Philips Research Laboratory
Av. Van Becelaere 2 - Box 8

B— 1170 Brussels, Belgium

Report R&444

Substitution Networks
C. RONSE

October 1980

Abstract

We study general properties of switching networks realizing substi-
titions, i.e. bijections between their input and output contents. We give
several designs for networks realizing all substitutions on a given number
of bits, either by discrete components, or by expansion methods using
smaller substitution networks and canonical universal logic modules. We
compare their respective costs and delays in terms of discrete components.
We generalize some known properties on variable dependency.

Finally we make a link between the expansion of substitution net—

works, the DES encryption algorithm and nonautonomous feedback shift regis-—
ters,

SUBSTITUTION NETWORKS

I. Introduction

A substitution network is a switching network which can encypher

a text of bounded length written in a given alphabet into another text of
the same length written in the same alphabet.

We represent it in Figure 1.

Suppose that the text has length n and that the alphabet is a set
K. If K has size m, then we can identify K with the set {0,1,...,m~1}.

We need to take a switching network S with n data inputs I.,...,I s, N
—_—= 0 n-1

data outputs 00""’0n—l and k control inputs CO""’Ck—l' Data inputs and
outputs take their values in the alphabet K, while control variables take
their values in an alphabet D. We will often take D=K.

The contents [xn_l,...,xo] of the data inputs forms the plaintext,
the ones [yn_l,...,yo] of the outputs form the cyphertext, and the ones
[Ck—l""’CO] of the control variables form the key.

Given a key [ck—l""’cO], S realizes the corresponding encypher-

ment, that is a bijection :

fie .]=f:Kn > K" (1)
k"‘l,.“, 0
from its input contents to its output contents.
We need to take a bijection, because the encypherment must be one
to one (in order to allow the decypherment).

The bijection f is called a substitution. The number of possible

substitutions that S can realize is at most :

min{ (|[K]|™)1, |D|k}, (2)
because (|K|n)! is the number of substitutions K - K" and |D]k is the
number of different keys [ck_l,...,c0 |

Let us make a few definitions : we will say that n is the size of
S. The number of substitutions that S can realize will be called the multi-
plicity of S. If the multiplicity of S is (|K|n)! (in other words if §
generates all substitutions), then we will say that S is total or that S has

maximal multiplicity.

; : |
To S corresponds a second substitution network S with the same

text and key lengths as S, but which for a given key Cropre+sCy » Per-

-1

forms the inverse substitution (f) Sl is used to decypher

[ck_],...,co 1
the texts encyphered by S, and is called the inverse substitution network

of S.
The main problem concerning this topic is the design of substitution
networks which :
1) can perform certain prescribed substitutions.
2) can be built in practice with the present technology (this is specially
the case when n is large).
3) have relatively low cost and delay.
4) have a relatively easy control algorithm.
The literature on this subject is relatively scarce (see the refe-

rences [2,3,4,5,6] and related papers).

II. Some designs of substitution networks in the binary case

We suppose that D=K={0,1}, in other words that we work in binary

logic. We want to build a substitution network of size n.

A. The classical direct design.

The three basic elements of this design are the address decoder,

the address encoder and the (partial) permutation network.

This design is summarily described in [2].
Given a number k € {O,...,Zn—]}, let [kn_l,...,ko] be its binary
representation (with k, € {0,1} for each i).
i

n ; n
An n to 2" address decoder has n inputs X,.,...,x » 2 outputs
0 n-1

Ygreres¥ o o and realizes the following input—output behavior
27-1
For every k € {0,1,...,2"-1},

n-1 (ki)
yk = _H Xi ’ (3)
1=0
where we define :
a(b) =a@®b®1 =a if b=1.
- (4)
= a if b=0.
It follows that if [xn_],...,xO] = x, then :
¥ =]
* (5)
and Vi = 0 for k # x.

A 3 to 8 address decoder is shown in Figure 2.

. . . . n .,
A2" ton address encoder is a switching network with 2~ inputs

Vissss) ¥ and n outputs Z.,...,z s which can realize the inverse of
0 . P 0 n-1
the input-output behavior of the n to 2" address decoder. Thus (cfr. (5)),
if
v. =1
X
and
o, = 0 for k # x,
then
[zn_l,...,zO] = x. (6)

Of course, the behavior of the address encoder is uncompletely
specified. We know the values of the outputs only for the input vectors
of weight 1.

One possible choice for complete functions satisfying (6) is :

Z = v ’ (7)
L i K
i
where i=0,...,n-1, k € {0,...,2"-1} and [kn_l,---,ko 1 = k.
Indeed, if we take = 1 and v, = 0 for k # x, then (7) becomes
B Y if xl=],
(8)
=0 otherwise,
in other words
Zi = Xis (9

and so (6) holds.

An 8 to 3 address encoder is shown in Figure 3, with the values
of the outputs z; obtained by (7).
Note that in (7) the variable Yo is idle.

A partial permutation network on m bits is a switching network with

m data inputs, m outputs (and a certain number of control inputs), which can

perform some permutations of the signals (see [11]1). A permutation network

is a partial permutation network which can perform all such permutations
[111].
The design is the following. Take an n to 2" address decoder D,
a partial permutation network P on 2" bits and a 2" to n address encoder E
and connect them in series as is shown in Figure 4 for n=3. Then we get a
substitution network S having the same multiplicity as P.
n n

F : 1
Indeed, to any substitution f : K - K : (xn_],...,xo) - (xn_l,

...,xé) corresponds the permutation m(f) of {O,],...,2n~1} which maps

1]
n-1°"'"2%p !°

1
X = {Xnel""’xO] onx =[x
If P realizes m(f), then the network S realizes f. In particular,
if P is a permutation network, then S is total.
This type of design can be generalized to the nonbinary case,

provided that one gives a suitable definition of address decoders and enco-

ders.

B. Universal Logical Modules.

It is possible to get all substitutions of size n by taking a swit-
. . ’ . ; : n n . "
ching circuit which can realize all functions K = K . The increase in cost
is not substantial because the logarithms of the number of substitutions of

size n and of the numbers of functions K" - K" are both of the form 0(n2n).

A switching network with n data inputs, k control inputs and m
outputs, which, under a proper setting of the control inputs, can realize
any function f : K" > K® from its data inputs to its outputs will be called
an n to m canonical universal logical module (or CULM) (see [12]).

n
As there are (Zm)2 functions K© + Km, we may take

(10)

A design of an n to m CULM using m multiplexers with the same n
control variables is shown in Figure 5. For any k € {0,...,2n~l} and
J € 10gu vy si0=1T5 3 is the value taken by y. when [x ,...,x.]

k] n—l 0

As the multiplexers use the same control variables XgreeesX s
the minterms that they use can be generated in the same address decoder.
One gets thus the design shown in Figure 6 for n=2 and m=3.

Thus design is easier than the classical direct design, and has a

simpler control algorithm. It can be generalized to the nonbinary case,

provided that one gives a suitable generalization of the gates it uses.

ITI. The expansion of substitution networks

When n is large, the design of substitution networks of size n by
the preceding methods may become very intricate and cannot be built on a
single chip. It is therefore necessary to build substitution networks with
the use of substitution networks of smaller size and maybe other components.

We will first give two methods corresponding to the two designs of
the preceding section. Then we will indicate some possible directions for

the study of this problem.

A. The expansion of CULM's

As an n to n CULM contains a total substitution network of size n,
our problem can be solved by studying the building of "large" CULM's from

"smaller" ones.

We will not restrict ourselves to the binary case. A CULM can be

defined for every value of |K . But then (10) becomes

(11)

]
>

We will write |K|

An n to (m+t) CULM on K can be built with an n to m and an n to t
CULM's, as is shown in Figure 7.

In the binary case, this design can be made at cheaper cost. If
we consider the design of Figure 6, we see that an n to m CULM can be built
by connecting the outputs of an n to 2" address decoder to m copies of a
circuit called an enabler on 2" bits, illustrated in Figure 8 for n = 2,
Then the two CULM's of Figure 7 can use the same address decoder and so we

get the design of Figure 9.

Now let us consider the building of an (n+t) to m CULM from n to
uand t to v CULM's (with u, v divisible by m).
m t n z
Let A=K, B=K~ and C=K . Then a function f : B x C - A can be
identified with a function g : C = AB, where AB is the set of functions
B >~ A, and vice versa. The identification is made in the following way
For any f : Bx C~+A and g : C > AB, f can be identified with g

if for any ¢ € C and b € B we have :

£(b,c) = (g(c)) (b). (12)

(Here g(c) is a function B + A corresponding to c).

t
A] ;
As |AB| = » we can thus build an (n+t) to m CULM by connecting

the outputs of an n to mkt CULM to the control inputs of a t to m CULM.
This is shown in Figure 10. For a u to v CULM, we write cy(ﬁ)
(0s86<v, 0y < Au—l) for the control variables, where ca(B) is the
value of the output labelled B when the input vector corresponds to o,
(cfr the design of Figures 5 and 6 in the binary case). For any

B € {O,...,mlt—l}, we will write B = [BJ’BO] with.B] € {0,...,m=1} and

By € [0yveazr®=1},
8,

B
0
of the t to m CULM. We choose the following values for the control inputs

Now in Figure 10, every Vg is connected to the control input c

of the n to mAt CULM :
Py _ =

= f(xn+t—]""’xo) =(zm—]""’zo)’ then set c, - ZBI

for B. =

0 [Xn+t—]""’xn]

and o = [xn_],...,xo] (13)

Indeed, if we make such a choice for the cés)'s, then we get
8 T %8,
(14)
for o = [xn_],...,xol
and so we have in the t to m CULM :
®)
c = z
Bo B
for o = [Xn—l""’XO]
and BO = [Xn+t_l,...,x0 1 (15)

But then we obtain :

for o = [xn-l""

and BO = [xn+t—1"' n

and so the network realizes f.

Notes

1) This network can also be obtained if we expand the components of CULM's
in the binary case, i.e. the address decoders and the enablers. However,

the description is more intricate with that method.

2) If we use the design of Figure 5 in the binary case,then our expansion

is equivalent to the tree expansion of multiplexers.

B. The three stage expansion of total substitution networks

In section IT.A we designed a total substitution network with the
use of a permutation network. The idea was to consider the 2" different
input vectors as points and to realize the substitution as a permutation of
those points.

So we can hope to generalize the techniques for the expansion of
permutation networks to substitution networks.

We will suppose that |D| = |K| = k and even that D = K = {0,...,k-1}
(where k is an integer > 1),

We want to build a total substitution network of size n with substi-
tution networks of smaller sizes and possibly other components.

This corresponds to the problem of building of permutation networks
on k" bits with the use of permutation networks on Kkt bits, where 0 < t < n.

It is clear (see [11]) that the permutation network design corres-—

ponding to that problem is the Clos Network which we describe below :

Let a,b be two integers such that a,b > 1. Let A and B be two
permutation networks on a and b bits respectively. Then the Clos network
B xx A is illustrated in Figure 15 for a=3 and b=2. It consists of one
stage of a copies of B, then one stage of b copies of A, and finally one
stage of a copies of B, and the stages are connected by perfect shuffles.

The Clos network is a permutation network [11]. Let us explain it
in terms of permutations :

Let Z_ = {0.v.,a-1} and z, = {0,...,b=-1}. Then consider the permu-
tations of Za X Zb. The first stage of the Clos network generates all permu-

tations of the following type :

T2y X Ty > L, x Zt(x,y) > (X y)T = (x,y(m), (16)

where each T (x€z,) is a permutation of Zb.

The second stage generates all permutations of the following type

T2Z, X2 L X Zi(x,y) > (x,y)T = (X('fry),y), (17)

where each Fy (v € Zb) is a permutation of Z,.
Finally, the third stage generates all permutations of the type (16).
Now the fact that the Clos network is a permutation network means
that every permutation of Za X Zb can be decomposed as the product of three
permutations, the first one of type (16), the second one of type (17) and
the third one of type (16).

n

Now, if we take a=kt, b=k , Za=Kt and Z, = K" (with n,t > 1), then

b
let us see what type of substitution corresponds to a permutation of type
(16). It is a substitution on the first n bits of a vector, depending on
the last t bits. It can be generated by the network illustrated in Figure
12 :

Here S is a total substitution network of size n and C a t to u
CULM, where u is the number of control inputs of S. For every choice of

X 300X C determines the substitution on x

O,-c-,xn_lo

Now the three stage realization of a total substitution network

n+t—-1"?

corresponding to the Clos network is illustrated in Figure 13. Here Sn and
St are total substitution networks of sizes n and t respectively, and Ct
and Cn are respectively, a t to u and a n to v CULM's, where u and v are
the numbers of control inputs of Sn and St respectively.

The control algorithm of this design is similar to the one used
for the Clos Network [1,7,8,9,10,13,14]. When k=2 and n=1, the "looping"
algorithm defined in [10] can be used. We will explain it on the following

example :

12

Let us take t=2 (we have k=2 and n=1). Then Figure 13 reduces to

Figure 14, Consider the substitution f defined by :

Yo = %o ® X Xy

Y| = % @ X ® X, @® XX, @1,

® x, ®xX,. (18)

~
)
|

._.XO

It has the following thruth table :

%9 % %0 Yy I Y0
0 0 0 0 1 0
0 0 1 1 0 1
0 1 0 1 0 0
0 1 1 0 1 1
1 0 0 0 0 0
1 0 1 0 0 1
1 1 0 1 1 1
1 1 1 1 1 0

(19)

Let us start our procedure. We will put the input and output
contents in pairs : every (a,b,c) will be paired with (a,b,E). This corres-
ponds to the pairs of inputs and outputs of the 2-cells used in the Clos
network when b=2,

Let us take first (xz,x],x0)=(0,0,0). It is mapped by f on (yz,
yl,y0)=(0,l,0). We will choose arbitrarily the value of the control input c
in this case. The easiest is to choose c=0 (and so 23=%, (*). We have thus
this first fact :

For (x,,x,)=(0,0),

c=0. (20)

(*) see Figure 14 for the definition of Zgs © and c”f

Now we must change (XZ’XI) to (yz,y]) in 34. We get then :

For zo=0,

34 maps (0,0) onto (0,1). (21)

Finally, we must change z into Yo in S". Here Yo=20" Thus :

For (YZ:Y1)=(0,I),

c" = 0. (22)

Now we take (yz,yl,y0)=(0,1,]), which is paired to (0,1,0). Its
inverse image by f is (XZ’XI’XO)=(O’]’])' We do the same procedure backwards.

As ¢"'=0 by (22), we get :

For (yzay]:y0)=(0,]:1):

zq = 1. (23)

Now (XZ’XI) is transformed into (zz,z]) in 54. Thus :

For zg = I,

34 maps (0,1) onto (0,1). (24)

Finally, S changes X into 25+ Therefore :

For (xz,xl)=(0,l),

c = 0. (25)

Now take (xz,x],x0)=(0,l,0), which is paired to (0,1,1). It is

mapped by £ on (1,0,0). By (25) we get :

For (XZ’XI’XO)=(O’]’O)’

We pass now to 34. We must get (yz,yl) = (1,0). Thus :

For 2y = 0,

34 maps (0,1) onto (1,0).

3 " : = .
Finally S" changes 2y into Yge As 24=Ygs we have :

For (Y23y1)=(]90),

Now we take (yz,y],y0)=(1,0,]) (paired to (1,0,0)), which is the

image of (0,0,1). By (28) we get

For (yzsyl,y0)=(1,0,l),

Then in S4 we get :
For zy = 1,

54 maps (0,0) onto (1,0).

Finally in S we have by (20)

For (y,,¥,5y4)=(1,0,1)

(26)

(27)

(28)

(29)

(30)

(31)

which is what we had in the truth table. As (xz,xl,x0)=(0,0,0), the triple

paired to (0,0,1), has already been used, we have made a "loop". So we

start again the procedure with an input which has not been used, say

(x5,%)5%)=(1,0,0).

We get then two loops of length 2 (the first one has length 4) and

the procedure gives us the following facts :

For (xzsxl)=(lso)s

c=0 (arbitrary).

For z.=0,

34 maps (1,0) onto (0,0).
For (y,,y,)=(0,0),
C”=O .

For (Y23y1$y0)=(07031),

20
For z.=1,
34 maps (1,0) onto (0,0).

For (Yz,ylsyo)=(0,0,1),

x0=] (end of loop).
Start now with (XZ’XI’XO)=(]’1’O)

For (xz,xl)=(l,l),

c=0 (arbitrary).

For z.=0,

34 maps (1,1) onto (1,1).

For (y2,y1)=(1,1),

c''=1,

For (yz,yl,y0)=(1,],0):

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(89)

(40)

(41)

For z =1,

For (yzsyl sy0)=(1 ’ 1 :0) 3

34 maps (1,1) onto (1,1).

(end of loop).

(42)

(43)

The looping procedure is now finished and have now all the infor-

mations on the setting of the CULM's.

We get the following truth tables :

2 1
0 0 0
0 1 0
G 2 1 0 0
1 1 0
1
Y2 yl c
0 0 0
0 1 0
c" 1 0 0
1 1 1
) %5 % k) I
0 0 0 0 1
0 0] 1 0
0] 0 0 0
, 0] 1 1 1
C* +.5,] 0 0 1 0
1 0 1 0 1
1 1 0 0 0
1 1 1 1 1

(44)

(45)

(46)

17

Thus the setting of the control variables of C, C' and C" can be
determined.

In order to apply the looping algorithm, it is convenient to know
the truth table of both f and its inverse. Generally a substitution f of
size n is given in 2" rows of n registers. If [xn_],...,xo] =x (0= x< Zn),
then the bits in the row x are the n digits of f(xn_],...,xo). In order to
get fpl, we apply the following algorithm :

We write R(k,j) for the jth register in the kth row (0 < j < n,
0<k<2M.

We take 2 other rows of n registers labelled R'(k,j).

n .
We make 2" successive steps.

Step i (0= 1< 2n). Consider the ith row R(i,0),...,R(i,n=1). If the con-

tents of the registers form a number k (0 < k < Zn), then go to the kth row

R'(k,0),...,R"'"(k,n-1) and set their contents in order to form the number i.

Example. Take n=3 and the substitution (18). It is written in the following

way in 24 registers

(45)

—_——O OO - = O
—_—_O O = OO —
O—=— 0O~ 0=0

The 8 steps for filling the 24 new registers are illustrated below :

0 1 2 3
0 0 0 0 0 0 0 0 o0 0 0 0
i e 8w 0 1 1
. 0 1 o0 0 1 o0
; 0 0 1 0 0 1 0o 0 1

18

4 5 6 7
1 0 O 1 0 0 1 0 0O 1 0 0
. . . 1 0 1 1 0 1 1 0 1
0 0 0 0 0 0 0O 0 O 0 0O 0
0 1 1 0 1 1 0 1 1 0 1 1
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 ? ? 1 (46)
. . 1 1 0 1 1 0

Another interesting type of three stage network is when k=2 and
t=1. Then the control algorithm can be derived from [13].

Both designs can be applied recursively. In the first case, one
gets a network corresponding to the Benes network [11] for permutation
networks.

A binary total substitution network of size 2 built by the three

stage design is shown in Figure 15

C. General considerations

One can consider designs of not necessarily total substitution net-
works built by interconnecting substitution networks of smaller size.

In section IV of [11], ten operations on partial permutation net-
works are defined. These operations can also be done with substitution net-
works instead of partial permutation networks. This can be used for the
building of substitution networks of relatively large size.

Two widely used operations are the union (i.e. setting of several
substitution networks in parallel) and the composition (i.e. setting in
series). The first one allows a cheap expansion of the substitution networks,
while the second one increases the multiplicity (see for example the DES in
[61).

In [4] an algorithm is given for the expansion of a network S of

g

size n to one of size n®, where g = 1. 1In fact, this algorithm gives the

19

network

Cowe (S % 8Y % 4uu) % 8, (47)

g times

where x is the operation n° 6 defined in page 9 and illustrated in Figure 5
of [11]. We reproduce it on Figure 16,

In Section 5, we will analyse one particular property of the opera-

tion X.

IV. Problems of cost and delay

We will compare the above-studied designs with respect to cost and

delay in terms of logical gates of fan-in at most 2 and of fan-out I

AND, OR) in the binary case.

Suppose that these gates have the following respective costs and

delays :
GATE COST DELAY
NOT Yo 60
AND Y 8
OR yl 6]
In MOSFET technology, we have :
1
Y=y =3y,
and
min{s,s'} > .
We can thus suppose that :
. 1
Yo < min{y,y }
and §. < min{G,GI}.

0

(48)

(49)

(50)

(51)

Let us look at the costs and delays of the components used in our

designs.

21

(1) The n to g+ address decoder

Its design using AND- and NOT-gates is shown in Figure 17 for n=3.

As § < §, we see easily that it has :

0
cost (2n+}—4)y + nYO A 2n+Iy. (52)
delay (n-1)8 + 60 ~ néd. (53)

(2) The 2" to n address encoder

The input-output behavior of such network is incompletely defined.
Therefore we will suppose that (7) holds.

Then such a network can be built by recursion. There are two recur-
sion methods.

The first one is based on the fact that formula (7) can be split

into two formulas

B (. v » " vk) v (V 1 Vk) (54)
2" <k < 242" k > 2"
kn--2=
and
z, = (V v.)yv (V v,)
Yok, =1 K k,= k
i i
g g k> 2"
(i=0,...,n-2). (55)
The two terms in brackets in (55) are respectively the ith output
of a 2n—1 to n—1 address encoder, with the inputs X to x s in the first
2 -1
case, and x to x in the second case.

Gl 27

22

One gets thus the design of Figure 18 illustrating the expansion
from a 2n—i to n-1 to a 2" to n address encoder for n=4, and the following

recursion formula :

@) = 20n=1) + (@~ Z4n=1)7!, (56)

wvhere I'(n) is the cost of a 7% wo 1 encoder. As a 2 to | address encoder is

a simple connection between x, and Zys We have :

1

r(1) = o, (57)

: . . +
This gives an asymptotical cost of at least g zy.

For the delay, we get :

A(n) = A(n=1) + §' (58)

L}

and A(CL)

0, (59)

in other words A(n) = (n—DSR
The second method has lower cost and equal delay. It is based on

the following deomposition of formula (7) :

z = v v (60)
d k odd k
and
Zi41 T K, = Vo ¥ Vapar) (sl b« =23 (61)
L
k< 2871

Here (61) describes the input—output behavior of a 2n—1 to n-1

address encoder whose kth input (0 < k < 2n) is v This gives the

2k ¥ Vok+1®

design of Figure 19 illustrating the expansion from a 211“l to n-1 to a 2" to

n address encoder for n=4, and the following recursion formula

23

r@) = 2% -0 ! + r@-1). (62)

Using (57), we get by induction :

n+l 1

cost T(n) = @™ l-2n-2) y! = 2PN, (63)
The delay is given by :
A(n) = max{(n-1)y',y' + a(a-1)}. (64)
With (59), this gives :

delay A(n) = (n-l)yl ~ nY]. (65)

Figure 20 shows a 16 to 4 address encoder built by applying recur-

sively the decomposition of Figure 19.

(3) The permutation network on m bits

We suppose that we use Green's network (see [11], page 15). It has

the following cost and delay :

flog (m)—[
(m flogz(mﬂ = D + 1) T, (66)

2 flogz(m)T ~1)a, (67)

where I' and A are the cost and the delay of a 2-cell and ru] denotes the
smallest integer v such that v = u. Note that if m=2" (as in our design),

our formulas reduces to :

(2% (n=1)+1)T (68)

and (2n-1)A. (69)

24

Now the design of a 2-cell is given in Figure 2.b of [11]. We

get then :
T o * by + 2y]. (70)
A=§0+6+61. (71)
Thus the permutation network on m bits has
cost = m 1og2(m) (Y0+4y+2y1). (72)
delay =~ 2 1og2(m) (60+6+6]). (73)

To this we must add the cost and delay of the control algorithm.

(4) The enabler on m bits.

As an OR-gate of fan-in m can be built with m-1 OR-gates of fan-in

2 in rlogz(mil stages, it has :

cost m'y+(m—l)y1 ~ m(y+yl). (74)
e o oyl o ~ o0
dela 8§+ logz(m) § = logz(m)é . (75)

Now we can give the respective costs and delays of the designs

described in Sections 2 and 3.

A, CULM's

(1) The direct design. It contains one n to 2" address decoder and m copies

of an enabler on 2" bits. By (52), (53), (74) and (75), an n to m CULM has :

cost ((m+2)2n'—4)y+m(2n—-])Y1+nY0 ~ m2 (y+y D). (76)

25

delay n(5+6])+60 ~ n(s+61). (77)

Note that the control inputs have only the delay of the enabler,

that is :

§ + 5 (78)

(2) The expanded design. Let us consider the design of Figure 10 in the binary

case. Suppose that the t to m and the n to m2t CULM's used in this design are

built with the direct design. By (76), we get the following cost :

n+t

(@™ 2 By o gy

n+t

+ m(2t+n-1)f+®+thk)% m2 (Y+Y])- (79)

Now if we apply (76) for a n+t to m CULM, we get the following °

cost of the direct design - cost of the expanded one

n+t+l_ n+l

= 2" 2" ema®yy, (80)

which is relatively small in relation to the total cost. This quantity is

positive if and only if we have :

215 %1) > uzb-2, (81)
which is true whenever :

m < 22"%-1) (82)

26

For substitution network, we have m=n+t and (80) becomes :

+
m+1 m+ 1

@™ 44 - - (2+#m)2%)y (83)

2

By calculating the first and second derivatives of this formula
with respect of x=2t, we see that for a comstant m, (83) reaches its maximum

for

E %(m+] - log, (2+m)) (84)

Thus the expanded network has lowest cost for this value of t, but
it is asymptotically equivalent to the cost of the direct design.
We will now look at the delay of the expanded design.
a) control input signals : enabler on 2" bits, enabler on ke bits
b) n first input signals : n to 9% address decoder, enabler on i bits,
enabler on 2t bits
c) t last input signals : t to gt address decoder, enabler on 2t bits.

Using (53) and (75), we get the following three respective delays

B o Caed)Be (85)
(n+1)8 + (n+t)s' + 5 (86)
and ts§ + tﬁl + 60. (87)
Clearly (86) is larger than (85). Moreover (87) is larger than
(86) if and only if
& = t'ﬁ'] 5, (88)

which requires that t > n+l,

27

By (77), the direct design has delay :

(n+t)§ + (n+t)(SI + 8 (89)

0’

which is larger than (87) and equal to (86) for t=1, but larger than it other-
wise.

Thus the expanded design is cheaper in terms of delay.

B. Total substitution networks of size n.

(1) The classical direct desigg. It is built with one n to 2% address deco-

. o, ., n
der, one permutation network on 2 bits and one 2 to n address encoder.

Using (52),(53),(63),(65),(68),(69),(70) and (71), we obtain the following

cost 2n+1(2n—1)y+2n(2n—])Y]+(2n(n—l)+n+])Y0 ~ n2n(4Y+2Y1+YO) (90)
delay (3n—2)(a+a’)+2n50 ~ n(36+ 36]+260) (91)

To these figures must yet be added the cost and delay of the control
algorithm of the permutation network. We see also that this design has more

than twice the cost and delay than the design of a CULM.

(2) The expanded design. We will only give an approximation for its cost and

delay. Consider the design of Figure 13. By Stirling's formula, we can

consider that for any integer m we have

m

Log, ((2")1) ~ 2™og, (2") = m2 (92)

Hence we can consider that in Figure 13 for k=2 we have :

28

n
u = n.2

Q

and v t.2

We get the following approximative costs for the components

C : cost = n.2n+t(Y+Y]),

delay =~ t(6+61),

C : cost = t.2n+t(Y+Yl),

delay =~ n(6+61),

¢

S, : cost t.2t(Ay+AIyl+AOYO),

. 1.1
delay = t(ud+p 6 +u060),

S : cost = n2n(Ay+AlY]+AOYO),

Q

11
delay n(uy+u v +u050)a

where we have inaccordance to (76),(77),(90),(91)

'S A &G,
1<l <o,
0< 2, <1,
I <u <3,
1 <! <3,
and 0 <y, <2,

since we suppose that the design of Sn and St may be anything having cost

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(100)

(101)

(102)

(103)
(104)
(105)
(106)
(107)

(108)

and delay between those of a CULM and those of the classical direct design.

We get then the following :

29

cost ® (2n+t)2n+t(y+yl)+(2n2n+t2t)(AY+A]Y]+A (109)

o¥o’

delay =~ (2t+n) (§+81)+(2n+t) (uo+u' 6 +n (110)

08¢

This design is more expensive than the CULM in terms of cost and
delay. It has higher delay than the classical direct design, but its cost

may be lower given a suitable choice of n and t.

(3) Recursive iteration of the three stage decomposition with n=1.

We suppose that we build for every integer m > 0 the total substitu-
tion network S(m) defined recursively as follows :
- S(1) is the modulo 2 adder of fan—in 2
- For m > 1, S(m) is obtained from S(m-1) and S(1) by the three stage
design as shown in Figure 14 for m=3,

Let k(m) be the number of control inputs of S(m). We have :

k(1) =1 (111)
and for m > 1 :

e 1

k@m) = 2™ + 2c(@m-1) + 2™, (112)

wvhere each summand is equal to the number of control inputs of C, C' and C"
(cfr. Figure 14). By induction, we obtain

c(m) = m2® - @1 (113)
which is also the cost of the Benes network in 2-cells (see [11]). This is
no coincidence, since the construction of S(m) corresponds to the construc—
tion of the Benes network for permutation networks.

Let Y, and 62 be respectively the cost and delay of the modulo 2

adder.

30

Now for m ~ | the design of S(m) contains the following components

(see Figure 14)

Two modulo 2 adders of

Two m—1

One copy of Sm—

cost : Y 2

delay : §
to 1 CULM's of

cost : (32" '-4)y+ (2" =Dy e -y,

delay 1 (m—l)(6+61)+60

1

One |1 to k(m—1) CULM of

cost : 2k(m-1)y+ K(m‘J)Y]+YO

delay : § + § + §

Let us write I'(m) and A(m) for the cost and delay of S(m). We

have thus :

(1)
AC1)

Il
-
[\

]
O

and for m > 1

T'(m)

I}

2Y2+2(3X2m_l—4)y+2(2m_1—1)Y1+2(m—])YO+F(m-])+2K(m—1)y+x(m—l)y

m—l_zm-Z)Yl+(2111+1_{_2m_8_|_(m_l)2

r(m-1)+2yz+(2m—1)Y0+(2m—2+(m—1)2

1]

P (m=1)+2y,+ (2mm 1)y g+ ((2mr 1) 2% 2-2)y L ((2me3) 2™)y

By induction we get for every m = |

(114)

(115)
(116)

(117)

(118)

(119)

(120)

(121)

1
+YO
m . m—1

-2

(122)

)Y

31

cost T'(m) = (2m—])y2+(m2—])y0

(211 =g 1)1)y

+

((2m+1)2"™-8 (m-1)-6)y

+

m2% (v 42+) (123)

Q

Now we have form > 1 :

A (m) 262+2(m—1)(6+61)+260+A(m—1)+6+61+6

0

Il

1
A 1 ¥26,+28 Hm(8+8°) (124)

2

By induction, this gives :

delay A(m) = (2m=1)8,+3(m-1)6 + m&%:ll (s+61) ~ m2(s+8)) (125)

In order to make the final approximation, we used the fact that Yo
and 62 are of the same order respectively as (Y+Yl) and (G+6]). This follows
from (50),(51) and from the design of a modulo 2 adder using the 3 conven-
tional gates shown in Figure 21.

We see that the cost of Sm is comparable (less than twice) to the
cost of a CULM. However its delay is extremely high : it is in m2 instead

of m.

Conclusion. CULM's are the easiest and cheapest way to generate all substitu-
tions of size n, However, they cannot be properly considered as substitution
networks. For total substitution networks, the classical direct design has
lowest delay and highest cost, while the design S(n) has lowest cost and very

high delay.

32

V. Variable dependency in substitutions

; : r n n ; ; :
Consider a substitution £ : K = K. The domain of £ is written

with variables x . We wish to describe

1

the dependency relations between the variables ' and xj (i,5 € {0,1,¢0s,n—11),

00ttt ¥ and the image with Yoseres¥ -

Suppose that we transform a plaintext Xpo oo esX into a cyphertext

n-—1

SATERRRS AN and that for some 1 € {0,...,n-1} there is a relatively small

number t such that

vy, = g(x, ARER S) (126)

with jO,...,jt_1 € {0,1,...,n-1}, Then given several samples of plaintexts,

it is relatively easy to find the relation between v and the plaintext
variables. To avoid this situation, it is good to require that the variable

T depends of all the variables XyreeesX

n—1

Let us make the following four definitioms :

Let y be a function of n variables KpsXpseeasX | 8 ¥ = y(xo,...,

Xn—l)' Then :

(i) The strong dependency rate D(yfxi) of y on X (0 1is<n-1) is 1/|K|n-1
times the number of (n—1)-tuples (XO"'"Xi—l’xi+1""’xn—1) such that for
any a, a' €K, a # a' implies that g(xo,...,xi_],a,xi+1,...,xn_l) #

).

1
g(xo"' . ,Xi"l’a sxi+]!' .. 9Xn_]

(ii) The weak dependency rate d(y/x;) of y on x, (0 < i <n-1) is 1/|x|™!
times the number of (n—1)-tuples (XO""’Xi—l’xi+]""’xn—1) such that there

D

. ' .
exist some a, a' € K with g(XO"'"Xi~15a’xi+]""’xn—

33

(iii) y is strongly dependent on X, if D(y/xi) # 0.

(iv) y is weakly dependent on Xs if d(y/xi) # 0.

We can make the following immediate remarks :

(a) 0 < D(y/xi) < d(y/xp) <1 (127)
(b) (iii) implies (iv) (by (a)).
(c) When IK[= 2, the weak dependency rate is equal to the strong

dependency rate. In this case we will speak of dependency rate and

dependency.

In [4], the authors define dependency in the binary case and define

a number relatively similar to the dependency rate (see the number Qi . on
b

page 751 of [4]).

Consider again the substitution f defined above. Generalizing [4],

we will say that f is weakly complete if every Vs is weakly dependent on Xy

and strongly complete if every yj is strongly dependent on X, In the binary

case, we will say that f is complete.
Let us make a few remarks :

(a) If f is affine (with K equal to a field) and if we write
yi= Loox o+ £ (350,150,000, (128)

where det (fij) # 0, then for any i,j € {0,1,...,n-1} we have either :

Il
—

(1) fij#o and d(yj/xi) D(yj/xi) (129)

1}
o

(ii) fij=0 and d(yj/xi) D(yj/xi) (130)

34

(b) It follows that if f is affine, then f is complete if and only if fij%O
for all i,7 € {0,1,...,n-1}. As det(fij)%O, this is impossible if |K| =2

and n & 2 (this is Theorem 4 of [4]).

(c) If K=GF(2) and d(yj/xi)=], then yj is linear in X, . It follows from (b)

that if K=GF(2) and d(yj/xi)=l for any i,j € {0,1,...,n-1}, then n=I.

Now let m and n be two positive integers and consider m substitution

networks SO""’Sm-l on n bits realizing the substitutions f ' 5 respec—

0" m-1

tively, and n substitution networks Tn.,...,T

n—] onm bits realizing the subs-

titutions Bpstr a8 respectively. Connect them as in Figure 16, i.e.

1

connect the output j of Si (j=04+¢.,n-1; i=0,,..,m~1) to the input i of Tj.

Consider the resulting network N and the substitution h that it realizes.
We now make the following convention : Given a substitution

Y ¢ (50""’Eu~1) o (CO,---,cu_l), we will write DY(j/i) for D(cj/Ei)-

Now for any s,i € {0,1,...,m~1} and r,j € {0,1,...,n-1}, we have :

Dh(rm+s/in+j) = Df.(r/j).Dg (s/1i) (131)
i r
Indeed, suppose that the input signal in+j of N runs over K and

that the other input signals of N remain fixed. Then the output signals of
the networks Si' (i'#i) remain fixed. It follows that the input signals i’
(1'#1) of Tr are fixed. Therefore the output signal rm+s of N runs over K if
and only if : (1) the input signal i of Tr (i.e. the output signal r of Si)
runs over K;

(2) the input signals i' (i'#i) of Tr form a (m-1)-tuple having
the property described in definition (i);

(3) the input signals j' (j'#j) of Si form a (n-1)-tuple having

that same property.

35

: A : =1 ;
The number of choices of (m-1)-tuples in (2) 1is [K|m Dg (s/1).
r
Given a fixed choice for such a (m-1)-tuple, then the output signal

r of each Si' (i'#1i) will be fixed. Hence there will be IK[n"1 choices for

the input signals of Si' for each such i'.

Finally, the number of choices of (n-1)-tuples in (3) is |K|n_1
Df, (r/J)‘
i
Thus the total number of choices of (mn-1)-tuples of input signals

in +j will be

|K|m_]-Dg (S/l). (IK|n~l)m—1.

r

k"o, (/)
1

_ nm-—1 . ;
= |K| Dy (£/3).D, (s/i)

1 r

By definition of Dh (rm+s/in+j), (131) follows.

This result is illustrated in Figure 22 for m=n=4, i=2, j=3, r=0,
Let us give some applications of this result :
First suppose that all Si's are equal to a substitution network S

realizing £ and that all Tj's are equal to a substitution network T realizing

g. Then the network becomes S x T and formula (131) becomes :
Dh(rm+s/in+j) = Df(r/j).Dg(s/i) (132)
Now for any substitution y of length u, we put

DY = min{DY(J'/i)|i,j € {0,1,..., -1}} (133)

36

DY is called the strong dependency rate of y. It is easy to see

that (132) implies the following :
D (134)

Now, for a substitution y, y is strongly complete if and only if
DY#O. Thus (134) implies that if f and g are strongly complete, then h is.

Applying this to the network (47), we get Theorems | and 2 of [4].

This property justifies the interest of the operation x.

Examples of complete substitutions are given in [4] for the binary
case. For |K| > 2, if |K| is a prime power g, then we can take K = GF(q),
the field of q elements. Then an affine substitution whose matrix has only
non-zero entries (see (128)) is strongly complete. If A = |K| is not a prime
power, then we can try to take a substitution of type (128) over the ring Zk
of integers modulo A, and the condition for f to be a substitution is that
det(fij) has an inverse in ZA for multiplication. Here (129) and (130)
become :

(1) If fij = 0, then d(yj/xi)=D(yj/xi)=0 (135)

(ii) 1f fij#O but fij has no inverse in Z,, then d(yj/xi)=l

Al
and D(yj/xi)=0 (136)

(1ii) If fij has an inverse in Z then d(yj/xi)=D(yj/xi)=l (137)

A’
Thus one can try to find a matrix with inversible determinant whose
entries are also inversible.
Another method is to decompose A in factors. Suppose that A =ll.A

2

and take K, and K2 of respective size A] and A,. Then there is a bijection :

37

$: K>K xK, : y~> (v',y" (138)

Now we define the natural bijection :

n s} n
v (KpxKy)© > K XK,

((y;l_l sy;_]), ey (y&:ys)) 3 ((Ylll"“l R :Y(')) ’ (Y;_] e ,YB) (139)

Now given two substitutions fl : K? -> K? and f2 : Kg - Kg, then let

(fl’fz) be the corresponding substitution of K? X Kg :

(£,£):(g"5g™ + (' £,5" £,) (140)

Then we can define a substitution f : K" - K" by :

£ g (£,E) .9 g™ (141)
We write then :
£ = (£,£)), (142)
It is easily checked that for any i,j € {0,...,n-1} we have :
Df(i/j) = Dfl(i/j)'Df (i/3) (143)

2

Thus, if both f, and f, are strongly complete, then f is.

2

Note that strongly complete substitutions of large size can be

built with the product operation x, because of (132).

38

Appendix A

Changes in size or in alphabet.

We can suppose that in order to encypher a plaintext
of length n in a given alphabet K, we get a cyphertext of larger length
]

n', or in a larger alphabet K', or both.

We can thus define a pseudo—substitution as an

injection
T
£: K+, (144)

1
where [K']n > |g|™ . (145)

(An injection is a map such that two distinct element of the domain have
distinct images).

Note that if both K and K' can be expressed as powers
of a set KO’ then the problem reduces to a change in length,

Suppose that we write in the binary alphabet K= {0,1}.
Typing characters can be represented as elements of K7. So a usual text
of length n will be written as a text of length 7n in K.

Suppose that we want to make a pseudo substitution

f:K7n > Kmn’ with m> 7. One idea is to divide the text in n blocks in K7

and to apply to the ith block (i=0,...,n-1) a pseudosubstitution fi i K7 1)
and to take the combination of all these pseudosubstitutions. Afterward,
we can apply to the resulting text a substitution of length mn. Let us
give an example.
Take m=7+d. Suppose that there is some number u such

that for any typographical sign ¥ , the relative frequency ¢(*) of %

satisfies the following approximation :

39

$(¥) ¥ A(®)/u for some A €{0,...,29-1} ,

Then we can take fi to be :

fi : (x6,...,x0) - (x6,...,x0, yd_l,...,yo) 5 (146)

where for (x6,...,x0) corresponding to * ,
[yd_l,---,yol = v (mod ¢(%)) , (147)
where (x6,...,x0) appears for the vth time, (starting with v=0). (148)

We take the following example with n=30 and d=2. We
restrict ourselves to texts in capital Latin letters and normal punctuation
signs like , 3 .+ ?2 ! () etc... (Then we can of course take K6 instead of
K’

We take the following text of length 30 (blanks included) :

DRINK MORE BEER IN THE SUMMER . (149)

We take the following values for A(%)

3 for blank, E,T,0,A,N.
2 for I,R,S,H,D.
| for L,C,F,M,U,P.

0 for the rest (150)

We get then the following text written in K9 instead

of K7, where we write % for (%,1i)
i

40

DRINK MORE BEER IN THE SUMMER . (152)
000000001010120211300300000010

Afterwards we can apply to this text any substitution
180
This idea can be applied to any number A instead of 7.

Thus, for any alphabets K,L, for any integers A,u,n such that ,

k| < |L|¥ (152)

un

; : A s ; :
a pseudosubstitution K L) can be built in the following way. Take n

pseudosubstitutions :

£, K > LM (i=0, . ..,n~1) (153)
and a substitution
g Lun > Lun
Then the map
(g VU ..o VE g (154)

is a pseudosubsitution Kln o LRE (Here U is the operation which consists
in setting two substitutions in parallel on two neighbouring blocks of bits).
This contruction is illustrated in Figure 23 for A=3,
u=4 and n=5.
This construction sets the pattern for any possible
pseudosubstitution. Take any alphabets K,L and any positive integers n,m

such that |K|n < |L|™. If we write

(155)

and

=]
]
OEI
+
+
T

41

where k = 2, ni#O#mi for i=0,...,k-1 and :

K| *< |n]| * for i=0,..<,k=1, (156)

then we can take k arbitrary substitutions

Byooomj
f, :R*>1L (i=0,...,k-1) . (157)

It is easy to see then that every pseudosubstitution

£:K" + L™ can be expressed as

f=(f,V...0f)D&, (158)

0
where g is a substitution L™ - L™, It is sufficient to define

-1
¥e = Z(fo W s sl fk—l) f (159)

when y is in the image of fo U,..U f , and to complete g in an arbitrary

k-1

bijective way for other values of y.

It may be interesting to choose f in such a way that

the image of f forms an error—correcting code for the distance.

42

Appendix B.

The three stage design, the DES and non automomous FSR's.

Consider the three stage design when |K|= 2 and t=n.
If we draw a double line for a set of n connections, then Figure 13 is
equivalent to Figure 24 It contains three stages of the network shown in
Figure 25.

Now if we replace Sn by a bit by bit modulo 2 adder,
which is a non-total substitution network, then we get (up to a left-right
symmetry) the basic transformation used in the DES algorithm [6] .

This fact was first remarked by M. Davio.

Now a sequence of transformations of type 25 can be
obtained by a non autonomous feedback shift register on GF(Zn). Indeed,
GF(ZH) can be identified with K". Then the nonautonomous feedback shift
register shown in Figure 26 performs at each chock pulse the transformation
of Figure 25,

It is known that feedback shift registers can be used
to generate pseudorandom sequences. This indicates a possible reason for

the use of transformations like the one of Figure 25.

Acknowledgement. The author is endebted to M. Davio for useful suggestions

and to J.-M. Goethals for references.

[3]

[6]

[7]

43

REFERENCES.

S. Andresen, ''The Looping Algorithm Extended to Base gt Rearrangeable
Switching Networks", IEEE Trans. on Communications, vol. COM-25, n°l0,

1057-1063, 1977.

H. Feistel, 'Cryptographs and Computer Privacy', Sci. Amer., pp. 15-23,

May 1973.

H. Feistel, W. A. Notz, J. L. Smith, "Some Cryptographic Techniques for
Machine-to-Machine Data Communications', Proc. IEEE, vol. 63, n°ll,

1545-1554, 1975,

J. B. Kam, G. I. Davida, '"Structured Design of Substitution-Permutation
Encryption Networks', IEEE Trans. on Computers, vol. C-28, n°l0,

747-753, 1979.

A. G. Konheim, "Cryptographic Methods for Data Protection", in "Informa-
tion Linkage between Applied Mathematics and Industry', ed. Peter C. C.

Wang, Academic Press, pp. 137-157, 1979,

R. Morris, N. J. A. Sloane, D. A. Wyner, ''Assessment of the National
Bureau of Standards Proposed Federal Data Encryption Standard",

Cryptologia, vol. 1, 281-306, 1977.

V. I. Neimann, "Structure et Commande Optimales de Réseaux de Connexion

sans Blocage'", Annales des Tél&communications, 232-238, 1969.

H. R. Ramanujam, ''Decomposition of Permutation Networks",IEEE Trans. on

Computers, vol. C-22, n°7, 639-643, 1973.

[9]

b4

N. T. Tsao-Wu, "On Neisman's Algorithm for the Control of Rearrangeable
Switching Networks', IEEE Trans. on Communications, vol. COM-22, n°6,

737-742, 1974,

[10] A. Waksman, "A permutation network'", J.A.C.M., vol. 15, 159-163, 340,

[11]

[12]

[13]

[14]

1968,

C. Ronse, '"Cellular Permutation Networks : A Survey', Report R415,

MBLE Research Laboratory, December 1979.

M. Davio, J.P. Deschamps, A. Thayse, "Discrete and switching functions',

McGraw-Hill, 1978.

N. T. Tsao-Wu, D.C. Opferman, '"On Permutation Algorithms for Rearran-
geable Switching Networks', IEEE Int. Conf. Comm., Conf. Records,

pp. 10/29-10/34, 1969.

D. C. Opferman, N. T. Tsao—Wu, "On a Class of Rearrangeable Switching
Networks. Part I : Control Algorithm', Bell System Tech. J., vol. 50,

n° 5, 1579-1600, 1971.

plaintext

Io In--1
-
<— Cy
y ; key
*'I—Ck-1
"
OO OnJ

cyphertext

Figure 1.

Figure 2.

A 3 to 8 address

11 i

Xl X

N o
Lo

] 1
X X
N N

1
X
N

11
X
N

decoder.

\/0 e

Vg ——il}
Vig ==}
Vi, ey
Vg ——&
Vg —8

Vg —>

Figure 3.

An 8 to 3 address

— V1
= V2

:VA

encoder.

V Vg ¥V Vs V Wy
V g V Vg V Wy

V V5 V Vg V Vg

P

partial
permutation

network

Figure 4.

A substitution network of size 3.

"WINY W 03 U uy

"G 24nb L4

sindino

|mug Lk 0«

F 1 e 11 "7

rtcN _‘ O _‘ICN —. O wlcN _. O
(-wj (-w)® (i-w)® 07 B B ®F e P

% o
sindyl (OIjUed

"WIND € 03 Z ¥ 9 ddnbLyg

L LK 0K

r

£ c L 0 £ c l 0 l | 0
PR PR R PP P P o

3> S)QJ

, n tom -

> i
CBO) c()\m——ﬂ

> —> Ym

ntot -
— _"ym+’t—1

T(m) T(rn+’t—1)
Co Ca"1
Figure 7.

An n to (m+t) CULM.

o
3> \
o
g
o -
e B W W

Figure 8.

An enabler on 4 bits.

n e 2" m
address enablers
decoder on 2A”bi’rs

|~ am—

1 —3> 2“_1 '

P
Y

(0)
Ch C

(m-1)
2"-1

t
enablers

on 2 bits
f_""hﬁ

—— ———s Y

Ig;) : (T:(Qn;‘]th -1)

m+t-1

Figure 9.

An n to (m+t) CULM in the binary case.

A

(0,0)—> > (0,0) - >(0,0)
B 2

(0,1)— (1,0) —(0,1)

(1,0)— (2,0) L >(1,0)
B 3

k= (0,1) | L_{1.1)

(2,0)— (1.1) | >(2,0)
B B

(2,9 — - (2.1) y .42 %

A

Figure 11. The Clos Network BxxA

Xn — . ZO
: . b ,
Kpat-1 =" (m-1F—> €m-
¢l S
A A
Yo Y- (mAt-1)
‘e Ckn-1
n to mA ,
CBO)
X0 Xn -1
Figure 10.

An (n+t) to m CULM.

———il} * Yin-1
u-1
Xn4 A A
T : U—1 CO
0 —
% i C jt-1
t-1
’ A
& E : yn
Xn :
' : g yn+t-1
l &
xn+t—1 Figure 12.

*34OMIBU UOLIN3LEISGNS |e303 © jo ubisap abels s34y3 3yl

"1 aanbL4

LG)MBoL] <a [(i()BoL) <
- UL e , "
“ } : NJ “ .
UA < L-A <
, il ¥
=Ny —f 17} 0] Oo9—fiA PNy 17} .
} u
oL I |2
02 —{-n 0 e =" < 51 0
: .. S s
y _
L=ug L-n 0 le e L-n
-1 Bl: ¢ | A
o%All., B —O—

“$T d4nb L4

Jappp 7 ojnhpow =

A%
L 2
7 Fvn
\ 4
" 5| H
: A A \ |
A < 2
| 4 ol
o - :
=2 7T 3 | =
o S ” ‘
00 —> o.u
2
oN OX
y &«4
T

*7 9ZLS JO %40MJ3U UOLINILISGNS [e303 ¥ “GT adnbLd

Figure 17.

10
"
12
13
14
15

1v3v5v7

2v3vByv7

Lv5vBv7

Sv1vi13v 15

10v11v14v15

12v13v14v15*

o

8vIiviovnN

)

Figure 18.

A 16 to 4 address encoder

*A8POJUS SS3JUPPR ¢ 03 9T Y 61 o94nbLq

(=

(T

4

€< @
S

A q
€

| < N
|

Z

|

© &= (N M ¢ I @ [~ @®

Gl
71
€l
Zl
Ll
Ol

(@)

-

L7

Figure 21.

A modulo 2 adder.

X® Y

"ABpPOJUD SSBJppPe § 03 9T Y Q2 d4hbL4

i
¥

- \~
< m_>£>m_>w_/m

I
~

™
-

N
-—

o
<

(-
—

@)

\..
A AB A
Am—>.w_.>m_.>m—>_._.>o_.>m>w Ll Op\mrw
3 sre<_ |
\\\ﬂ\
SLAZLALLAOLNY ARG
r AII
A AGAGIALAGAG AT .\.>o>m>m/ﬁ' GAY _
EAT
<
SLAZLALLAQLALAQAEAT
A
GIAEIALLAG SLAEL
LLAB
LAS
<L
SLAETATIAGALAGAE AT , ey el =

|

© -« VM9 I @~ ®

"22 s4nb Ly

Y,

A

S —
P==S €
al—
Y
@k —

%
m|
wll
N.Il
9= F
m —)@u
._N p—
=3 (1/5) %0, I
g~ 0
sl 2
O U

D wit— 5
: — 7l
5 |b-u
X .
1
N —0
_ —6
(7t M<ll—g
il i
&J —
—%
| % | f—— ..N
e >
0 -
YR | S
x | —

Xg —> "
Ky = fo y,
Xy —> "
—
X4 b
W
Xg —> b
»: —j 2 0
. L
)
" f e
Xio—= 13 Y.,
o —*Y15
="hs
- =
Rig ~=% fA Vg
Xuf——)

23,

n=95

Figure 24.

>
=<

I
=
[1X

Figure 25.

clock

1<

92

LIE,

A

uO Un_1

Figure 26.

