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Abstract

This report is the first one in a general study of binary
images digitized on a square grid. We investigate here problems like
the choice of a grid, its isotropy, distances, connected components,

simple closed paths, borders, edges, the concept of surrounding,

etcCiss



FOREWORD

"Digital processing of binary images on a square grid" is a gene-
ral study, with both theoretical and practical aspects, of two—tone (i.e.
black and white) graphical and alpha-numerical data (like engineering
drawings) which are digitized on a square grid through a raster scan.

It will be issued in several reports, numbered from I to VII.
We give here the subdivision of that work.
Reports I, II, III : Part I : Topological and geometrical features.
I : Chapter I : Elementary topology and geometry
IT : Chapter II : The skeletonization of a figure
ITT : Chapter III: The extraction of geometrical and topological features

of a figure.

Reports IV, V, VI : Part II : Coding and noise cleaning
There are mainly 3 topics

- Run-Length Coding

- Vector Coding and Element Coding

- Noise Cleaning

VII : Part III : Applications
- Optical Character Recognition
- Digital processing of engineering drawings
- Cybernetics

- Biomedical applications

Important note : In order to simplify the reading of this report, the

proofs of the results are presented in the appendixes.



Erratum

Page 1.36 : Theorem 3
Delete point (iv) and replace it by the following
(iv) Consider configurations of the following form up to a rotation :

(a) =xypVy
0 0 where p,p' € P

L

1 P

(b) q vy
where q,q"' € P and k=8

x q'

Then in (a), one of {XO,XIF\P and {yo,y]?\P is in I(P) and the

other is in O0(P), and the same holds in (b) for x and y.
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Basic definitions and notations

The following concepts will often be used in one work. We give

here their definition and their abbrevation.

.Tessellation : Decomposition of the Euclidean plane into isometric polygons.

If these polygons have n sides, then one speaks of an n-tessellation or an

n—-gonal tessellation. If these polygons are regular, then the tessella-

tion is regular. There are only three regular tessellations : the triangu-
lar, square and hexagonal omnes.

.World : It is the Euclidean plane which contains the objects which must be

represented on a grid, the world objects. World points have real coordi-

nates (X,y), which are called the world coordinates; the x—axis is oriented

towards the bottom and the y—axis is oriented towards the right.

.Grid : A simply connected portion of the plane (usually a rectangle or the
whole plane) decomposed by a regular tessellation. The grid is identified
with the set of polygons of that tessellation.

.Pel : Also called pixel (a contraction of "picture element"). This word
designates a polygon in the tessellation of the grid. As said above, the
grid is identified with the set of its pels. Each pel can be assigned two

coordinates, its grid coordinates.

.Square grid : Grid arising from a square tessellation. Its pels can be
grouped in rows and columns. The rows are counted from top to bottom, and
the columns from left to right. The pel at the intersection of row i and
column j has grid coordinates (i,j). It is practical to suppose that the
center of the pel with grid coordinates (i,j) has world coordinates (i,j).

There are two types of square grids

- the finite square grid, which covers a rectangle. We will write

M for the number of rows and N for the number of columns. The rows are

numbered 0,...,M-1, and the columns 0,...,N-1,
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- the infinite square grid, which covers the whole plane. The

rows and columns are numbered by rational integers.

Grid topology : On a grid G we define a symmetrical and non reflexive

relation ~; for two pels p and p' such that p ~ p', we say that p and p'’

are neighbours or adjacent; the relation ~ is called the neighbourhood or

adjacency relation. There are two choices for the adjacency relation,

which coincide in the case of the hexagonal grid
1°) p~p' iff p # p' and p and p' have an edge in common
2°) p~ p' iff p # p' and p and p' have an edge or a vertex in common.

In the first case, we speak of the restricted adjacency, in the

second one of the extended adjacency (or meighbourhood).

The restricted and extended adjacency relations are characterized
by the number k of pels adjacent to a given pel p. The adjacency relation

is then called the k-adjacency relation.

The ordered pair (G,™) is called the grid topology.

. Dual Grid : Given a grid G, let G* be the set of centers of the pels of
G. For any v, v' € G' corresponding to p, p' € G, join v and v' by a
straight segment if v ~ v', Then the resulting configuration is called
the dual grid.

When ~ is the restricted adjacency relation, the dual grid forms

a tessellation, the dual tessellation of G.

The dual grid can be considered as a graph.

. Grid Representation : It is the function which associates a grid object

(i.e. a set of pels) to a world object (i.e. a figure on the real plane).
It is a 2-dimensional digitization. The pels in the grid object are coded
as black (or 1), and the remaining pels are coded as white (or 0).

. Raster scan : It is the operation by which a two-tone sheet of paper is

digitized on a memory. It is the physical correspondent of the grid repre-

sentation.
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. Figure : The set of black pels on a grid.

. Background : The set of white pels on a grid.

. Frame : On a finite grid it is the set of pels which are on the edge of
the grid. For example in a square grid with M rows and N columns, it
contains the pels having grid coordinates (i,j), where i=0 or M-1, or j=0
or N-1.

. Frame assumption (FA) : It states the following :

- For a finite grid, that the frame is contained in the background
- For an infinite grid, that the figure is finite.

Restricted frame assumption (RFA) : It states that either the image or

its complementary (interverting the figure and the background) satisfies
the frame assumption.

. Run length code (RLC) : Given a figure F, one scans the intersection of F

with each row (or column) in increasing order. On each row i, there is a
succession of black and white runs of pels. A RLC codes F by coding the
lengths of successive black and white runs on each successive row (or
column). When it scans the rows, it is a horizontal RLC (HRLC); when it
scans the columns, it is a vertical RLC (VRLC).

+ Black run coding (BRC) : It is similar to RLC, but instead of coding the

length of the runs, it codes the position of the first and last pel on
each black run. It can be horizontal or vertical (HBRC and VEBRC).

. White run coding (WRC) : The same as above, but one considers white

runs instead of black runs (It can be a HWRC or a VWRC).

. Vector coding (VC) : This type of coding does not code exactly a figure,

but an approximation of it, which depends on some parameters. It is deri-
ved from the BRC and so it can be horizontal or vertical (HVC and VVC),

In HVC, the figure is described as a union of world trapezes having bases




of the form [ (10,30),(10,11) ] and [ (11’32)’(1]’33) 1, where [JO:J] I is
a black run on row iO and [j2,j3 ] is a black run on row i]. The approxi-
mation of the figure can then be reconstructed by a grid representation.

. Bidirectional vector coding (BVC) : It is a combination of HVC and VVC.

It uses HVC for the parts of the figure which are relatively vertical,
VVC for those which are relatively horizontal, and any of the two for

other parts of the figure.



PART T : TOPOLOGICAL AND GEOMETRICAL FEATURES
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Introduction

There is a wealth of scattered litterature on digital two-—tone
images. Most papers are concerned either with facsimile, telecopy and
data compression, or with methods for the extraction of some geometrical
and topological features (in relation to character recognition). A few
papers [1,5,7,8,9,10 ] deal with the processing of engineering drawings.

In particular, [1,5,7,8 ] treat the interpretation and editing of handsket-
ched engineering drawings. There are a few theoretical studies of the
square grid (see chapter 9 of [12 ] and [6,11,13 ] for example).

A deep theoretical study of grid images is needed in order to lay
the concepts, algorithms and techniques used in that field on a firm base.
It can also help engineers to solve practical problems, like the proces-
sing of engineering drawings.

In this way, the problems can be divided in two types :

(i) What are the topological and geometrical features to be considered ?
How must they be defined ? How can they be extracted ?

(ii) How to encode and decode the informations contained in a grid
picture ? How to minimize or correct the transmission errors ?

These two types of problems are studied in Parts I and II respec-

tively of '"Digital processing of binary images on a square grid".

It is necessary, when speaking about features, to specify in
which sense they are to be considered. We will use here some concepts

introduced in [3 ]. Features (or attributes) can be divided in three

types :
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- Physical features : Those which exist on the grid image. For example,

there is no physical closure at the top of the letter 0 displayed in
Figure 0-1 (which is similar to a facsimile output enlarged 40 times).

- Perceptual features : Those which are visible to the human eye. This

supposes that the grid image represents a raster image having a known
resolution (for example 8 pels per mm). For example the opening at the
top of Figure 0-1 is not visible in the normal scale. So there is a per-
ceptual closure there.

- Functional features : Those which are perceived by the mind because

of the context. For example, consider Figure 0-2. It represents a hand-
sketched logical circuit. It is visible to the human eye that the inter-
connections are not formed with straight segments. However one understands
that they represent straight segments. So the straightness of these seg-
ments is a functional feature.

Examples of perceptual and functional attributes are given in
[2,3,4,14 ], As noted in these papers, functional attributes depend on
what we call :

- The "alphabetic context'. Suppose that we have a set of objects (an

"alphabet'"). Then an object can be recognized not only by its own proper-
ties, but by what distinguishes it from the other objects of the set. Let
us give two examples

(i) If we take as set the Roman alphabet from which we delete the letter
Q, then if one writes Q, it will be recognized as 0. Conversely, if we
take as set the Roman alphabet from which we delete the letter 0, then if
one writes 0, it will be recognized as Q. Thus the absence or presence of

the dash which distinguishes 0 from Q will be functionally irrelevant.
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(ii) If we take as set of objects the set of horizontal or vertical lines,
then a line making an angle of 5° with the horizontal will be recognized

as horizontal.

- The "syntactic" context. Objects are recognized by their syntactic

relations with other objects. TFor example, the symbol 0 will be read as
the letter '"Oh" when placed among letters, and as the numerals "zero'" when
placed among numerals. Other examples are found in [3, 14 ]. We reprint
them in Figure 0-3.

In facsimile, telecopy, photocopy and digital reproduction of art
graphics, only perceptual attributes must be taken in account.

In the processing and editing of handsketched engineering drawings,
functional features must be extracted, and they are replaced by the corres-
ponding physical features when editing the result.

It must be stressed that there exists no ''absolute'" physical
attributes in the physical world. No machine can draw an "absolutely"
straight line.

We will show in Part II that the vector coding method of [ 9,10 ]
is sufficiently supple for allowing diverse interpretations of functional
features of grid pictures.

This work (Part I) is divided in three chapters.

In Chapter I, we study elementary topological and geometrical
features of grid images. These features are physical, not functional.

In Chapter II, we study the problem of "line thinning'", in other
word of the extraction of the skeleton.

In Chapter III, we study other features of grid images, in parti-

cular functional features.
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Chapter I. Elementary topology and geometry

§ I. The digitization on a grid and its isotropy

A. What is a grid ?

The raster scan is the operation by which a two-tone image on a
sheet of paper is digitized. The surface of that sheet is then divided in

picture elements (also called pels or pixels) which form a regular geometric

pattern, called a regular tessellation.

A tessellation is a decomposition of a surface on the Euclidean

plane into isometric (i.e. metrically equal) polygons. If these polygons are
regular, then the tessellation is called regular. These polygons are
called cells.

There are three regular tessellations of the plane, the hexagonal,
square and triangular ones, portions of which are shown in Figure 1-1.

If a regular tessellation of the plane forms a partition of it,
in other words if the cells do not intersect each other on their edges,
then it is clear that a cell may not contain its whole border, but only a
part of it. A possible choice is given in Figure 1-2, where the vertices
which belong to the border of a cell are displayed as blobs, and edges
which belong to that border are indicated in full lines (those which do not
belong to the border are written as dotted lines).

On the other hand, if one supposes that each cell contains its
whole border, then this determines two relations of adjacency (or neighbour-
hood) between the cells

- The restricted adjacency relation : two cells are adjacent (or neighbours)

if they are distinct and have an edge in common.

- The extended adjacency relation : two cells are adjacent (or neighbours)

if they are distinct and have an edge or vertex in common.

The adjacency relation is usually denoted by the symbol ~.
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If one represents each cell by a point (located at the center of
that cell) and if we interconnect points corresponding to adjacent cells

by an edge, then one gets a graph, the adjacency graph. The restricted and

extended adjacency graphs are shown in Figures 1-3 and 1-4 respectively.
It can be seen that the restricted adjacency graph forms a tessellation, the

dual tessellation. The triangular and hexagonal tessellations are dual, the

square one is self-dual.

We define the neighbourhood of a cell as the set of cells which are

its neighbours. Thus there is a restricted and an exteénded neighbourhood

of that cell.
Let k be the size of the neighbourhood of a cell. The following

table gives the values of k in each case

TABLE 1 : neighbourhood size

Tessellation/Adjacency Restricted Extended
Hexagonal 6 6
Square 4 8
Triangular 3 12

It is clear that the restricted and extended adjacency relations

are characterized by k. Therefore one speaks of the k-adjacency relation,

and the neighbourhood of a cell is called the k-neighbourhood.

We now call a grid a simply connected portion of the plane (in
most cases a rectangle, sometimes the whole plane) decomposed in cells by

a regular tessellation.



It is a hexagonal, square or triangular grid, according to whether

the tessellation is hexagonal, square or triangular. The cells of the grid

are called pels or pixels (a contraction for picture elements), because

they correspond to the picture elements of the raster scan. The grid is
identified with the set of its pels. Every pel can have two colours : black
(which is coded as 1) and white (which is coded as 0).

We say that the grid is finite if it can be enclosed in a finite
square (or equivalently, if it contains a finite number of pels).

In the case of the square grid, we will generally make a further
assumption : if it is finite, then it covers a rectangle, and if it is
infinite, then it covers the whole plane.

Now the pels can be assigned integer coordinates, the grid coordi-
nates.

For example, in a square grid, the pels can be grouped in rows and
columns. Each row (or column) can be given a number n (where n is an
integer). The pel at the intersection of row i and column j has grid coor-
dinates (i,j). When the square grid is finite, we suppose that the rows
are numbered 0,...,M-1, and the columns 0,...,N-1. When it is infinite, i
and j range over the set of rational integers.

Given a grid G, we call the dual grid the graph (G*,N*), where
G* is the set of centers of pels of G and ~* is a set of edges, joining
pairs of elements of G* corresponding to pairs of adjacent pels in G.

A finite square grid with M=5 and N=4, and its dual grid are shown
in Figure 1-5. The plain edges stand for the 4-adjacency, while the dotted
edges stand for the 8-adjacency between pels that are not 4-adjacent.

Let us compare the advantages and disadvantages of hexagonal,

square and triangular grids respectively.
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= In the hexagonal grid, the restricted and extended adjacencies are equi-
valent, and this removes the duality that we will always encounter in the
rest of this chapter when dealing with the topological properties of the
square grid. However, a natural system of grid coordinates must have an
horizontal axis and a second axis making an angle of 60° or 120° with the
first one (because cells cannot be grouped in columns, but only in rows and
in "diagonals'" forming an angle of 60° or 120° with the horizontal). Thus
it priviledges angles of 60° and is practical for digitizing figures whose
shape approaches the circle (like a hexagon) [ 11 ]. Other properties can
be found in [2,3,4,7,10,13,21 ].
- In the square grid, the adjacency numbers 4 and 8 are powers of 2, which
is useful for binary coding of the neighbourhood. It is practical for
digitizing rectangular figures (like sheets of paper) and its natural system
of grid coordinates has a vertical and a horizontal axis, which is standard.
It priviledges angles of 90° and is thus the usual choice for digitizing
engineering graphics.
- In the triangular grid, angles of 60° are priviledged. However its types
of adjacency are unpractical.

Let us now study the operation by which a continuous two-tone image
is digitized on a grid. The objects which must be represented on the grid
are subsets of an Euclidean plane, which we call the world. These objects

are world objects, they are sets of world points having world coordinates.

It is better, especially when one uses a square grid, to choose the
y-axis horizontal and oriented towards the right, and the x-axis vertical
and oriented towards the bottom, because such a choice is consistent with
the matrix notation and with the grid coordinates.

Then one can choose as unit of length the size of each pel, and

the square grid can be taken in such a way that the center of a pel having
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grid coordinates (i,j) has world coordinates (i,j).

It happens that in the digitization through a raster scan, the
vertical and horizontal definitions are different. For example in the MBLE
telecopier, the horizontal definition is 8 pels/mm, while the vertical
definition is 3,85 pels/mm in the standard mode and 7,7 pels/mm in the high
definition mode (this follows the CCITT standards) [22 ]. In this case
the grid forms a non-regular tessellation, with rectangular cells. We call

it a rectangular grid. We can then suppose that the size (in world length)

of a pel is h horizontally and v vertically. Then the grid can be placed
in such a way that if a pel has grid coordinates (i,j), then its center has
world coordinates (vi, hj).

The rectangular grid is often used instead of the square grid.
The two choices are equivalent on the topological point of view, but not
on the geometrical point of view, because vertical and horizontal arrays

of a certain number of pels have not the same length.

B. The digitization of an image on a grid.

To the physical operation of the raster scan corresponds a mathema-

tical operation called the grid representation. It associates to a world

object (i.e. some type of figure on the Euclidean plane) a grid object
(i.e. a set of pels, which will be coded as black).

What are the world objects to be represented on the grid ? We
subdivide them according to their dimension. An object can be

= O-dimensional : a finite set of points (x,y).

— l-dimensional : a finite union of line segments of the type

x = £(t) 0<t<lI,

(1

y = g(t)
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(*)

1 (or analytic) and (f,g) is injective.

where £ and g are of type C

- 2-dimensional : a finite union of surface segments of the type

(2)
= & <
y g(to,tl) 0<rt, 1,

where f and g are of type C., (or analytic) and (f,g) is injective.

1
We will now describe the possible grid representations for these
elements when the grid is square. We suppose that the pels are pairwise
disjoint as world objects, and so that each pel contains the part of its
border displayed in Figure 1-2. We assume also that if a pel has grid

coordinates (i,j), then its center has world coordinates (i,j). Thus that

pel as a world object is defined by the equations

<x<i+-;—-,

N —

(3)

o] —

1 5
] - =<y <
jmey <
Now a world point (x,y) is represented by the pel (i,j) if it
belongs to that pel (as a world object), in other words if it satisfies (3).

For a world line-segment, there are two types of grid representa-

tions, which are called in [ 6 ] square-box quantization and grid-intersect

quantization. The latter is the most known and widely used grid represen-—

tation.

In square-box quantization, the grid representation of the line
segment is the set of pels containing points of that segment. Thus it is
the set of pels having grid coordinates (i,]) such that there exist some

x and y satisfying both (1) and (3).

(*) A function is of class C] if it is derivable and its derivatives are

continuous.



In grid-intersect quantization, ome looks at the intersections of
the line segment with the edges of the dual grid, and for every such inter-
section point, we take the pel which contain it. In other words, it is
the set of pels having grid coordinates (i,j) such that there exist some x

and y satisfying both (1) and the following

x =1 and j - % Ssx<j+ %
or (4)
y =3 and i - 5 & y < i+ 1L ‘

2 2

These two representations are illustrated in Figure 1-6,

Moreover, if one scans the line by making t go continuously from
0 to 1, then the grid representation of the line segment forms a sequence
of 8-adjacent pels. In the case of the square-box quantization, they are
4-adjacent, except when the line segment goes down through the upper left
corner of a pel, an event which has probability O for random tracings. On
the other hand, in the grid-intersect quantization, successive pels in
that sequence may often be 8-adjacent but not 4-adjacent (according to
[6 ], this may happen with a probability of 0,41 for random tracings).

We will not consider other possible methods for the grid represen—
tation of world line segments.

For world surfaces, we can also define the square-box quantization
and the grid-intersect quantization.

In square-box quantization, the grid representation of a surface
segment is the set of pels containing points of that segment. Hence it is
the set of pels having grid coordinates (i,j) such that there exist some

x and y satisfying both (2) and (3).
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In the grid-intersection quantization, it is the set of pels having
grid coordinates (i,j) such that there exist some X and y satisfying both
(2) and (4).

Other grid representations of surfaces, as the thresholding of the
black area on each pel, will not be considered.

For a rectangular grid, the same as above can be done, but we must
replace x and y by x/v and y/h respectively.

Similar grid representations can be defined for the hexagonal and

triangular grid.

Cs Isotrogz

When an image is digitally processed through certain techniques,
then certain geometrical patterns become priviledged (for example an array
of rectangles in Figure 6b of page 123 of [ 19 ], and vertical lines in
Figure 13 of page 92 of [22 ]). This is a restriction on the isotropy of
the processing, because an isometry which does not preserve the array
changes the result of the processing.

~

We will give here a more formal definition of isotropy. Let = be

a relation of "

similarity" on processed images, where A =~ B means something
like :

"B has the same number of connected components as A",

"B is perceptually equal to A",

"B is equal to A", etc...

Let P be a processing which can be applied to any image I covering

the whole plane, provided that the black (or non-white in the case of images
having more than two tones) part of I can be enclosed in a finite frame.

We suppose that for any finite image I, the processed image IP is the

portion of JP enclosed in the frame of I, where J is the infinite image



consisting of I surrounded by white.
Let T be such an infinite image whose non-white part can be enclo-

sed in a finite frame.
Let m be an isometry of the Euclidean plane. For any object X,

write Xm for the image of X by m. Then we define

IP" = Im Py ) (5)

We say that P is isotropic for m with respect to = if for any

such image I we have
PT(1) ~ P(D) (6)

The set of such isometries 7 is the isotropy set of P with respect

ot
o
2

The following fact can easily be shown :

The isotropy set of P with respect to = is a group if and only if

~ is an equivalence relation on the set of processed images P(I).

It is then called the isotropy group of P with respect to = and

write it T (P,®).
Now the strongest equivalence relation is the equality = (physical,

not perceptual or functional). We will then write "isotropy" for "isotropy

with respect to =", and we will write T'(P) for T'(P,=).

Let us go back to the grid representation. It is clear that the
isotropy group of the two grid representations defined above (square box
quantization and grid-intersect quantization) is the symmetry group of the
infinite grid (i.e. the group of all isometries preserving that grid).

In the square grid, this group is the product of the group of

integer translations



T(a,b) : (i,j) + (ita, j+b), (2)

where a,b are rational integers, and the group of the 8 symmetries of the
square (identity, 2 rotations of + w/2, central symmetry, 2 median symme-
tries and 2 diagonal symmetries).

Under the action of that group, all rows and columns of pels are
in the same orbit. Thus none of them has a priviledged role, and the two
directions are equivalent.

On the other hand, in the rectangular grid, the isotropy group is
the product of the group of integer translations and the group of the 4
symmetries of the rectangle (identity, central symmetry, 2 median symme-
tries). Here all rows are equivalent, all columns are equivalent, but the
horizontal and vertical directions are not equivalent. This may induce on
the processed image a texture of vertical or horizontal lines (cfr. Figure
13 page 92 in[22 ]).

In the hexagonal and triangular grids, the isotropy group is the
product of the group of integer translations and of the group of the 12
symmetries of the regular hexagon. Here the horizontal direction is equi-
valent to the two directions making an angle of 60° at 120° with it.

Clearly the isotropy group of the square grid is the most suitable
for the processing of engineering or technical drawings. In the rest of
this study, we will restrict ourselves to the square (or sometimes rectan-

gular) grid.
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§ II. The choice of the topology on a square grid

Let G be a square grid. As explained above, the pels of G can be
grouped in rows and columns, and the pel at the intersection of row i and
column j has grid coordinates (i,j). If G is finite, then i and j range
over {0,...,M-1} and {0,...,N-1}, respectively. If G is infinite, then i
and j range over the set of rational integers.

An image on G is a repartition of the pels of G in two tones
(black and white). It can be seen as a map G + {0,1}, where 0 generally
corresponds to white and 1 to black.

If G is finite, then we call the frame of G the set of pels which
are on the edge of G, in other words whose grid coordinates (i,j) satisfy

the following condition :
i.M-1-1).j.(N-1-37) =0 (8)

The frame of G will be written FG.

Given an image on G, the set of black pels is called the figure
and is written F, while the set of White pels is called the background and
is written B, (Note that in [19 ] another meaning is given to that word).

The following assumption, called the frame assumption (abbrevition:

FA), is often made on images (see for example [16 ])
- For a finite grid, it states that the frame belongs to the background
(i.e. FG C B).
- For an infinite grid, it states that the figure is finite.
This requirement introduces a dissymmetry between the black and
white pels of the image.
In § T we defined the two basic adjacency relations on the square
grid, characterized by the neighbourhood size k of a pel outside the frame,

and called k-adjacency (k = 4 or 8).



In the following, k will always designate one of the two numbers
4 and 8, and k' will designate the other one (k' = 12-k).

One might assume that the same k-adjacency can be chosen for the
figure and the background. But this causes problems. Consider for example
the two images displayed in Figure 1-7. If we use 4-adjacency on both the
figure and the background, then in (a) a disconnected line disconnects the
background, while in (b) two simply connected surfaces, which are not con-
nected together, disconnect the background. On the other hand, if we use
8-adjacency for both the figure and the background, then in (a) a connected
line does not disconnect the background, while in (b) a connected figure has
a hole which is connected to the exterior. Both cases run against one
intuition of the topology of figures on a plane. The contradiction can be
lifted by using k-adjacency on the figure and k'—adjacency on the background
(but the type of adjacency between pels of the figure and neighbouring pels
of the background remains unspecified, which is not an important problem;
we will not encounter it in that study). A more formal version of that
argument can be found in [ 4,9,16 ], using the Euler number of a triangula-
ted figure [8 ].

This choice for the adjacency relations on the figure and the
background is classical. We will now study other possible choices. The
basic idea is to transform the square tessellation into an equivalent one
using distorted squares.

Suppose that whenever a black pel has an edge in common with a
white one, we clip the corners of the black pel which are on this edge, as
in Figure 1-8. Then the ambiguity arising from two black pels and two
white ones having a corner in common (as in Figure 1-7) is removed. If one
considers as adjacent two pels having an edge in common, then the following

adjacency relations must be considered (see Figure 1-8)



(a) Two 4-adjacent pels are adjacent.

(b) Two 8-adjacent pels Py and p, are adjacent if and only if one of
the following holds, where P3 and p, are the two pels which are
4-adjacent to both Py and P,

(1) P and P, are both white and Py and p, are not both white.
(i1) P and P, have different colours and P and p, are both black.

Of course, one can clip the corners of white pels and then one
gets a dual adjacency relation.

Now it is possible to define a 6-adjacency for a square grid in
order to avoid the ambiguity encountered above. In Figure 1-9 we show the
configuration formed by the centers of pels in a square and a hexagonal
grid. We see that they are similar up to a rotation of 30° of the x-axis.
So by rotating the x-axis by 30° in the hexagonal grid, the configuration
formed by the centers of the pels becomes the same as in the square grid.
But then the hexagonal grid becomes the grid of Figure 1-10 (a), in which
pels have the same position as in the square grid, but where we have a
6-adjacency relation. Here pels which have a vertex in common have an edge
in common, and so the ambiguity seen above is avoided. Two topologically
equivalent grids are shown in Figure 1-10(b) and (c). However, the iso-
tropy group of a square grid having that 6-adjacency relation is smaller
than the original one. 1In particular, a diagonal from top left to bottom
right is not equivalent to one from top right to bottom left; the first
one is connected, and the other one is not.

In page 3 of [19 ], another type of 6-adjacency relation is given.
It is based on the shifting of odd rows in Figure 1-9 (b). We illustrate
this adjacency relation on Figure 1-11. Here the isotropy group becomes

even more restricted.
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In the rest of this work we will use the classical choice for
the adjacency relation : k-adjacency for the figure and k'-adjacency for

the background ({k,k'} = {4,8}).



§ III. Paths and distances

For k=4 or 8, we call a k-path of length n a sequence (xo,...,xn)

of pels such that for s=0,...,n-1, X # e S and X is k—adjacent to X i
If I L then it is a closed k-path,

Note that a 4-path is an 8-path.

Let us now define distances on a grid.

When dealing with distances in the world, one usually uses the
Euclidean distance, which is invariant under the group of isometries. But
this choice is not evident for a square grid, because that grid is not
invariant under the group of all isometries, but only under its group of
isotropy. We will say that a real-valued nonnegative function d defined

on the ordered pairs of pels is a distance if it satisfies the following

3 conditions for all pels x, y and z :

d(x,y) = 0 if and only if x=y.
d(x,y) = d(y,x) (symmetry).
d(x,z) < d(x,y) + d(y,z) (triangularity). (9)

Let x and y be two pels having respective grid coordinates
(xo,xl) and (yo,y]). The most obvious example is the Euclidean distance

de defined by :

2)1/2

d,(x5y) = (gxg)’ + (7,7x)) (10)

Two other wellknown distances are the city block (or Manhattan)

distance d4 given by :

d, &y = |yg=xo| + |y, (11)

and the chessboard distance d8 given by :

dg(x,y) = max{|y0—x0f, |y]-xll}- (12)
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They are illustrated in Figure 1-12.
These two distances are integer-valued. Moreover, they are regu-
125. One says (see [19 ]) that a distance function d is regular if and
only if it satisfies the following 2 conditions
- d is integer-values
- for any two pels x and y, if d(x,y) = 2, then there is some pel z such

that x # z # v and

d(x,y) = d(x,2z) + d(z,y). (13)

If d is regular, then the following holds

- If d(x,y) = k, then there exist a sequence %, = KyXypeee, X =¥ of

0 k
) =1, (14)

pels such that for any i=0,1,...,k-1, d(xi,xi+1

By taking the graph whose vertices are the pels and whose edges
are pairs of pels at distance 1, then d is equivalent to the distance
defined on that graph (the distance between 2 vertices is the length of
the shortest edge-sequence joining them). The converse is also true : if
d is a distance on the grid defined from a graph, then d is regular (this
result is well-known).

Moreover, the following holds

dk(x,y) = 1 if and only if x and y are k-adjacent (k=4 or 8). (15)

It follows then from (14) that for any two pels x and vy, dk(x,y)
is the length of the shortest k-path from x to y.

It is easily seen that da and d8 are invariant under the isotropy
group of the grid. This is natural, because d4 and d8 can be defined in
terms of 4- and 8-adjacencies, which are isotropic concepts. There are

other isotropic regular distances (for example the distance based on the



movements of the horse in chess, where d(x,y) = 1 if and only if
{Ix0~y0|, Ix1~y1|} = {1,21).

Other distances can be found in [ 21 ].

Given a pel x, two sets Y and Z of pels, and a distance d, we

define :

d(x,Y) = min{d(x,y)|y € Y} = d(¥,x). (16)

d(¥,z) = min{d(y,z)|y € ¥, z € z}.
= min{d(y,Z) |y € Y}.

= min{d(Y,z)|z € Z}. (17)

Given also a property P (like = r, > m, etc..), we can define

xF = {p € glacx,p)P). (18)
i e B P (19)
d, >4 dg |60
For example x = {p € G[d4(x,p) > 4}, ¥ = {p € G|

dS(Y,p)lso}.

In particular, we write

NE(U) =U (20)
<
and SE(U) = g (21)
where U is a pel x or a set Y. For d = dk’ write :
N;(U) = Ng () (22)
k
and
si(u) - sg ), (23)
k

where k = 4 or 8.
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Clearly Ni(x) is the k-neighbourhood of x for any pel x. When
r=1, we omit it and write Nd(U), Sd(U), Nk(U) and Sk(U)'

Let us now give methods for computing the sets SE(U) for a regular
distance d.

The first one comes from [ 21 ]

Let d be a regular distance. For any image ¢ : G - {0,1}, define
the image f(¢) as follows

For any pel x,

£(¢) (x) = min{o(y) |y € 5,(x)} (24)

Let U be a set of pels. Then the sets S§(U) are computed as
follows

Let ¢ be the image having U as background. Define

by = ¢

¢ f(¢m) for m=0,1,2,..,. (25)

m+1

Then SE(U) is the background of ¢r for r=0,1,2,... In other

words, for any pel x we have :

¢r(x) 1 if r < d(x,U).

(26)

0if r = d(x,U).

The proof of this fact is elementary. It can be found in [ 21 ].
Now let us describe the second method, which comes from [ 19 ]. We assume
again that d is regular and that U is the background of ¢. We define the

functions wm : G+ {0,1,2,...} as follows :
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For any pel x,

Vo) = ¢(x).
(x)

v ¢(x) + min{y (y) |y € s (x)} (27)

m+1

for m=0,1,2,...

Then for any pel x we have

wr(x) r if r < d(x,U)

(28)

d(x,U0) if r = d(x,U).

In other words, SE(U) is the set of pels x such that wr(x) =

] (x).

r+]
Again the proof is elementary.
In Appendix 1, we examine a sequential algorithm for the determi-
nation of the set of all d(x,U), x € G, when d is regular.

To end this section, we must stress the importance of regular dis-
tances, which are associated to adjacency relations on the grid. As we
restricted ourselves to the 4- and 8-adjacency relations, we will from now
on restrict ourselves to the corresponding distances, in other words d

4

and d8'
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§ IV. Connected components

A. Introduction

Given a subset S of G and x,y € S, then we say that y is k—connected
to x in § if there is a k-path from y to x consisting entirely of pels of

S. Clearly, it is an equivalence relation (i.e. it is reflexive, symmetri-

cal and transitive).
Now this equivalence partitions S in non-void and pairwise disjoint
subsets S],...,SC (c= 1), such that for any x,y€ S, x and y are k—connected

if and only if they belong to the same Si (i=1,...,c). These equivalence

classes are called the k-connected components of S.

We say that S is k-connected if S has only one k-connected compo-
nent.

Note that "4-connected" implies "8-connected"” and that an 8-
connected component of S is a union of 4-connected components of S.

Following [ 16 1, we will say that a figure F is simply k—connected
if F is k—connected and B is k'-connected. If F is k-connected and B has
m k'-connected components (m=1,2,...) then we will say that F is

m-ply k-connected or that m is the order of k—connectivity of F.

B. The detection of connected components

In this subsection, we will give two algorithms for the detection
of the k-connected components of a figure. Let us introduce the first one.

Suppose that the figure F is defined in the following way : For
any row i, the elements of F on that line form runs which are separated by

runs in B. A run is an interval of the form

[r,r+s ] = {r,r+]l,...,r+s}, (29)
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where s 2 0. The length of the run [r,r+s ] is s+l. The run [r,r+s ] on
row i consists of the pels (i,r),...,(i,r+s).

It is clear that every run is included in a k-connected component
of F. Thus the k-connected components of F are unions of runs. Now 2
runs [a,a' ] and [b,b' ] on two successive rows are 4—connected if and only
if

a<b' and b < a', (30)
They are 8-connected if and only if :
a<b'+]l and b < a'+1. (31)

Now the procedure is the following. We label the runs RI""’Rt
in their order of occurrence when the rows are scanned successively from
left to right and from top to bottom. We consider the k-connected compo-
nents of R] u.,..u Rn for n=1,...,t by induction. The k-connected compo-

nent of Rm in R] u...u Rn (I Sm<n-<t) has label Cn(m). The algo-

rithm, expressed in pidgin ALGOL, is the following :

ALGORITHM 1
for n « 1 until t do
if n> 1 then Wn «~ {m € {I,...,n—]}]Rm is k-connected to Rn}
Vo< {C _(m)|m€E W };
for m « I until n do
ifm=nor (n>1 and) Cn_](m) IS Vn
then C_(m) < n else Cn(m) + Cn—l(m)
end;

Y <« {Ct(m)|m=l,...,t};
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procedure ORDER(X)

for u+ 1 until [X| do x + min(X\x,]|i <u})

return £ : X & {1,004,[X]} ¢ X, U

g < ORDER(Y);

for v + 1 until t do C(v) <« g(C_(v));

comment The run Rv belongs to the C(m)-th k-connected component of F
end

This algorithm is presented in a loose way in [ 15,19 ], where it
is called "tracking".

We will now present another algorithm for the determination of the
k-connected components of a figure. In[15,19 ], it is called "propaga-
tion'". It consists in starting with a pel, and constructing a chain of
k-neighbours in F until no additional pel is obtained, which means that a

k—connected component is found. In the following algorithm, the connected

components are labelled Cn (n=1)

ALGORITHM 2

procedure PROP (x)
C « {x}
D « {x}
repeat C < Nk(C) \' D

D+ DUCuntil C = ¢
return D
E « @

1 « nj;



comment E is the set of pels which have been considered in the algorithm,
and n is the number labelling the connected component which is considered;

repeat x + any from F \ E

C <+ PROP
b (%)
E«EUC
n
n < n+l until E = F;
comment The sets Cn are the k—connected components of F

end

One question arises : Which one of the two algorithms is the
fastest and the easiest to implement ? Let us first remark that some ope-
rations can be made sequentially or in parallel; in Algorithm | it is the
determination of Wn and the computing of Cn(m); in Algorithm 2, it is the
computing of Nk(C) and then Nk(C) \ D in the procedure at the beginning.
It seems to us that the parallel implementation is easier for Algorithm
1, but then Algorithm 2 has a higher speed when the connected components
of F have many holes. In the sequential implementation, Algorithm 2 needs
at least as many steps as the size of F, which is generally much slower
than Algorithm 1, especially when the connected components of F have few
holes.

Thus it seems that Algorithm | is better, especially for figures

with few holes.

C. The detection of connected components of bounded size

Let us now consider a related problem. How can one detect "small"
connected components of a figure ? For example in an engineering drawing,
small connected components represent alphanumerics, while larger ones

represent gates and interconnections.
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Now a connected component is ''small" if it can be enclosed in an
U X V rectangle for some '"small" U and V.

One way to solve the problem is to use one of the two preceding
algorithms, and to select the connected components which can be embedded
in an U X V rectangle.

We will propose here three algorithms which solve directly the
problem. Let us consider the first method.

We divide the grid into Y x Z rectangles where

Y= 2U + 1

and Z=22V+ 1, (32)

These rectangles can be labelled (I,J), where I=0,...,M/Y-1 and
J=0,...,N/Z-1. If Y does not divide M or Z does not divide N, then we
extend the grid in order to correct that.The rectangle (I,J) contains the

pels (i,j) such that :

YI € 1 < YI+I-

z2J < j < 2J+J-1 (33)

This construction is illustrated in Figure 1-13.
On each rectangle (I,J), we look at the k—connected components of

the restriction of F to that rectangle. For any set W of pels, we define :

i,(W) = min{i|(i,j) € W for some j}.
il(W) = max{i|(i,j) € W for some j}.
Jo(W) = min{j|(i,j) € W for some i}.

n

j; (0 = max{j|(i,j) € W for some i}. (34)
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Let X be a k—connected component of the restriction of F to (I,J).

Then X can be embedded in a U X V-rectangle if and only if :

i](X) = iO(X) < U-1

and jl(X) - jO(X) < V-1 (35)

We label the edges of (I,J) ejO’ e.

T e:0 and e and the corners

of (I,J) c d Ciys @s shown in Figure 1-14.

00° “01° 10 2"
Suppose that X satisfies (35). Let e(X) be the set of edges of

(I,J) which are not contained in the edge of the grid and which are touched

by X. Then one of the following holds

(i) eX) = ¢
(i1) e(X) = {era}, where r is 1 or j and a = 0,1
(iii) eX) = {eia’ ejb}’ where a,b € {0,1}.

If (i) holds, then X is a k-connected component of F and so we
select it.
If (ii) or (iii) holds, then let R be the Y x Z rectangle such

that :

i (®) [_%(iO(X)+i1(X)—Y+l)J

and ig® = | 3G 45, 0-2e1) | . (36)

It follows that for any pel (i,j) in X,

iO(R) < iO(X)—U
i, (R) = 1, (X)+U

Jo(R) < jo(X)"v

\%

and J{R) = j,(X)+V (37)

because of (32). Thus X c R.



If R goes beyond the frame of the grid, then we clip it and get
another rectangle R'. Consider the connected components of the restric-—
tion of F to R'. Let X' be the one that contains X. Then one of the
following holds :
(a) X' cannot be embedded in a U x V rectangle, and so we reject
X and X'

(b) X' can be embedded in a U x V rectangle and by (37) X' does
not touch the edges of R (and it can touch an edge of R' only
if that edge is contained in the edge of the grid). Then X'
is a k-connected component of F and so we select it.

Note that in the determination of the rectangle R, we can choose

instead of (36) a more general formula :

i = li-ta-n)

and jO(R)

I

li-5e1], (38)

where i and j are any two integers satisfying :

' < i m).
lO(X) i ll(X)

Bp® << . (39)

Now our method can be applied on all rectangles (I,J) sequentially
or in parallel. One of the drawbacks of the parallel algorithm is that a
suitable k-connected component can be found several times. For example in
Figure 1-13, XI is found two times (for (I,J) = (1,1) and (1,2)), while
X2 is found four times (for (I,J) = (2,1),(2,2),(3,1) and (3,2)).

Let us describe a sequential algorithm. The rectangles (I,J) are
examined in the lexicographical order (i.e. from left to right and from
top to bottom). Given a k-connected component X of the restriction of F

to (I,J) such that X satisfies (35), one of the following holds



(i) e(X) = ¢
(i1) e(X) = {ero}, where r is i or j
(iii) e(X) = {eiO’ ejO}

(iv) None of the preceding holds.

If (i) holds, then X is a k-connected component of F. If (ii) or
(iii) holds, then either X is a k-connected component of F or some pel
(i,j) of X is adjacent to a pel in (I,J-1), (I-1,J) or (I-1,J-1). But in
this case (i,j) belongs to a rectangle R for (I,J-1), (I-1,J) or (I-1,J-1),
and so we know that either (i,j) belongs to a rejected set or that X is
contained in a selected component.

We give below the corresponding algorithm. For any set X C G we

write R(X) for the rectangle defined by (38), and we set

|
—

if (35) holds.

Ry y&) =

=0 otherwise. (40)

We write also C(X) for the set of k-connected components of the
restriction of F to X. Moreover, if YC X N F and Y # @, then we write
D(Y,X) for the k-connected component of the restriction of F to X which
contains Y; D(Y,X) can be found by the procedure PROP(Y) of Algorithm 2
restricted to X. Finally we will write R for the union of rejected compo-
nents and S for the set of selected components. The notation US means the
union of all sets which belong to S. The rectangles (I,J) are ordered in
the lexicographical order, and we can write (I,J)¢ = (I',J'), where

N

(I',J'") is the follower of (I,J), in other words where I'g+J' = IZ+J+].
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ALGORITHM 3

begin
S <+ @;
R < @;
; M N
for (I,J) < (0,0) step ¢ until (? -1, 7 -1) do
begin
n < [c (T,)];
{X],...,Xn} & B4 (L5005
for 1 < s until n do
begin

1 = N U
if RU,V(XS) 0 or XS R#@ then R « R XS else

I
e

Xs E‘JS then

it e(XS) - {eiO’ejO} then S « S U {XS} else
R, < R(X )3
X; < D(XS,RS);
if RU’V(Xé) = 0 then R« R U Xé else S« S U {Xé}
end
end;
comment S is the set of all k-connected components X of F such that

RU,V(X) =1

end

We will now give another algorithm based on black runs on rows.
It is similar to Algorithm 1. A run R =[r,r+s ] was defined in (29).

We will write :

b(R) =1
e(R) = r+s
r(R) = the row in which R is. (41)



As in Algorithm 1, we label the runs Rl""’Rt in their order of
occurrence when the rows are scanned successively from left to right and
from top to bottom. Here Cn(m) will be the label of the k-connected com-
ponent of Rm in R, vo.,,.. v Rn (1] Sm<n<s<t)., The numbers bn(m), en(m),
rn(m) and r;(m) will be respectively the minimum of the b(R)'s, the maxi-
mum of the e(R)'s, the minimum and the maximum of the r(R)'s for the runs

R belonging to that component. Note that if one deletes from this algo-

rithm the operations concerning these numbers, then one gets Algorithm 1.

ALGORITHM 4
for n « 1 until t do
if n > 1 then Wn + {m € {1,...,n~1}|Rm is k—connected to Rn}
v, o< {c _,mmeE W}
for m« 1 wntil n do
if m=n or (n > 1 and) Cn_](m) S Vn
then Cn(m) < n
b (m) < min{b®R ),b _ (u)|u €W }
en(m) < max{e(Rn),en_](u)|u € Wn}
rn(m) < min{r(Rn),rn_](u)lu € Wn}
rr'l(m) <~ max{r' (Rn),rr'l_l(u) |u € Wn}
else Cn(m) <« C ](m)

n-—

bn(m) < b 1(m)

n-—

en(m) “+ enn](m)

r, (@ < r _ (m)

rp@@ <! | (m)

end;
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Y < {Ct(m)|m=],...,t};

procedure ORDER(X) : see Algorithm 1;
g < ORDER Y;

for v « 1 until t do C(v) « g(C_(v));

for z « 1 until y do
m(z) < any m from {1,...,t} such that C(v) = z
Iy(z) < r (m(2))
I,(z) «r (m(z))
Jo(2) « b (m(2))
J,(2) < e (m(z))
if I,(2)-Ty(2) < U-1 and J,(2)~J,(2) < V-1
then write z and {m|C(m) = z};

comment The run Rv belongs to the component C(m) = X, and we have

Iom) = iy, I, = i, (XN, Jom = j X, I, @ = j X (see (34)),
and we write thus the components which satisfy (35)
end

The third algorithm is based on a simple idea. We suppose = but
this is not crucial - that FG C B. Let X C F, Then the following two
are equivalent :

(i) X is a k-connected component of F and RU,V(X) =1

(ii) There is an (U+2) x(V+2)-rectangle R such that X is a k-connec-—
ted component of the restriction of F to R and X N FR = ¢§ (where FR is the
frame of R).

Then we have only to move that rectangle on the grid in order to
find the required connected components.

For v=0,..., (M-U-1) (N-V-1)-1,write RV for the (U+2)x(V+2)-rectangle
such that iO(RV)(N—V—])+j0(RV) = v. Write also E(X) for the set of

k-connected components of the restriction of F to X which do not intersect

the frame of R,. Then the algorithm is the following :
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ALGORITHM 5
begin
S « 6,
for v + 0 until (M-U-1) (N=-v=-1)-1 do
begin
n < IE(RV)|;
Ko X P ER )
for 1 «+ s until n do
if X ¢ S then S« S U {X }
— s —_— n
end;
comment S is the set of all k-connected components X of F such that

RUV(X) = ]

end

Of the three algorithms, it seems that Algorithm 5 is the fastest.
We have no indication as to whether Algorithm 3 is faster than Algorithm

4 or not.



1.32

§ V. Simple closed paths

In this section we show that for certain closed k-paths, called

simple closed k-paths, the background has exactly two k'-connected compo-

nents, provided that the frame assumption holds. These two components,
called the inside and the outside, are characterized by several properties
which we study here.

A sequence P = (XO,...,xn_]) of pels is a simple closed k-path of

length n if the following three conditions hold for any r,s € {0,...,n-1}

(i) X, = X if and only r = s (42)
(ii) X € Nk(xs) if and only if r = s + I (mod. n) (43)
(iii) If k = 4, then n = 5; if k = 8, then n 2 4. (44)

For k = 4, our definition is the same as the one in [ 16 ] (for k=8,
no explicit version of (iii) is defined in that paper).

Condition (i) means that the path never crosses itself. Condition
(ii) means that two portions of the path may not touch each other. Condi-
tion (iii) garantees the existence of a hole inside the path; it rules out

the following 3 parts

a) The segment Xy Xy
b) The triangle Xy ¥, (k=8)
2
c¢) The square Xg ¥, (k=4)
*3 %3

Before going further, let us write ® and © for the addition and
substraction modulo n.

Let B be the background of the path P = (xo,...,x Vi

n—1
Given (i) and (ii), condition (iii) is equivalent to the following

(iv) For any r=0,...,n-1, SB(xr) N B has two k'-connected compo-

nents. (45)



Indeed, it is easily checked that condition (iii) implies that
SS(Xr) is (up to a symmetry of the square) one of the diagrams of Figure
1-15. Then it is easily checked that each of these diagrams satisfies
(iv).

Now it is obvious that in the 3 ruled out paths (the segment,

triangle and square) x, does not satisfy (iii). Therefore (iii) and (iv)

0
are equivalent.

Now we will give some properties of closed paths in general.

Let P = (xo,...,xn_l) be a closed k-path (in other words a k-path
with X € Nk(xnnl))' For any pel y in the background of P, consider the
world half-lines Lv(y) (v=0,...,n-1) originating from the center of y and

passing through the center of X s and the (oriented) angles uv(y) between

Lv(y) and ngl(y) (see Figure 1-16). Then define :

ap(y) = ;—; ) Otv(y)- (46)

Clearly aP(y) is the number of times that P turns around y and it

is therefore an integer. For example in Figure 1-16, aP(y) = -1,
Note that if we consider the inverse path P' = (xé,...,x'_]),
where x! = x . (i=0,1,...,0~1), then we have
at n-1-1i
apn(y) = ‘GP(Y) (47)

] t
On the other hand, if we take the path P = (xt’xt®l""’xu®(n—]))’

where t = 0,1,...,n-1, then

uPt(Y) = ap(y) (48)
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The following result gives a comparison between the different

values of aP(y), where v € B

Proposition 1. Let Y = (io,jo) and ¥y = (il,j]) be distinct pels in the
background B of a closed path P. Let R be the rectangle spanned by

(ié,jé), (ié,ji), (i{,jé) and (i;,j{), where for v=0,1, we have :

[N
|

o = A if i, # i

iv+(—1)v if i

]
e

0 1

iy =3, if ig# i

1 v . ' _ e
JV+( ]) if JO - .]1'

(This is illustrated in Figure 1-17). Let R, = {(i,j) € R[(i—io)(jl—jo) -~

(j—jo)(iluio)} and RO = R.\R1 (Rl consists of the pels of R whose centers

lie strictly on the right side of the oriented line directed from the
center of Yo to the center of y]) (see Figure 1-18), Then for any closed

path P = (XO""’Xn—]) we have

@P(Yo) = GP(YI) = |{s € {0,...,n—1}|xS € R, and X € RO}I

1 D1

(49)

- [{t € {0,...,n-1}|x,_ € R € R}

0 and X @l
The proofs of this proposition and of the other results of this
section can be found in Appendix 2.
This result has immediate comsequences
Corollary 2, Let P be a k-path. Then the following holds for any y,y' € B:
. L= 2 1
(1) If y N4(y), then aP(y) uP(y )

(ii) If y' € Ng(y), let y and y' belong (up to a rotation) to a 2 x 2

1 1
square 5 z. Then aP(y) = aP(y'), except if {z,z'} C P; then :
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= 1 = — = =
aP(y) aP(y ) = |{u € {0,...,n 1}|xu z and X o1=2 3

- I{v € {O,...,n—]}|xv=z' and xw91=z}

(iii) If y and y' are k'-connected in B, then aP(y) = aP(y').

It follows thus that the function op can be useful to study the
connected components of the background of a closed k-path. We apply it to
simple closed paths., In[16 ] it is proved that the background of a
simple closed k-path can be divided into two nonempty parts, called the

inside and the outside, such that any k'-path from a pel of the inside to

a pel of the outside must intersect P. The author makes the frame assump-

tion (that FG C B); we will make it.

The inside and outside of P are defined as follows

If x = (i,j) 1s a pel in the background B, let H(x) be the set of
pels of the form (i+u,j), where u=0,...,M-1-i, Then the intersection of
H(x) with P is the union of mutually E-disconnected runs of the form
[ i+u+1, i+u+v ] (v=1,...,M-1-u-i). The elements of such a run are succes-

sive pels of P, say Xr®]’°"’xr@v' Now X, and X must be pels of the

Evd]
form (i+u+1-68, j+e) and (i+u+v+8', j+e'), where &, 6' € {0,1} and
e, €' € {+#1,-1}, If € = ¢', then we say that H(x) touches P in that run.
Otherwise we say that H(x) crosses P in that run. These two situations
are illustrated in Figure 1-19. Now we say that x is inside P if H(x)
crosses P an odd number of times and that x is outside P if H(x) crosses
P an even number of times.

Write I(P) for the inside of P (i.e. the set of pels inside P) and
0(P) for the outside of P (i.e. the set of pels outside P).

We have obtained the following result with the use of Proposition

1 and Corollary 2 :
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Theorem 3. Let P = (xO,...,xn_]) be a simple closed k-path. Let B be
the background of P, I(P) the inside of P and O(P) the outside of P. Then
we have the following :
(1) I(P) # @ # O(P), I(P) and O(P) are the two k'-connected compo-
nents of B,
(ii) FG € 0(P)

(iii) If Q = {xr,...,x } (0 <s<n-1), then SB(Q) N B has two

r®s
(nonempty) k'-connected components, namely I(P) N S,(Q) and
pty 8

0(2) N 54(Q).

(iv) For any pel x_ of P, for any pels y,z € S (xr)/P such that

8
y and z are symmetrical with respect to X then one of them

belongs to I(P) and the other to O(P).

(v) For any y € B,

a(y) = 0 if y € 0(P),
=g 1f vy € I(P),
where € = | if P leaves 0(P) on its left, and € = =1 if P

leaves 0(P) on its right.

Some parts of this result are also proved in[17 ].

It follows from this theorem that in the definition of the inside
and the outside, we can choose for a pel x = (i,j) the set H(x) to be the
set of pels of the form (i-u,j), (i,j+u) or (i,j-u) (u = 0), without
altering that definition.

Note that if we do not make the frame assumption, then O(P) may

be k'-disconnected.

Note that for a k-connected figure F, we can define O(F) as the
k'-connected component of B containing FG (we make of course the frame
assumption), and I(F) as B \ O(F). But then I(F) can be empty or

k'-disconnected.



1.37

We now end this section with a sufficient condition for a closed

k-path to contain a simple closed k-path.

Proposition 4. Let P = (xo,...,xn_]) be a closed k-path. Suppose that

n = = 1
X, & Sk (xn—l)’ Nk(XO) P {XI’Xn—J} and that for k=4 {xo} NA(XI) n

N4(Xn-1)' Then P contains a simple closed path P' such that x X~ and

n—-1° 70

x, are successive pels in P'. Moreover, SS(XO) N B has two k'-connected

components, one contained in I(P'), and the other in O(P').



§ VI. Edge and border - The edge-following algorithm

Given a figure F with background B, we will define edges and borders

between neighbouring connected components of F and of B.

We will show that unless we use 4-connectedness for both F and B, the
edge between a connected component X of F and a neighbouring connected compo-
nent Y of B forms a single cycle. We give a procedure for the following of
that edge.

We say that two sets X and Y are k-neighbouring if dk(X,Y) = 1. DNow if

X is a union of 4-connected components of F (this is the case when X is a
k-connected component) and Y is likewise a union 4-connected components of B,
then dS(X,Y) = 1 if and only if da(X,Y) = 1., Indeed, the second implies the
first, while if the first holds, then for x € X and y € Y such that d8(x,y)=],
then either d4(x,y) = |1 or there is some z € Na(x) n Na(y); if z € F, then
z € X and so da(X,Y) = d4(z,y) =1, while if z € B, then z € Y and so
d4(X,Y) = d4(x,z) = 1. In this case, we simply say that X and Y are neigh-
bouring.

Let X C F and Y € B be neighbouring sets. We make the following defini-
tions

The k-border of X to Y is the set :

Sk(X,Y) = XN Nk(Y) (50)

Similarly we define the k-border of Y to X : Sk(Y,X).

The k-border of X is the k-border of X to B, and we write it ék(X).
The k—border of Y, written SR(Y), is the k-border of Y to F.

For a figure F, the borders GA(F)’ SS(F), SA(B) and 68(8) are shown in
Figure 1-20.

Now the edge between X and Y can be defined in two ways, as a world

object or as a grid object.



1.39

As a world object, the edge e€(X,Y) between X and Y is the line separa-

ting the world surface represented by X and the world surface represented by

Y. It is illustrated in Figure 1-21. We have
e(X,Y) = e(Y,X) (51)
and e(F) = ¢(B). (52)

7 7 + F 3 . .
Now this edge can be oriented. In e (X,Y), it is oriented with X on
the left and in s_(X,Y), it is oriented with X on the right (see Figure 1-21).

Then we have :

e (X,Y) = e (Y,X)

and e (X,Y) = e (Y,X), (53)
z-:+(F) = e (B)

and e (F) =¢ (B). (54)

Now we can define the edge as a grid object. We use the same notation

as for the preceding definition :

e(®X,Y) = {{x,y}[x € X, y €Y, d,(x,y) = 1} (55)
XY = (& |x € X, yEY, 4,6y = 1) (56)
e (XY) = {(y,x)|x €X, y €¥, d, (x,y) = 1} (57)

Again properties (51), (52), (53) and (54) hold. 1In fact, there is a
correspondance between this definition and the preceding one, because the
pair {x,y} corresponds to the edge between the pels x and y, while the

ordered pair (x,y) corresponds to that edge oriented with x on the left (see

Figure 1-22).



1.40

In[16 ], an edge of a figure F is defined as an ordered pair (x,y),
where x € F and y € B, in other words as an element of €+(X,Y). We will

call an edge element, a positive edge element and a negative edge element

between X and Y an element of &(X,Y), E+(X,Y) and eu(X,Y) respectively.

It can be seen from Figure 1-21 that edges between connected compo-
nents of F and connected components of B form in general single cycles. In
fact, we will give an algorithm for finding cycles of edges, and we will
show that under certain conditions edges form a single cycle.

We assume that we have a figure F such that either FG C F or FG C B.

We first deal with edges between 4-connected components of F and neigh-
bouring 8-connected components of B. Following [ 16 ], we define the mapping :

E’F' D €T (F) » e (F) : (x,7) > (x,y) E; = &,y (58)

+ o+, .
where (x ,y ) 18 defined as follows
The pels x and y belong (up to a rotation) to a square i ; in G; then
* + 3 . 3
X and y are given in the table below as a function of the value (0 or 1)

assigned to the pels a and b

TABLE 2
a b x+ y+
0 * X a
1 0 a b
1 1 b v (59)

This mapping is illustrated in Figure 1-23. Let us make a few remarks
. . y + G
(a) It is well-defined; in other words, for any (x,y) € € (F), a and b exist,

because we may not have {x,y} C FG (as we assumed that FG C Bor FG C F).
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(b) It is one to one. In Figure 1-24, we indicate in function of the values
taken by two pels ¢ and d forming with x and y a square t g, the only
; ; + - - =

possible choice for (x,y) (EF) I _ (x ,y ).

L . . .+ +
(¢) (x ,y ) is the immediate successor of (x,y) in € (F). Hence by (b) EF
% +
induces cycles on & (F).

* . +

(d) x and x belong to the same 4-connected component of F, while y and y
belong to the same 8-connected component of B. This can easily be seen from

Figure 1-23. Hence if X is a 4-connected component of F and Y is a neigh-

+

’ +
7 fixes the set €& (X,Y), and by

bouring 8-connected component of B, then E
] 2 . + . .
(b) it induces cycles on it. Hence € (X,Y) is a union of cycles.

Now we define a similar mapping for s_l(F)

E; =€ (F) € (F) : (y,%) > (¥ ,x ),

1

where (X_,y_) = (x,y)(E;)_ (60)

. d =
The pels y and x belong (up to a rotation) to a square " ;. Then y

and x are given in the table below as a function assigned to the pels c and

d :
TABLE 3
d c y— X
* 0 o] X
0 1 d c
] 1 y d (61)

This mapping is illustrated in Figure 1-25. We see that it is a

. P +
mirror-symmetric image of e (F).

+

Lastly, we can define the operators EB

and E;, which are similar to

+ =

Ep and Eps but where the roles of F and B are interchanged. They are the

following :



E; D e (B) > e (B) : (v,%) + (¥ .xT), (62)

where (y+,x+) is defined as follows

The pels x and y belong (up to a rotation) to a square “ : in G; then

+ + . . . . .
X and y are given in the following table as a function of the value assi-

gned to the pels a and b

TABLE 4
u A y+ x
1 * y u
0 1 u v
0 0 v X (63)

This mapping is illustrated in Figure 1-26. Similarly, we define

E; as follows

E; : e (B) » e (B) $(x,7) > (X ,¥ ),

where (y ,x ) = (y,X)(EE)_] (64)

If the pels x and y belong (up to a rotation) to the square ;

then x and y are given by the following table :

TABLE 5
t s X y_
* 1 s y
] 0 t s

0 0 X t (65)
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This mapping is illustrated in Figure 1-27. It can also be found in

[16 1.

+ - 4+
The remarks (a), (b), (e¢) and (d) made about EF hold also for EF’ EB

and Eg, but in the two latter ones, 4 and 8 must be interchanged. Concre-

tely, the cycles induced by the 4 operators are as follows :

Write X, for a k—connected component of F and Y, , for a neighbouring

kl
k'-connected component of B. Then :

4

= EF induces cycles on s+(X4;Y8) = E_(YS,Xa).
- E; induces cycles on eH(X4,Y8) = €+(Y8’X4)'
= E; induces cycles on E_(Xa’Ya) = €+(Y4’X8)'
- E£ induces cycles on €+(X8’Y4) = e—(Y4,X8). (66)
Note that E;, E;, E; and E; induce also cycles on €(F), on non oriented
edges.

What we have to show is that S(Xk,Yk,) has in fact only one such cycle.
We still assume that either FG C Bor FGC F. We call it the

restricted frame assumption (RFA).

The following result (Theorem 5) is extremely important. In[16 ] it
is proven for simply 4-connected figures satisfying the frame assumption; it
is also argued that the result is true for any figure, but the argument is

false, since it does not respect the frame assumption.

Theorem 5. (Suppose that the figure F satisfies the RFA). Let X4 be a

4-connected component of F and let YS be a neighbouring 8-connected component

of B, Let X8 be an 8-connected component of F and let Y, be a neighbouring

i
+ -
4-connected component of B. Then ¢ (X4’Y8) (or € (XA’YS) or E(XA’YS)) and
+ - .
€ (XS’YA) (or € (X8’Y4) or E(XS,YA)) contain only one cycle each.

The proof of this theorem and of the other results of that section can

be found in Appendix 3.
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From this theorem we deduce the edge-following algorithm : suppose that
+

we search E“(Xk,Yk,). From (66) we choose the appropriate mapping E among

+ - _+ -

. . c €y ;
EF’ EF’ EB and EB We take two 4—adjacent pels x Xk and y k' forming
the edge element €g* For i=0,1,2,..., we compute €l (Ei)E until we get
€, = €p° Then the set {EO,...,en_]} is the required edge.

Now what can one say about E(Xk,Yk), where Xk is a k—connected compo-
nent of F and Y is a neighbouring k-connected component ?

If k=4, then E(Xk,Yk) does not necessarily form a cycle or a union of
cycles, it may also be disconnected (see Figure 1-28).

For k=8 we get the following result.

Proposition 6. (Suppose that F respects the RFA). Let X8 be an 8-connected

component of F and let Y8 be a neighbouring 8-connected component of B.

Then €+(X8,Y8)(or e_(XS,YS) or E(XS,YB)) forms a single cycle.

Note. The result still holds if we relax the hypothesis as follows : X8 is

8-connected and a union of 4-connected components of F and Y8 is an 8-con-

nected component of B (or the reverse).
Let us now apply these two results to borders :

Proposition 7. (Suppose that F respects the RFA). Let k,k, ,k, € {4,8}, with

1’72
(kl’k2) # (4,4). If X is a k]-connected component of F and Y is a neighbou-

ring kz-connected component of B, then the border Gk(X,Y) is a closed 8-path.

Moreover, for (k],kz) = 4,8), 68(X,Y) is a closed 4-path.
We end this section with the following :

Proposition 8. (Suppose that F satisfies the RFA). Let X be a k-connected

component of F and let Yl,...,Ym be the neighbouring k'-connected components

of X = G\ X. Then :
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(i) B has m k'-connected components Zl,...,Zm neighbouring X, where Z.l c YifWB

(i=1,...,m); Y. is the k'-connected component of X containing Zi (i=1,...,m).

(1ii) For any i=l,...,m, E(X,Yi) = E(X,Zi), 54(Yi,X) = 64(Zi,X), GA(X’Yi) =

64(X,Zi) and GB(X,Yi) = GS(X,Zi).



