole by = (ofe.all)  walesabs

I

By Lemma 1, caB - c(c,a)b.acB.(c(c,a)b)—l and

e

so (A x B)xC bcA.cU(b,a).(c(c,a)b.acB.(o(c,a)bYB-U(c,ab).abC

AX(B % C)

Hence (i) follows. Now (ii) is proved in the same way.

§V. Some known designs for permutation networks built from 2-cells.

A. The networks of Benes, Waksman and Green.

Benes [ 2] defined a permutation network B(Zn) on 20
bits for every positive integer n.
Put : B(2) = P(2), the elementary 2-cell

For n > 1, B(2™)=P(2)xxB(2" ).

Waksman [ 20] made a similar construction with the operation
A instead of xx. Let : W(2)=P(2), and for n=2,3,4,..., put W(Zn)=P(2)AW(2nu1).

Green [ 7] (see also [ 13]) gave a construction of a permu-
tation network G(m) for every m > 1. When m=2n, G(m)=W(m). This network

is defined recursively as follows :



16.

G(2) = P(2) .
. For a > 2, G(a)=P(2) A G(%) if a is even.
a+1

=(2(2),5,6(5D, ¢&D) if a is odd.

We will study the cost and delay of these networks.
The cost is the number of 2-cells and the delay is the maximum number of
cells through which an input can go before reaching an output.

It is easily seen that the networks B(2™) and W(ZH)

have delay 2n-1.

Now the cost of B(2n) is 2 plus twice the cost of

B(ZH—I). It follows by induction that B(2n) has cost n2n-2n—1.

To study the cost of G(n), let us define the function y ,

defined for every integer larger than I
n

v = ] [log, (0] .
x=2

LEMMA 6. TFor every integer n 2 2, we have :

rlogz (n)T
+

(i) ¥ =n [log,(m] - 2 1

(ii) Y(2n)= 2n-1+2¢(n)
(iii) y(2n-1) = 2(n-1)+P(n)+P(n-1) .

Proof. (i) Suppose first that n=2%2.

a
Then $(n)= ) 2%°!

x=1 4
Hence the result holds for n=2".

.X. We show easily by induction that ¢(2a)=(a-])23+].

Suppose now that 22 Ln L 2a+1. Then
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n
pH + ] [logy,(0]

x=2241

Y (n)

Il

v(2?) + (@2 (at1)

(a-1)22% + 1 +(n-2%) (a+1)

[log, (n)]
= n(a+1)—28+]+1 = nrlogz(n)1—2 ‘ +1 .
Hence the result holds.
rlogz(Zn)1
(ii) ¢(2n) = 2n rlog2(2n)1—2 +1
rlogz(n)w+1
= Zn(rlogz(n)1+l)—2 +1
[og, ()]
= 2(nr10g2(n)1—2 +1)+2n-1

2¢(n) + 20 -1 .

(iii) $(2n-1) = $(2n) - [log,(2n)]

Y(2n) - 1 - flogz(n)]
2n-1 + 2y(n)-1 - [log,(m)]

2(n=1) +p(n)+ (W (n)-[log,(m)] ) .

]

1}

2(n-1) +y(n) +P(n-1) .

PROPOSITION 7. G(n) has cost y(n).

Proof. Use induction on n. This is true for n=2. Suppose that n > 2 and
that the result is true for m < n. We have two cases.
(i) n is even. Then the cost of G(n) is :

n-1 + 2 cost(ccg)) = n-1+2¢(§)=¢(n)



by Lemma 6 (ii)

(ii) n is odd. Then the cost of G(n) is :

n-1 + cost(€(D) + cost(GEN) = n-1+v @D +ED) = ¥(n)

by Lemma 6 (iii).

PROPOSITION 8. G(n) has delay 2{1ogz(n)]—1.

Again, this result is shown by induction on n.
Remark. G(n) has an inductive control algorithm, called "looping" (see [13,20]).

This algorithm is relatively costly.

B. Joel's nested tree [ 10].

Let P(2) be the elementary 2-cell. Define Y(2)=P(2) and
v(28y=v (2" Hyxp(2) for k=2,3,4,...
Joel builds the nested tree T(Zk) (k = 1) as follows

. For n=1,...,k, take a copy of Y(Zn)

k
P 1 and 27 outputs 0.,...,0
0 3 g %4

. Take gk inputs I
. Make the following connections :

(1) For n=1l,...,k-1 and m € Z L conmmect

2
I with I, (Y(2%))
2 (2m+1)-1
I with I ey «
25 ome 1) Al
0, (Y(2™)) with I , (Y(Zk)) .
2m 2K omeny-1
0 (¥(2™) with T, _ (1 (2)
2m+1 2k n(2m+])
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(2) Connect : I_ with IO(Y(Zk))

0
P k
I e with I K (Y(2™))
27=1 27-1
and O.(Y(Zk)) with 0. for every j € Z K
J J 2

This construction is illustrated in Fig. 9 for k=4.
Joel's nested tree T(ZR) is not equivalent to the dual
W(Zk)* of Waksman's network. This can be seen in Fig. 10 for k=2. Indeed,
if all the cells are put in the O-state, then two outputs (in both
T(4) and W(4)*) are reached after two stages. But in T(4), these two
outputs are not connected to the same cell, while in w(4)¥ they are.

In fact, we can prove the following :

PROPOSITION 9. For any k = 2, T(25) ~ w(2¥.

Proof. Let us define T(2)=P(2). Then clearly T(2)=W(2)*. Define Z(2)=P(2)
a nd 2(2%)=p(2)x2(2"" ") for k=2,3,4,... Then 2292 2¥) for any k > 1
by Proposition 5(i). Thus we can replace T(Zk) (k =2 1) by T'(Zk), which
is built as follows :

- T'(2)=T(2)

- If k > 1, then for n=1,...,k-1, replace Y2 by Z(2™ in the construc-
tion of T(25).

Now clearly T'(Zk)gT(2k). The rest of the proof consists

of 8 steps :

Step 1. The following eight maps are permutations of Z

o
(1) ak) = (0,2%1) (k=1,2,3,... )
(2) B(K) = 2a(k-1)=(0,25"1-1) 2*°1, 2k-1) (k=2,3,4,...)
(3) s = (1,2)...(2K-3,2K-2) (k=2,3,4,...)
(4) e(k) = (0,1)...(25%-2,2K-1) (k=1,2,3,...)
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59wtk i =+ 202 Giod 25 (k=1,2,3,...)
(6) w(k) fixes O,Zk_l—l, Zk_l, 2k—1 and for n=2, ..., k=1 (if k = 3)
and v € 22n~2’ m(k) maps
ek~ om B Pyl
K Byl on 25 B(Zeel)
XDyt on 25 le 2FR(2ve1)-1
and 25 P4ve3)  on 2514 2KTR2ueny (k=2,3,4,...)

(7) p(k) maps O on O, 2k—1 on 1, and for n=l,...,k-] and m € Z

2n—]
(if k = 2), p(k) maps :
k-n n
2 (2m+1)-1 on 2 +2m
and 2K o) on - 2%42m+] (k=1,2,3,...)
(8) y(k) =p(k-1) YU (a(k=-1).p(k=-1)) (k=2,3,4,...)
k-1
It can be checked that y(k) maps O on O, 2 -1 on 1,
2°"Pon 257 hhy, 2%1 on 257! and for u=2,... -l andmE 2z, (if k> 3),
2
it maps :
F%oun-1  on 2% % o2m,
Zk_u(2m+1) on 2uﬂ1+ 2m+1
G L s S g, B e BT g B
il 951 o R Uty on 28 ™ Lybme (k=2,3,4,...)
Step 2. If k> 2 and if x € Z k\\{O,Zk_l—l, okl gk,

2
then x8(k) w(k) = xm(k) t(k)
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Indeed {x,x8(k)} is a pair of the form {2m-1,2m} .

Now it is easily checked that m(k) maps such a pair on a pair

0,002 N} =(n,nt (1)} , where n € z . As 6()=6(1)”" and t()=t(®) ",
2

the result follows.

k=1

Step 3. TEk > 2, then (k) (2,25 H=a2,2% e ),

This is due to the fact that if m € Z -1 then 0(2,2k—1) maps m on

ke
e k-1

2m and m+2k_] on 2m+1, and that t(k) permutes the pairs {m,m+2 } , while

e(k) permutes the pairs {2m,2m+1}

Step 4. If k = 2, then a(k)§(k)m(k) =m(k)t(k)B(k).

Proof. Clearly, both m(k) and t(k) preserve the set {O,Zk_l,Zk_],Zk—l} 2

k=1_ k-1

It follows that if x € 2z \{0,27'-1, 2 , 251} , then =w(k)<(k)#

2
0,2571 oF7 15 ok Thus mwk)T(k)e (k) =xn (k) T (k)

I

xS (k) m (k) (by Step 2)

Il

xa(k)S(k)nm(k) since a(k) fixes x.

Now we check that :

0l S Y ) = (2518t n) = (25-1)wik) = 25=1

_ k-l

2 B(k) = O0t(k)B(k) = Om(k)T(k)B(k).
ok~ B PSR Y = B

) T (k) 8 (k)

ok k-1_

e s = (

= @B = DB

Xl = 25 s )ik

= 08(k) = 25 loBm) = 25 lrao T @B M)

1

-Dw(k) = 2

(5= e ) S0y nik) = 08k w(k) = On(k) =0

= @ enew) = @E-DTwBE) = -1 TK)BK) .
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Step 5. If k> 2, then m(k)y (k)= (kK)o (2X71,2).

Proof. If m € Z k=17 then c(2k_1,2) maps 2m on m and 2m+] on m+2
2

Now we check that :

Om(k)y (k) = O0y(k) =0,

(2k~l 2k

DY R = Dy =1,

Yo = 2N,

D@y &) = @51y = 25T,

ol ey =2

and for n=2,...,k-1 and v € Z
n-2

KA -1
D =Dy (k)= 27 42y,

if (k = 3), we have :

25 Gy 1) =1 1K)y (k)

P 2vr 1))y (k) = 2% le2vel
k“!+ k—l+

(2 G = ) )

REY

2R (20e1)=1)y(K) = 2

+2k_n(2v+l))y(k) = 2k_]+2n_1+2v+1.

PG+ TR YR = (2

(k]

(257 (4v+3) ) (i) v (k)

Thus w(k)y(k) is known. Then we check that :

B BB 2T ' 0) = Ba (2

G paee@™ 0y = oed® 0y =1

o5 ™ B - e T o 2w,

LT et e = del vy =BT T ,

32) = 0,

and for n=2,...,k-1 and v € Z - (if k = 3), we have :

2
k-1 n-1
(2M+4v)o (2 7,2) = 2% T2y,

(2n+4v+2)c(2k_1,2) B L

2y = (Paieryo(d¥ 9y = 2 ey

(2 (4v+3)) 0 () 0 (2571, 2) = (2%av+3) 0 (25T, 2y = 25 Lo Ly

We see then that w(k)y(k) =p(k)0(2k_1,2)-

QP v 1) =)o ()0 (2571, 2)

O Bt =D al® 2

k-1

25 (4v+1))p (K)o (2

k-1

22.
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Step 6. For k > 2, define R,(K)=2" ' P(2) and R (k) =89((2 '-1)p(2))Us.

Then we have the following :

72Xy = Rl(k).w(k).(2T'(2k_1)).0(2,2k_1).Rz(k).

Proof. Delete the last stage of copies of P(2) in Y(2k). Then there remains

two copies of Y(Zku]). For n=1,...,k-1, delete the first stage of copies of

P(2) in Z(Zn). Then there remains two copies of Z(2n_1) if n =2 2 and 2 copies

of S if n=1. Now, by definition of T'(Zk), it is easily seen that the copies

n-1 k-1

of Z(2 ) (n=2,...,k-1) and Y(Zk_l) form together two copies of T'(2 ).
Clearly, the first stage of copies of P(2) which has been deleted is equal

to Rl(k), while the last one is equal to RZ(k)' Thus :
) ook R
T'(27) = Rl(k) .m. (2T' (2 )).U.Rz(k) 5

. . . . . k
where ¢ is the interconnection permutation in the last stage of Z(27) and

T is the interconnection permutation linking the first stage of copies of

k=1 Lyxp(2)=2(2¥ 1.0 (2,251

k-1

P(2) to the two copies of T'(2 ). Now Z(Zk)=Z(2k_

.Rz(k) by definition of the product x. Thus o=0(2,2 ).

Let us now look at m. Clearly m fixes O and Zk_l. Now
Zk_]—l and Zk—l are also fixed by m, since Izk—l_] and Izk_] are connected to
Z(2). If x € zzﬁ\{o,zk~1, g ey, 254

and IXTT is connected to I

, then Ix is connected to some Iu(Z(Zn)),

0=1 (Z(2n)), because c(2n_],2) is the inter-
uo (2 ,2)

connection permutation between the first stage of copies of P(2) and the

n—l)

two coplies of Z(2 in Z(Zn). Thus we get the following for n=2,...,k-1

and v € Z :
2n—2



24,

x > u- uo(zn_],Z) > X

25 4ya1)-1 > 4y > 2v > 2KTP(2ue1)-1
Zk_n(4v+3)—l > 4y+2 > 2v+]l > Zk—n(2v+1)

Zk—n n-1

(Gy+l) + by+] > 2y+2 2K 90aa™ 1y

KR 4ue3) > byed + 2vrie2™ ) o 2D (oga® Ly

Thus m=mn(k) and the result follows.

Note : Step 6 is illustrated in Fig. 11.

Step 7. For any k = 1, T'(2%) % a(k) T'(2%)
Proof. We use induction on k. The result is obviously true for k=I.

Suppose that k = 1 and that the result is true for k-1. By Step 6, we have :

T (2R ()7 () - (21" (27 1)) 02,271 R, (1)
ﬁRl(k).w(k).T(k).(2T'(2k“1)).T(k).o(2,2 “H R, )

by Lemma 1, since T(k)=T(]).2k"1. By Step 3, we get :

T (252 Rl(k).w(k).x(k).(2T'(2k‘1)).o(2,2k").(e(k).Rz(k))

A Rl(k).w(k)r(k).(2T'(2k_1)).0(2,2k_1).R (k)
b (k) Ry (k)0 ) r() .t (211 (27 1)) .0 (2,271 1R, ()
since Rl(k) does not act on O and 2k~1. Using induction hypothesis, we
- ok b k-1 P, I
ave T' (25 Ma(k=1).T' 2™ 1) and so 21" ¥ D2 (ak-1).1' ¥ 1)) ¥ (20 k-1)).
2T 2" 1y)s (k). 21 (2" 1)) by Proposition 4(viii). Thus :

2 % ()R (00007 im0 . T 8- (21" (27 1)).0(2,27 ) R, (1)

a(k) R (k) .al) k). 6 (). 1) . 2T (2 1)) .0(2,25 ) R, (0)

a(k).(RI(k).a(k)).w(k).(zT‘(2k'1)).o(2,2k").R2(k)

=3

o2

by Step 4. Hence :



ec

T (25 a(k).RI(k).ﬂ(k).(2T'(2k_])).d(2,2k_1).R2(k)

a(k) T' (25

123

and the result follows.

Step 8. For any k = 1, T'(25) % p(k).w(2%*.

Proof. We use induction on k. Theresult is true for k=1. Suppose that
k > 1 and that the result if true for k-1. Then we have :

1%

ey B sty we2® 13" and

(Y Y -T2 % ae-1).p-1) W2 ¥

by Step 7. It follows that :

21 2%y = o2y U 2Kl
¥ (o) WD) U @1 o k1) w(2H .
R (o (k=1) U (alk=Dp (k=1))). (202 1)™).

My (k) . (2w(25 7%y

Using Step 6, we get :
725y ® R](k).ﬁ(k).Y(k).(2w<2k“)*).g(z,zk"]).Rz(k).
YR (0002 ,2). (W2 TN 002,27 R,y (1)
by Step 5.
Now let Ry(k)=28 U ((2"'-1)(P(2)). Then

Rl(k) = p(k).RO(k).p(k)"] and so we get :

T2 ¥ 0 () Ry 0 () T e ()02, 2) @2 ) 02,27 R, ()

0 (k) Ry (1) .02 1,2) . (202 H*) 02,271y 1R, (1)

o

o2

ORCoN

It follows then that T(Zk) " W(Zk)¥.
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Remark. From Step 6, it follows that the 'looping'" algorithm can be used
for the control of T'(Zk) (See the remark at the end of Section A).

It could perhaps be possible to design nested trees
with copies of P(n) (n = 2) instead of P(2), and the result would probably

be quasiequivalent with P(n) A (P(n) A (... A(P(n) A P(n))...)).

C. Joel's serial construction and the triangular network [ 10,11].

This construction allows us to design a permutation network
on n+l bits using a permutation network on n bits and n copies of P(2).

Two possible designs are shown in Fig. 12 in the case
where n=4.

The control is easy. Let m € Sym(n+1). If nw=m, then
in the design (a) we put the cells whose label is a number = m in the
l-state. Together they form a permutation p. Now wp_] € Sym(n) and we have
only to realize wpul in P(n). If mm=n, then in the design (b) we put all
cells whose labels is a number 2 m in the l-state. Together they form a
permutation T . Now T_lw € Sym(n) and we have only to realize Twlﬂ in
P(n).

We can use these two designs in iteration to form a
permutation network on an arbitrary number n of bits. Both lead to the same
network, called the serial network [ 10] or the triangular array [ 11 , whose
design 1is shown in Fig.13 for n=5.

This network has cost n(n-1)/2 and delay 2n-3.

Sequential realizations of this network can be found in [ 9.

As the triangular array is a sorting network (see [ 3] for a

definition), it has the following control algorithm :
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— The signal on Ii is given the weight im, where 7 is the permutation to be
realized by the network.

— When two signals reach a cell C, then C is put in the O-state if the weight
of the signal on II(C) is superior to the weight of the signal on IO(C),

and C is put in the l-state otherwise.

D. The diamond array [ 11].

The diamond array D(n) is a permutation network on n
bits whose design is shown in Fig. 14 for n=4 and n=5. It has cost
n(n-1)/2 and delay n.

As D(n) is a sorting network, it has the same control
algorithm as the triangular network. This algorithm is called the "decentra-

lized control"

E. The Bose-Nelson array [3,11] .

Bose and Nelson [ 3] designed a sorting network, which
can also be considered as a permutation network with decentralized control.
We first define a partial permutation network P(I,J).
Let n be an integer larger than 1, let I and J be two parts of Zn such that
||T|-]J]] <1 and i < j for every i € I and j € J. Define the following four

sets
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= I] = {L% IIIl smallest elements of I}.

-1, = I\\I]

- J, = {t% |I|J smallest elements of J} if |I|=|J| = 1 (mod 2)
{F% |I]1 smallest elements of J} otherwise.

-—J2= J\J]

Now P(I,J) is defined recursively as follows for any

suitable I and J:

- If I=¢ or J=@, then P(I,J)=nS

- If |I|=|J]= 1, then P(I,J) consists of a 2-cell between I and J and

n-2 simple interconnections

- If max {|1]|,|J|} = 2, then we have :

P(L,J) = P(I;,3,).P(L,,3,) .B(L;,3,).
Several examples of P(I,J) are drawn on Fig. 15.
LE I={11,...,1m }and J = {J],...,Jn }, then we will write P(1112.....1m,

j1j2""' jn) for P(I,J).
Now let K be a subset of ZN' Let K1= {L% |K|_J smallest

* 5
elements of K} and K2=K\\Kl. Then we define P (K) recursively as follows
* .
- P (K) = nS if |K| < 2.
¥
- 1f |K| = 2, then P (K)=P (KI).P*(Kz).P(K],Kz).

. b *
If K=Zn, then write P (n) for P (K).

* : :
Bose and Relson [ 3] proved that P (n) is a permutation

t r.,

2 1, where r < r, L pws ™ B 5 EHER

network on n bits. Moreover, if n= .

i=1

*
P (n) has cost :
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In particular, P*(Zr) has cost 3"-2% and P*(2r+l)
has cost 3".

Several examples of P*(n) are drawn in Fig. 16.

F. Some other networks.

We give here a list of arrays to be found in [ 11], toge-

ther with their cost and delay :

Type n Cost Delay
2
rectangular even n /2 n
odd (nz—l}/2 n+1l
pruned rectangu- 3p=2
lar even n(3n-2)/8 n-1
odd =158 n
rhombiodal even 652/2 n
odd G =1y n+1?
almost square =2 (mod 4) (3n—2)2/16
=0(mod &) 3n(3n-4)/16 R
=1 (mod 4) (3n+1) (3n-3) /16 g
Z3(mod 4) (3n+3) (3n-5)/16

Waksman [ 21] designed a permutation network on n bits with cost %-n logz(n)

- % n + 3 when n is a power of 2.
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Tsao-Wu [ 19] defined a sorting network which has cost

n(n-1)/2-(n logz(n)/Z-n+l).

§ VI. Optimization of cost and delay.

A. Permutation networks designed with 2-cells.

Let P be a permutation network designed with 2-cells.
Then the cost y(P) of P is the number of 2-cells used in the design of P.
The delay of P is the maximum number §(P) of cells that a signal may traverse
between an input and an output. The network P can be divided in 8 (P) stages,
where the ith stage (i=1l,...,8(P)) is the set of all cells such that i-l
is the maximum number of cells traversed by an input signal before reaching
an input of this cell.

Let T and 6n be the minimum cost and delay of a permu-

tation network on n bits. We have the following lower bounds

PROPOSITION 10. (i) v_ > [log,(a!)] [6]

(i1) 8, > v,/ 3] > [tog,aI/l5] -

Proof. Let P be a permutation network such that Y(P)=Yn- Then the set

"
of 2-cells of P has 2 " states and must be able to realize n! permutations.

Thus 2 ™ = n! and so (1) follows.
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Let Q be a permutation network on n bits such that
8 . Now every stage of Q has no more than [EJ 2-cells. Hence tEJ §_ =
n Y & 2 ' 2+" "1
v(Q) = s and so (ii) follows.
By Stirling's formula, logz(n!) is asymptotically n logz(n).
Hence the asymptotic values for the lower bounds on Yy and Gn are n logz(n)
and 2log,(n).As these two numbers are the asymptotic values of y(G(n)) and
2
8(G(n)), it follows that G(n) is asymptotically optimal.
It is easily seen that Y2=w(2)=1, Y3=w(3)=3 and
y4=¢(4)=5. Green [ 71 has shown that Y5=¢(5)=8. It is not known wether
Yn=w(n) for n » 5. We will show that G(n) has minimal cost amongst all

mtworks built from 2-cells with the operation (10) of §IV.

Let us prove first the following preliminary result :

PROPOSITION 11. Let a,b and k be integers such that b = 2, a 2 3 and a-1 = k = 0.

Then y(ab-k) < 2(b=1)y(a)+y(a-k)+ky(b=1)+(a=k)y(b).

Proof. Let ¢(a,b,k) be the right—hand side of this inequality. The proof

consists in six steps :

Step 1. The result holds for a=3 and k=1.

Proof : We have ¢(3,b,1)=6(b=1)+1+p(b=1)+2y(b) = 6b=5+Y(b=1)+2y(b).
3b-1
Now ¥(3b=1) = | [log,(»]
y=1
b-1
=93 + } ([log,(3m)]+ {1og2(3m—1ﬂ+[1og2(3m—2)1)

m=2
+ [logz(Bb—2)1+ flog2(3b-l)1
Now, if we take m=2, we get :

[log, (3m-2)]= [log, ()] < [log,(6)] = [log,(3m)] .
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Hence we have the following :

b-1
b3 <9(3) +3 ] [log,(3m] + 2 [log,(3b)]
m=2
b-1
< 3+3 X (rlog2(3)1+rlog2(m)]) + 2 ([10g2(3)]+rlog2(b)])
m=2

b-1
< 3+ 3(0-2) [log, (3] + 3 ] [log, (m) ]+ 2[1og, (3)]+ 2r10g2(b)]
m=2

b 1
< 3+ (3b-4) [1og2<3)] +2 {10g2<m)1 ) r1og2(m)1
m=2

m=2

A

3+ 2(3b-4) + 2Y(m) +P(m-1) = ¢(3,b,1) .

Step 2. The result is true for a=3.
Proof. We have :
(1) 9(3,b,0)=¢(3,b, D=0 (3)=p(2)+Y (b) -y (b-1)
=[1og, ()] + [log, ] > [log,(3b)] = ¥(3b) - y(3b-1) .
Thus ¥(3b) = ¥(3b=1) + (Y(3b)-y(3b-1))
< ¢(3,b, 1)+ ($(3,b,0)=-¢(3,b,1)) = $(3,b,0) .

(i)  ¢(3,b,1)=4(3,b,2) = y(2) =p(1) +p(b) -y(b-1)

r1082(2)1 + rlogz(b)1 = rlog2(2b)1 < r10g2(3b—l)1

v(3b-1) - ¥(3b-2).

Thus Y(3b=-2) = P(3b-1)- (Y(3b-1)-p(3b-2))

< ¢(3,b,])—(¢(3,b,])_¢(3,b,2)) = ¢(3:b’2)-

Step 3. The result is true for a=4.
Proof. Using Lemma 6 (ii) and (iii), it is easy to check that for
k=0,1,2,3, we have :

p(4b=k) = 8b=3-2k+(4-k)y(b) + ky(b-1)
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Now ¢ (4,b,k)=2(b=1)9 (4)+p (4=k)+ ki (b=1)+(4-k) ¥ (b)

=10b-10 +P (4-Kk)+ ki (b=1)+(4=k)v (b)
Thus ¢ (4,b,k)=p (4b=k) = 2b-7+2k+y (4-k).

Now we check easily that 2k+y(4-k) = 5.

As 2b-2 > 0, it follows that ¢(4,b,k)-y(4b-k) > O.

rlogz(x)1
2 < 2(x-1).

1

Step 4. For any integer x = 2,

Indeed, suppose that Zk_ < x < Zk, where k = 1.

[logy 0] k-1
Then k= flogz(x)1 and so 2 = 27, But x-1 = 2 . Hence

log, (x)
2(x=-1) > 2% = 2r . 1.

Step 5. The result is true for k=0 and any a.

Proef. We use induction on a. The result is true for a=3,4. Suppose that

a 2 5 and that the result is true for a-1 (and k=0). We have :

ab
(1) Ww(ab)-y((a-Db) = ) [log, (x)] < b [log,(ab)]

x=ab-b+1

< b([log,(a)] + [log,(®]) .

(ii) ¢(a,b,0)-¢(a-1,b,0)=(2b-1) (Y (a)-¥(a=1))+p(b)

=(2b-1) rlogz(a)] + y(b) = (2b-1) r1082(3)1+ b flogz(b)]—zrlogz(b)]+l

by Lemma 6(i). Using Step 4,we get :
¢(a,b,0)=¢(a-1,b,0) > (2b-1) [log,(a) ]+ b[log, (b)]~ 2(b=1)+1
>(b=1) [log,(a)]- 2(b-1)+1 + b([log,(a)]+ log, (®)])

>(b-1) ([Log,(a)]-2)+1 +y(ab)=p((a-1)b)
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by (i). Now, as a > 4, rlogz(a)T > 2 and so ¢(a,b,0)-9(a-1,b,0) > ¥(ab)-
W (a=1)b). By induction hypothesis, ¢(a-1,b,0) > ¢¥((a-1)b). By adding
these two inequalities, we get :

¢ (a,b,0) > y(ab) .

Step 6. The result is true for any a = 3 and k € Z

Proof. We use induction on a. The result is true for a=3,4. Suppose now
that a = 5 and that the result is true for a-1. By Step 5, we can suppose
that k > 0. We have :

ab-k

(1) v(ab=k)=p((a=1)b=(k-1)) = ) [Log, (x)]
x=ab-b-k+2

<(b-1) rlogz(ab)T sz(b—l)(rlogz(a)T + r1082(b)1) .

(ii) ¢(a,b,k)=¢(a-1,b,k=1) = 2(b-1) (Y (a)-y(a-1))+p(b-1)

2(b-1) [logy(a)] + w(b-1)

|-1082 (b—1)1
+1

[

2(b=1) [log,(a)] + (b=1) [log,(b-1)]- 2

by Lemma 6(i). Now we have two cases :

- b > 2 : Using step 4, we get :

¢(a,b,k)=¢(a-1,b,k=1) = 2(b-1) [log,(a)]+ (b=1) [log,(b-1)T - 2(b-2)+I

Inserting (i), we get :
(¢(a,b,k)=¢(a=1,b,k=1))=(p(ab=2) -y ((a-1)b=(k-1))
>(b-1) ([log, (a) ]+ ([1og, (b1~ [Log,(®)])) -2(b-2)+1

Z(b-1) (3-1)- 2(b=-2)+1=3 > 0, since a > 4.
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- b=2 : Then ¥(abk) -y ((a=1)b-(k-1)) < |1og2(a)|+ 1

while ¢(a,b,k)—¢(a—1,b,k)=2rlog2(a)1 > rlogz(a)1+1 , since a > 2.
Thus ¢ (a,b,k)-¢(a-1,b,k-1) > Y (ab-k)>¥((a-1)b-(k-1))

in both cases. Now, as O < k-1 < a-1, we have by induction hypothesis :
¢ (a-1,b,k=1) > p((a-1)b-(k-1))

By adding both inequalities, we get the required result,
namely that ¢(a,b,k) > yY(ab-k).

Let us now prove our result. If A and B are permutation
networks, then we can write A A B as (A,A,B,ﬁ), where B is a permutation
network on b-1 bits, with B=B(b). This corresponds to the case where k=0.

Let II be the family defined recursively as follows :

- S and P(2) belong to T
- If P(n), P(n-k), P{r)and P(r-1) belong to T,

where n,r = 2 and k € Zn’ then (P(n), P(n—k),P(r), P(xr-1)) belong to I.
Qur result is the following :

THEOREM 12, If P(n) belongs to I, then P(n)=G(n) or y(P(n)) > v(n).
Proof. We use induction on n. The result is obvious for n=1,2. Suppose now
that n = 3 and that the result is true for n' € {1,...,n-1} .

Let P(n) € 1. Then there are three numbers a,b,k such
that a =2, b =2 2, k € Za and n=ab-k, and four permutation networks P(a),

P(a-k), P(b), P(b-1) belonging to 0, such that P(n)=(P(a),P(a-k),P(b),P(b-1)).
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It is easy to check that a < n and b < n. We may thus
apply induction : For i=a, a-k, b, b-1, y(P(i)) = ¢(i), and the equality
holds if and only if P(i)=G(i).

Now P(n) is built with 2(b-1) copies of P(a), one

of P(a-k), k of P(b-1) and (a-k) of P(b). Thus

vy(P(@)) = 2(b-1)y(P(a))+y(P(a-k))+ ky(P(b-1))+(a-k)Y(P(b))
= 2(b-1)y(a) +P(a-k) + kp(b-1)+(a-k)y(b)
2y (n) ,

and the equality holds if and only if a=2 and both P(b)=G(b) and P(b-1)=G(b-1)
(by Proposition 11).
Thus Y(P(n))=V¥(n) if and only if P(n)=(G(2),G(2-k),G(b),G(b-1))=G(n).

We will prove a relatively similar result on the delay :
THEOREM 13. If P(n)€1 , then 6§ (P(n)) = 6§ (G(n))

Proof. In fact, we will prove the slightly stronger following result :
If all cells of P(n) are in the O-state, then the signal
on In_l(P(n)) reaches On_l(P(n)) after traversing at least § (G(n)) cells.
We use induction on n. The result is true for n=1,2.
Suppose now that n~> 3 and that the result is true for n' € {1,...,n-1}
We can write P(n)=(P(a), P(a-k),P(b),P(b-1)), where a= 2, b= 2, k€ Za
and P(i) € T for i=a, a-k, b, b-1.
Now put all the cells of P(n) in the O-state. Then the
signal on In_l(P(n)) has the following trajectory :
In_l(P(n)) -+ Ia_](P(a)) -+ cells of P(a) =~ Oa_](P(a)) > Ib_l(P(b))
+ cells of P(b) + 0, (P(b)) > I__ (P(a)") » cells of

P(a)’ + 0. (®@% »0__ (®@).
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By induction hypothesis, it traverses at least
26(G(a))+6(G(b)) cells. Thus we have only to prove that §(G(n)) < 28(G(a))+
8(G(b)).

By Proposition 8, a(e(x))=2r10g2(x)1—: for x=2,3,4,...
Thus we get :

26 (6(a))+8(G(b))= 4[log,(a)]+ 2[log,(b)]-3
= 2([Log, (all+[Logy (®)]) -1 + 2([log,(a)]-1)
> 2[log,(ab)]- 1 + 2[(log,(a)]-1)

2[1log, (ab-k)|-1 + 2([log,(2)]-1)
2[log,(m)[-1 = 8(6(n)).

Note that if a = 2, then rlogz(a)T -1 > 0 and so

\Y%

Y%

25(G(a))+8(G(b)) > 8(G(n)), which implies that §(P(n)) > &(G(n)).

But we can nevertheless have §(P(n))=68(G(n)) when
P(n)#G(n).

Indeed, take n=17, a=2, b=9 and k=1. Take P(17)=
(P(2), S, G(9), P(8)), where P(8)= G(4) A G(2), then P(17)#G(17), since

P(8)#G(8). But we have :

§(G(9)) = 2[log, (9]~ 1 =7

§(P(8))

2 8§(G(4))+8(G(2)) =7

and so §(P(17)) = &(P(2)) + max {8(G(9)), S(P(8))}

2 +8(G(9)) = 6(G(17)).

I

B. Permutation networks designed with different cells.

Suppose that we have different prefabricated networks
P(x),P(y), P(z),..., having respective costs Yx,Yy,YZ,..., and delays

gx,éy,gz,... We want to build larger permutation networks using Px’Py’Pz"'
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as cells. How to minimize cost and delay?
To simplify our notation, we will write
for ¥(£(P&x), P(y); P(2),s= ds for
T Esans 9 °° FEERRE (v), P(2) ) 2B F(Xs¥sZyees)
S(£(P(x),P(y),P(2),...) whenever f(*,%,%,,..) is a function of the type
N(I,0;%,%,%,....;T), as defined in §II.

Let T be the set of prefabricated cells P(x), P(y),

P(z),... . We have first the following result :

PROPOSITION 14. For any P(x), P(y), P(z) built from cells in I', we have :

(1) Ting = (4771 R Y, =
(1) 8,y = 26, +6 .
(iidi)

>
Y(xay)az ~ YxA(yaz)

i >
GV Sixapynz 7 Cxacyaz)
< . . Tx < Yy
(v) YxAy YyAx if and only if Ty -;:T
Y Y
X
, < 2 3 o4
(vi) YXA(yAz) YyA(xAz) if and only if e =

ii < 1 <
(vii) 5xAy GyAx if and only 5X 6y

(viii) 6x/\(yf\z) = ayA(XAZ)
k
. k-1 X -1
(ix) YxA(e . A(RAR) .. ) (2kex T %=1 )Yx '
k factors
() B At .0y - BETLE

k factors
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Proof. (i) and (ii) are obvious. A repeated use of (i) implies that
Y(xry)Az o (2z=1) (Zy=1)y + (22'1)XYY XYY, -
and YXA(yAz) = (Zyz—l)yx + (ZZ—I)XYY + Xy o @ (%)

Now (2z-1) (2y-1)-(2yz-1)=2(y-1)(2z-1) > 0 and so
(iii) follows.

A repeated use of (ii) implies that :

GXA(yAZ) = ZGX + 26y + 62 . (%)

Thus (iv) follows.

Now (v) follows from (i), (wvi) from (%), (vii) from (ii)
and (viii) from (¥¥).

Finally, (ix) and (x) are proved by induction, using
(i) and (ii) respectively.

We wish to study functions of elements of T used with
the operation A. These functions belong to the sets Fn(n=1,2,3,...) defined

recursively as follows :

-For n> 1, Fn={¢=¢(P(x]),...,P(xn))| there is some k € {1,...,n-11},

r € F_ and gEEFn such that for any permutation networks P ..,Pn,

k -k
¢(P],P2,...,Pn) =B seesP) A E(Pk+1,...,Pn)}

1°°

From Proposition 14, we deduce the following :

COROLLARY 15. Let ¢ € F . Let P(xi) € I'(i=1,...,n). Then :

(1) ¢(P(x]),...,P(xn)) has minimum cost and delay if and only if

¢(P(x!,...,P(xn))= P(Xl) A (P(xz) A (e A(P(xn_l) A P(xn))...)).
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(ii) If 7 is a permutation of I,...,n, then P(X]ﬂ) A (P(X2w)A("' A

A e ini i . -1) < . -
(P(X(n—l)ﬂ) P(an)) )) has minimum cost if Yxiﬂ/(xrﬂ 1) < ijﬂ/(xJTr 1)
for any i,j such that 1 < i < j < n, and minimum delay if
§ = max {§ | i=1,..:,n} .
X X.
nn i

This is a direct consequence of the results (v), (vi),
(vii) and (viii) of Proposition l4.

It can generally be assumed that Sx < Gy when x <y,
because P(x) can be considered as a part of P(y).

It is also reasonable to suppose that Yx/(x—l) < Yy/(y-l)

whenever x < y. This is indeed the case for the following two choices of T :

- take I'={G(n) | n = 2}. Then Yn=w(n) and we check that for any n = 2,

(- y(n+1)-np(n)
n(n-1)

Y1 /ATyl (am1) =

]

Ty (@D Tiogy @) T-4(m))

n
n(rll_i') (i__z_z(r1082(n+|ﬂ—r10g2(i)‘|‘) > 0

— take T to be the set of all nXn crossbar switches. Then Yn=n2 and so

Yn/(n—l)=n+l+-E%T , which is a strictly increasing function of n for n = 2.

While Corollary 15 indicated us in which way to build

a permutation network on x ceeX bits using xi—cells (i=1,...,n), we

1
need to know when we can further decompose Xy into X0 %: and use copies
of P(xio) and P(xil) instead of P(xi).

Let P=f(P(y),...,P(yk)) € Fk for some k = 1.
Write Y¢ and 6f for the cost and delay of P. Suppose that £ is on z bits,

where z = 2.
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PROPOSITION 16.

i < < .
(1) 1If vy yyx+xyy, then nyAf for every value of =z

Xy TxA(yAf)

oy by-1 :
(i1) If Tty XYy, < ny < —z§-yx + xyy, then - = X A(yAL) if

z = 24 where zq is a fixed integer bigger than 2.
(1ii) If vy = L | Y. + xy_, then vy =y for every value
Xy 2 'x g xyAf — TxA(yaf)

of z bigger than 1.

i > - >
(im) TE Yxy (2y I)YX+Xsz then oz =

xAy
Proof. We easily compute that :
Yeayag) ~ C¥2=Dv + x(Qz=D)y,*yve)

and nyhf = (ZZ—l)ny+nyf .

. ; 2yz-1
> = .
Thus nyAf = YxA(yAf) if and only if ny 771 YX+XYY
2yz-1 . g
Let f(z) = Tl " Then f(z) is a strictly monotonous

decreasing function of z, with £(2) = ﬁl%l and lim f(z)=y .

Z-¥0

< - (1
IE Yuy = TVt XYy (iii £(2))v,+ xv, » then
< > < .
ny f(z)yx + xyy for any =z 2. Thus nyAf YxA(yAf) and (i) holds.
by=1
o o § . >
If ny T Vet XYY f(Z)YX+xyy, then ny f(z)yx+ XYy

= 2, =
for any =z 2. Thus nyAf YxA(yAf)

and (iii) holds.
gl

<
If PP Ely < Yy 3

Yx+xyy,then ny=uyx+xyy, where

lim f(z) < u < £(2). Thus there is some Zq > 2 such that for z = Zys U = f(z).
Z-¥o0

Thus ny = f(Z)Yx+XYy and so Yy if z = Zq and (ii) holds.

>
xy Af YxA(yAf)
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Now (iv) follows from Proposition 14(i).
Using the results of this section, one can easily
derive the optimization of such constructions using square nxn crossbar

switches as cells (see [ 14]).

It seems difficult to get a result similar to Theorems 12

and 13 when we take different cells and give their respective cost and delay.

Note. Additional informations on permutation networks can be found in [ 18] .
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Appendix.

The Goldstein-Leibholz construction.

Goldstein and Leibholz [ 8] proved that if A and B are
permutation networks, then A A B is a permutation network. This generalizes
the theorem of Slepian and Duguid [ 5,17], which asserts that AxxB is a
permutation network.

We will prove here the theorem of Goldstein and Leibholz.
Our proof is similar to Benes'proof of the theorem of Slepian and Duguid
[ 2, Theorem 3.1]

We will use the following theorem due to P. Hall [ 8]

A finite family {AO,...,An_l} of subsets of a set A has
a set of distinct representitives if and only if

|. U Ail> |T| for any I € {0,...,n-1}
i €1
Let us make a few definitions
Let X and Y be two sets. A partial bijection m: X =+ Y
is a bijection from a part X' of X onto a part Y' of Y. We will say that X'
is the domain of 7 and Y' is the image of m, and we will write X'=Dom(m)
and Y'=Im(mw).
Consider two sets X and Y of size nr, where n and r are

integers larger than 1. Write then X={xi | i€ Zr and j EEZn} and

H

Y={yi 3 | 4. & Zr and j € Zn}. Let us define for i € Zr the sets
3

Xp=lx; | i €2} and Y=y, | €2} Let J={X; | i €2} and

Q={Y1 I 1 € Zr} .
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LEMMA A. Let m be a bijection X -+ Y. Then there is a partial bijection

|

m' included in w such that for i € Zr’ Xi n Dom(ﬂ')|= |Yi N Im(v')]= 1.

Proof. For any Xi € z and Yj € Q, write Xi v Yj is there is some

€ X, ! € Y.. i € i . = . € YL 1.
Xi,k X, such that X; T YJ For any 1 Zr’ write Al {YJ Q | leYj}
Let L C Z and let M= U Ai' Syppose that |L|= m and |M|= m'. Clearly,
X.€EL
| v Xif = nm and t | VY. = mm'. If X 4 € X;, then
X, €L ¥ M J :

Xy T € U Y.. Thus Xiﬂ < Y.. It follows that ( UV Xi)w e U ..
*a v.€5, v.€a, X.€L vy.em
J 1 J 1 1 J
Hence : nm =| U Xi|= [¢ v Xi)n| <| U Y. =m
X.€L X.€L Y.eM
i i ]
Therefore m' 2 m and Hall's theorem implies that the sets
Ai have distinct representitives, in other words, for i=0,1,...,r-1, there
is some Y. € A; such that for it4i, Yj # Yj . By definition of Ai’ there
. g :
i i i

is for each i € Zr an integer f(i) such that X, mTE€ Y. . Take

"= = . s = = ' .
m {(Xi,f(i)’ Xi’f(i)ﬂ) ] i Zr} As {Jl | i Zr} Zr’ m' has the required

properties and the result follows.

PROPOSITION B. Let m be a bijection X -+ Y. Then 7 is the disjoint union of

n partial bijections LATERE such that for j € Z_ and i € Zr’

-1
lXi N Dom(ﬂj)|= |Yi N Dom(wj)F].
Proof. We use induction on n. The result is obviously true for n=1. Suppose

that n > 1 and that the result is true for n-1. By Lemma 1, there is partial
bijection L E m such that for i € Zr’ in N Dom(rn_1)|= [Yi n Im(ﬂn_l)|=l.
Write m'= ﬂ\mn_l, X'=X\\Dom(ﬂn_]), Y'=Y”\Im(ﬂn_1), X{=Xi N X' and

Yi=Yi NY' (i€ Zr). Then T', X', Y' and the sets Xi and Yi (i€ Zr) satisfy
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the hypothesis with n-1 instead of n. Applying induction hypothesis,

we find that 7' is the disjoint union of partial bijections T.,...,T

0’
1 —_ .
|Xi N Dom(ﬂj)l— |Y'i N Im(ﬂj)l— 1.

n-2

such that for i € Z_and j € Z s
T n-1

Now T ST are partial bijections X -+ Y and we have |Xi N Dom(wj)|=

02 Moo

Yi N Im(vj)|=1 for i € . and j € Zn—]' Therefore the result holds for n.

Remarks. (1) We can choose the labelling of the bijections ﬁj in such a

way that for j € Z s Yo 3 EY. n Im(ﬂj). With this additional hypothesis,
3

0
the labelling becomes unique.

(2) Every ﬂj (j € Zn) induces a bijection z + Q . We write it }j .

(3) For any 1 € Zr’ there is a permutation Py of Xi which maps the

i g M ; S ;
unique element of Xl Dom(ﬂk) on X, . for k Zn

(4) Similarly, for any i € Zr’ there is a permutation T, of Y.
which maps ¥ on the unique element of Y. N Im(wk) for k € Zn' It follows
b

T = 1 g
0 YO

from our choice of labelling in Remark | that

Now define the n partial bijections

1

. i € 1 €
L T 2 et RN IR R

= X.7 €
Xi,k -+ yj,k’ where Yj Xiﬂk (k Zn) .
Note that =x o !
Yik Fi,kPi Ty
e - T= T T —_ T
If P=Py P T TO"'Tr—I and w wo...ﬂn_l, then m=p.7m'.T.

Now let us show how 7 can be realized on A A B, where
A=A(n) and B=B(r).
- In the first stage, we realize p; on the ith copy of A

(i€ Zr).
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- In the second stage, we realize ﬁk(or W&) on the kth
copy of B (k € Zn).

- In the third state, we realize T, on the ith copy of

*
1 €
A (i Zr).
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FIG.12 Joel's serial construction
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FIG. 14 The diamond array.
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