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§ VII. Surrounding

In page 336 of [19 ] and in Section 3 of [18 ], the concept of
"surrounding'" is defined.

Let S and T be two subsets of the grid. Then we say that T k—surrounds
S if SN T = ¢ and every k-path from a pel in S to a pel in FG intersects T.

It is clear that "8-surrounds'" imples "4-surrounds'". An example of
k-surrounding is the following : If P is a simple closed k'-path, then 0(P)
surrounds P and I(P), and P surrounds I(P).

The relation "k-surrounds" is a strict partial order relation on
disjoint subsets. In other words, the following hold for any R,S,T C G :

a) If T k-surrounds S, then S does not k-surround T

b) If T k-surrounds S, if S k-surrounds R and if RN T = @, then T

k=surrounds R.

We have also the following two properties :

¢) If S k-surrounds R, if SC T and T N R = @, then T k-surrounds R,

d) If R k-surrounds S and if T C S, then R k-surrounds T.

It follows then that the largest subset of G surrounding R is G \R
and that the smallest subset of G surrounded by R is @.

Finally we have the following :

e) If R surrounds both S and T, then R surrounds S U T,

We deduce that there is a maximal k-surrounded set of R, also called

the k-inside of R and written Ik(R)’ which has the following properties :
(i) R k-surrounds Ik(R)
(ii) If R k-surrounds S, then S c Ik(R)'
The set Ik(R) is simply the union of all sets k-surrounded by R, or
the set of all pels k-surrounded by R. Clearly IS(R) c 14(R).

Note that if P is a simple closed k'—-path, then Ik(P) = I(P).
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The dual concept does not exist. There is no "minimal k-surrounding

set"

of R, because if S and T k-surround R, then S N T does not always
surround R (for example if S N T = @),

We will make the following definition instead :

We say that S k-surrounds T primitively if S k-surrounds T and for

any S' € S, S' does not k-surround T.

The following holds

Theorem 9. S k-surrounds T primitively if and only if S is a simple closed
k'-path and T C I(S). (One can compare this theorem to Theorem 4.4 of [17]).

The proof of this theorem and of the other results of this section
can be found in Appendix 4.

The following consequence of Theorem 9 is immediate:

Corollary 10. For any S C G, Ik(S) = @ if and only if for any simple closed

k'-path P C S, I(P) C 8.

Corollary 11. If P is a closed k-path and if Ik,(P) # @, then P contains a

simple closed k-path.

Now we can define the k-outside of a set R as the set of all pels of
G \R which are not k-surrounded by R. We write it Ok(R)' Then clearly

= U
O (R) = G\(RU I (R)) and 0,(R) C 0g(R).

Note that if P is a simple closed k'-path, then Ok(P) = 0(P).

We will now give two elementary related results.

Lemma 12, Let XC G, y € G \X and let Y be the k-connected component of

G \X containing y. If X k-surrounds y, then X k-surrounds Y.

Corollary 13. Let X, Y C G such that X NY = @, 1If X c 14(Y) and Y is

k-connected, then Y c Ok(X)'
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Now let us apply the concept of surrounding to a figure and its

background. We suppose that F and B satisfy the restricted frame assumption

(RFA). The following result is a generalization of Theorem 3 of [18 ],

whose proof inspired ours :

Theorem 14. Let X be a k-connected component of F and let YI""’Ym be the
neighbouring k'-connected components of B. Then for any 1 = l,...,m,
either :

(a) X k'=-surrounds Yi and X C Ok(Y);
or (b) Yi k=surrounds X and Yi c Ok,(X).

Moreover, there is at most one i such that (b) holds, and this

happens if and only if X N FG = ¢@.

Note. As the RFA is symmetrical between F and B, we can intervert F and B
in the statement of the theorem.

Let us now consider the case where X is a k—connected component of
F and Y is a neighbouring k-connected component of X. For k=4, it is pos-—
sible that neither X 4-surrounds Y nor Y 4-surrounds X (we can for example

take X and Y as in Figure 1-28). For k=8 we have the following

Proposition 15. Let X be an 8-connected component of F and let Yl""’Ym

be the neighbouring 8-connected components of B. Then for any i=l,...,m,
one of the following holds
(a) X 8-surrounds Yi and X E-OB(Yi); moreover, there is a 4-connected
component x* of X which neighbours Yi and 8-surrounds 1it.
(b) Yi 8-surrounds X and Yi C 08(X); moreover, there is a 4—connected
component Y: of Yi which neighbours X and 8-surrounds it.
Moreover, there is at most one i € {1,...,m} such that (b) holds,

and this happens if and only if X N FG = @.
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There is also an hybrid result between Theorem 14 and Proposition 15.

Let us call an 8-connected half-component of a set W an 8-connected union

of 4-connected components of W. We have the following

Proposition 16. Let X be an 8-connected half-component of F and let

Y],...,Ym be the neighbouring 8-connected components of B. Then for any
i=l,...,m, one of the following holds :
(a) X 8-surrounds Yi and X C O8 (Yi); moreover there is a 4-connected
component X* of X which neighbour Yi and 8-surrounds it.
(b) Yi 4-surrounds X and Yi c OS(X)'
Moreover, there is at most one i such that (b) holds, and this

happen only if X N FG = ¢,

Note. As the RFA is symmetrical between F and B, the last two results are
still true if we intervert F and B.

Note that the RFA is essential in Theorem 14 and Proposition 15. If
we do not assume it, then it is possible that for (kl’kZ) = (4,8),(8,4) or
(8,8),for a kl~connected component X of F and a neighbouring kz-connected
component Y of B, neither X 4-surrounds Y nor Y 4-surrounds X. For example,
if we take X to be the upper half of the grid and Y = G \ X.

Given two sets X and Y, it is possible to have Y c OB(X) but Y g OA(X)'

An example is given in Figure 1-29,

0
Now let us define for any set X C G the k-outer edge ¢ k(X) and the
I
k-inner edge € k(X)

Ok
e (X) = e(X, Ok(X)). (67)
Ty
e (X) = e(X, Ik(X))- (68)
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Ik Ok
Then it is clear that : ¢ (X) Ne (X) =@ (69)
e O
and e (XN Ve "X)=e@X. (70)
* ok 3
We can also define the k-outer k -border § 5 (X) and the k-inner
I k
k*~border § " k(X) of X (where k* =4 or 8) as :
k
Ok
6 , (X) =68 _(X,0,(X). (71)
k k
I
8, (0 =8 (XL (X)), (72)
k k
Ik Ok
Then clearly § LX) =6 s X)US P (X). (73)
k k k

Now from Theorem 5, Proposition 6, Theorem 14 and Proposition 15

we deduce the following :

Proposition 17. Let X be an 8-connected set such that X N FG = @#. Then
0

€ k(X) forms a single cycle.

0
This is due to the fact that ¢ k(X) = E(X,Yi), where Yi is the

neighbouring k-connected component of G \ X which satisfies (b).
Now we will study the case where a connected component surrounds
another one which it does not neighbour. We have obtained the following 3

results (we still assume the RFA)

Proposition 18. Let X and Y be each an 8-connected component of F or of B.

If X 8-surrounds Y, then there is a sequence X = Z Z =Y of subsets

02ty
of G such that :
(1) The sets Zj (3=0,...,n) are alternately 8-connected components of

B and F.

(ii) For every i=0,...,n-1, Zi neighbours Zi+1 and 8-surrounds it.
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Proposition 19. Let X be-an 8~connected component of F or B and let

Y be an 8-connected half-component of F or B. If X 4-surrounds Y, then

there is a sequence Z ,...,Zn=Y of subsets of G such that:

0
(i) 2, € X

(1ii) The sets Zj are pairwise disjoint,

(iii) The sets Zj (j=0,...,n) are 8-connected half-components of alterna-

tely F and B.

(iv) For every i=0,...,n-1, Z. neighbours Z.
0 1 1+
4

Moreover (Zi’zi+]) = g (Zi+l) and Zi Cc O4 (Z

1 and 4-surrounds it.

)s

1+1

Proposition 20. Let X and Y be each a k-connected component of F or a

k'-connected component of B. If X 8-surrounds Y, then there is a sequence
X = ZO,...,Zn = Y of subsets of G such that

(i) The sets Zj (j=0,...,n) are alternately k-connected components of F

and k'-connected components of B.

(ii) For every i=0,...,n-1, Zi neighbours Zi+ and 4-surrounds it.

1

(iii) For every i=1,...,n, X 8-surrounds Zi'

Remarks. 1) In Proposition 19, we added that the sets Zj are pairwise dis-

0

joint and that for each i < n e(Zi,Z. ) = € 4

el (zi+l)’ while we did not

mention such things in Propositions 18 and 20. Indeed, in the latter case,

it is obvious that the Zj’s are pairwise disjoint and that E(Zi,Z. ) =

i+1
O4 0

£ (Zi+l) or € S(Zi+l) (according to whether Zi is 4-connected or 8-connec-
ted, see Theorem 14 and Proposition 15).

2) No result like Proposition 20 can be proved if we simply
assume that X 4-surrounds Y. Indeed, in Figure 1-30, the 4-connected compo-
nent X of F 4-surrounds the 4-connected component Y of F and the 8-connected
component Y' of B, but the 8-connected component Z of B which separates X

and Y is not 4-surrounded by X; on the contrary it 8-surrounds it.
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Now we will deal with the neighbourhood tree. In[16 ] the author

defines the adjacency tree as the graph whose vertices are the k-connected

components of F and the k'-connected components of B, and whose edges join
vertices corresponding to neighbouring components; this graph is a tree
(i.e. it is connected and has no cycles). We will call the (kl’k2)_

neighbourhood tree (where kl’ k., € {4,8} and (kl’kZ) # (4,4)) the graph

2

whose vertices are the k ,-connected components of F and the k

1 —connected

2
components of B and whose edges join vertices corresponding to neighbouring
components. The fact that this graph is a tree follows from Theorem 14 and
Proposition 15. 1Indeed, if one represents the graph in such a way that the
vertices are placed in different levels, where a component neighbouring and
4-surrounding another component stands in higher level, then by Theorem 14
and Proposition 15 the graph takes the form displayed in Figure 1-31.

The neighbourhood tree can be oriented : If X neighbours Y, then we
orient the edge from X to Y if X 4-surrounds Y. Then the graph takes the
form of Figure 1-32.

Given the oriented (k],kz) neighbourhood tree, then the relation of
8-surrounding between its vertices can easily be verified. Indeed, Proposi-
tions 18 and 20 imply that if X and Y are two vertices of that tree and if
X 8-surrounds Y, then there is a sequence X = ZO,...,Zn = Y of vertices of
that tree, such that each (Zj, Zj+]) (j=0,...4n-1) is an arrow (i.e. orien-
ted edge) of that tree. Conversely, if such a sequence exists, then
X 4-surrounds Y. Moreover, X 8-surrounds Y if (k],kz) = (8,8). Thus in
this case the existence of such a sequence is a necessary and sufficient
condition for X to 8-surround Y.

However, the relation of 4-surrounding between the vertices of that
tree cannot be deduced from the edges of that tree, as we explained in

relation to Figure 1-30.
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§ VIII. Algorithms for border following and surrounding

In the two preceding sections, we studied the properties of the borders
and of the property of surrounding. However we left out of them the relevant
algorithms, in order not to render these section too heavy.

Let us start first with border—following. Of course the 4-border and
the 8-border can be determined at the same time as the edge by the use of the
edge-following algorithm. In fact, it is the procedure underlying the proof
of Proposition 7. However, one would like to have algorithms computing the
border independently of the edge. Such an algorithm may be more complicated
than the edge-following algorithm, but it requires fewer steps (according to
[161).

First there are evident parallel algorithms to find the borders 64(X)
and 68(X) of a set X. If X is given in matrix form by a truth function

¢X = ¢, where :

$(i,j) =1 if (i,j)) €X ,

(74)

]

0 4f: (E,5) E GLE,

then GQ(X) and SS(X) are given in matrix form by the truth functions

¢4 = ¢84(X) and ¢8 = ¢68(X) defined as follows :

¢,(1,3) = ¢(i,3) A ((avb) = b (1+a,]+b)) (15)
L] 4 H
¢8(ilj) = ¢(i’j) A ((avb) eEu ¢(i+a’j+b))! (76)
p ] 8 .
where By = A 00,.10,01,00 , (0,~17,%-1,053 (77)
and Ug = {(a,b) | a,b € {0,1,-1}}. (78)
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Suppose now that X is given by runs [A,b ] on each row. Write :

[a’b]u= {(u:a)!"':(usb)} (79)

fwhere a < b). In other words, [a,b ]u is a run between a and b on row u.
Now, if (i,3j) € F, then (i,j) € 64(X) if and only if one of the following
holds

- There is a run [ j,n ]i (n=3) in X.

- There is a run [m,] ]i (m < j) in X.

- There is no run [m,n ] (m < j<n) in X.

i-1

- There is no run [m,n ]i+ (m<j<n) in X. (80)

1

Similarly (i,]j) € 68(X) if and only if one of the following holds
- There is a run [ j,n ]i (n=3) in X.
- There is a run [m, ] ]i (m < j) in X.

— There is no run [m,n ]i- (m< j<n) in X.

1

- There is no run [m,n ]i+ (m< j<n) in X. (81)

1

If in addition to the representation of X as a union of horizontal
runs, we give also the representation of X as a union of vertical runs,
then GA(X) is the set of pels which are beginnings or ends of vertical or
horizontal runs.

One can also represent X as a union of diagonal runs, and this can
be done in the two directions. Now if we know the 4 representations of X
as a union of runs (vertical, horizontal and two diagonal), then 68(X)

is the set of pels which are beginnings or ends of vertical, horizontal or

diagonal runs.
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Now let us consider the case where X is a k-connected component of F
and Y is a k'-connected component of B. We wish to compute 64(X,Y) and
SS(X,Y). Then we will use a sequential algorithm, as for e(X,Y).

In [16 ] an algorithm is given for the following of 64(X,Y) for both
k=4 and k=8. We will also give the corresponding algorithm for the follo-
wing of 68(X,Y). This makes thus 4 algorithms. Write A = Su(X,Y) (u=4,8).
For any x,y such that d8(x,y) = 1, define pi(x,y) (where i=0,...,7) the
element z of N8(x) which gets the number i if we number the elements of
N8(x) 0,...,7, starting with y. (In particular y = pO(X,y))- This defi-
nition is illustrated in Figure 1-33. Now our 4 algorithms are the follo-

wing :

ALGORITHM 6

n <+ 0;
(xo,yo) + any from e+(X,Y);
if every ij (xo,yo) (j=1,2,3) € B

then goto 7 else goto 1;

1 : j < smallest w € {1,2,3} such that Pow (Xn;yn) €F
goto 23
8 g ; €
2 3 1f pZJ-](Xn’yn) F then goto 3 else goto 4
3w “Pys_) (x_y)
goto 5;
goto 53

9K 1L (xn,un) = (xo,xl) then goto 7 else goto 6;
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6 : (Xn+l’ yn+1) < (u_,v)
n < n+l
goto 1;

7 : A< {XO,...,xn}

write A

ALGORITHM 7
It is the same as Algorithm 6, except that we replace the statement

3 by the following one :

g s 4 P (Xn,yn)

n n
goto 53

ALGORITHM 8
begin
n < 0;
+
(xo,yo) < any from & (X,Y);
if every pj (xo,yo) (j=1,...,7) € B

then goto 4 else goto 1;

1 : j <« smallest w€ {1l,...,7} such that pw(xn,yn) EF
goto 23

2 : .].‘...:E (anpj (anyn)) = (XO’X])
then goto 4 else goto 3;




. <+
Yot1 ¥ Pjo (x_»y )
n < n+l
goto 1;

4 1 A+ {xo,...,xn}

write 4

ALGORITHM 9
begin
n+ 0
+
(xo,yo) <+ any from e (X,Y)
.ji every Dj(XO,}’O) (j=l,¢04,7) €EB

then goto 7 else goto 1;

1 : j « smallest w€ {1,...,7} such that B (xn,yn) ETF
goto 23
2 :4if j € {1,3,5} and pj+] (xn,yn) EF

then goto 3 else goto 4;

n pj+1 (anyn)

V. =« X
n n

goto 53

4 u < pj (xn,yn)

V. =+ pj_]

goto 5;

(xn,yn)

5 iﬁ (xn,un) = (xo,x]) then goto 7 else goto 6

1

«57
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Xn+1’yn+1) © (un’vn)
n < ntl
goto 13

7 ¢ A<= {xo,...,xn}

write A

end

In[16 ] the validity of Algorithm 6 is proved. The same can easily
be done for the 3 other algorithms. We leave it to the reader. The algo-
rithms end when we get (xn,un) = (xo,xl). We can also end them when we
get (un,vn) = (xl,yl). This choice is equivalent to the original one.

In the [16 ], the author gives another algorithm which is very simple, but
has several defects : 1) it takes many extra steps to follow even a simple
border, 2) it visits some elements twice although they have only consecutive
edges, 3) sometimes it keeps to a 4-connected component, sometimes to an
8-connected component. The same algorithm is presented in pages 290-293 of
[5] and in pages 50-51 of [14 ].

In[17,19 ] a variant of Algorithm 8 (k=8, u=4) is presented. It is
called BF. The basic idea is to associate to each pel a number : 1, 3, 4 for
pels in X and 0, 2 for pels in Y. Starting with the original image (with
pels of X marked 1 and pels of Y marked 0), we start by associating 3 to X,
and 2 to Yo Then we mark the successive pels XpseeesX a8 4, until we find
the pair (xo,yo) = (3,2), which we change to (4,0). Then A is the set of
pels labelled 4. Then we have 4 algorithms of this type, corresponding to
the 4 cases considered above. We call them Algorithms 6', 7', 8' and 9'.
Each Algorithm n' (n=6,7,8,9) is the same as Algorithm n, but with the

following changes :
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1) In the beginning, we label (xo,yo) as (3,2).

2) The test ”(xn,un) = (XO’XI) (or (xn,pY (xn,yn)) = (xo,x]) in Algorithm
8)" is replaced by ”xn has label 3 and there is some i < j such that Py
(xn,yn) has label 2",

3) When we define a new (xn,yn), we change the label of X from 1 to 4.

4) Then A is the set of pels labelled 4.

Some authors have designed border—following algorithms using a moving
2 ¥ 2 window. The one presented in Exercise 17 of [19 ] is equivalent to
the extraction by the border using the edge-following algorithm. There is
a similar algorithm in pages 52-53 of [ 14 ], which can also be found in
[23 ]. Here the window moves by one step along the x-axis or the y-axis
(this gives 4 possible movements : INCX, DECX, INCY, DECY) according to the
disposition of white and black pels in the window. One also defines a
"tangent vector'" which is in fact the element of s+(X,Y) found in that
window. The algorithm stops when one returns to the initial window. We
reproduce in Figure 1-34 the figure of [ 14 ] giving the movement of the
window and the "tangent vector" in function of the content of the window.

Now we will give an algorithm for the detection of all distinct bor-
ders between the components of a figure and those of the background. It
comes from pages 344-345 of [ 19 ], but we have modified its form.

We remark first that if X is a k—-connected component of F and Y is
a k'-connected component of B, then e+(X,Y) has an element (x,y) such that
y is the left neighbour of x. Indeed, such an element corresponds to an
arroy segment of the type ! (see Figure 1-22), and as e+(X,Y) forms a
single cycle and does not contain only horizontal elements (of type = and
<), it must contain a positive number w of vertical elements ( or 1), of

whose w/2 are of type V.
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So we need only to detect the pairs (x,y) € e+(F) such that y is the
left neighbour of x, and for each such pair to determine the border Gu(X,Y)
to which it belongs. This procedure is easier than the comparison of rows
of (80) and (81), and it has the advantage to separate the different bor-
ders.

Let us write :

zZ={(i,j) €F|j >0 and (i,j-1) € B} (82)

We assume the RFA (In [19 ], the authors do not assume it, but they
consider that every (i,0) € F belongs to Z). Clearly Z < SU(F).

We now present the algorithm. Here B is the set of borders Gu(X,Y)
that have been detected, and C is the set of elements of these borders which
belong to an edge element of type . For any (i,j) such that i=0,...,
M-1, j=0,...,N-1 and (i,j) # (M-1,N-1), write (1,3) ¢ for the follower of

(i,3), i.e. the pel (i',j') such that i'N+j' = iN+j+1.

ALGORITHM 10

begin
B <« 0;
C <« 0;

for (i,j) « (0,0) step ¢ until (M-1,N-1)

do if (i,j) € Z \(C then
begin
commen t (i,3) € Gu(X,Y) for some k-connected component X of F and some

neighbouring k'-connected component Y of B;
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A < 6U(X,Y);

I « {(v,w) € A|(v,w-1) € B};

B+« BU {A};

C+«CuUT

end;
comment B is the set of n-borders éu(X,Y) (with X a k-connected component
of F and Y a k'-connected component of Y)

end

We will now consider the problem of reconstructing a figure or a
component from its borders.

First, suppose that we know that X is a k-connected component of F,
that Y is a neighbouring k'-connected component of B, that Gu(X,Y) is known,
and that we know one element (x,y) € a+(X,Y). Then it is easily shown that
we can reconstruct from it the edge s+(X,Y), except 1f (u,k) = (4,4).

Indeed, if (u,k) # (4,4), then for any found element (x ) € s+(X,Y),

Kk
we consider the 2 x 2 square i ; , and we find the following edge element
(xk+l’yk+]) from whether u or v belongs to 6u(X,Y). This procedure is
illustrated in Figure 1-35.

Now for (u,k) = (4,4), case (4) of Figure 1-35 fails. We give an
example in Figure 1-36, where for two distinct images, we can get the same
5, (X,¥), but distinct €' (X,Y).

If we know only 6u(X,Y) (with (u,k) # (4,4)), then we cannot recons-—
truct e+(X,Y). We need a second information, as

(1) an element of e+(X,Y); or

(2) which of X and Y 4-surrounds the other; or

(3) a pel y in Y.
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Indeed, from (2) we can get (1), because if x is the rightmost pel
of SU(X,Y) and if Ve and y,. are the left and right 4-neighbours of x, then
(x,yﬂ) € E+(X,Y) if X 4-surrounds Y and (x,yr) € €+(X,Y) if Y 4-surrounds
X. From (3) we can get (2), becuase X 4-surrounds Y if and only if 5U(X,Y)
4-surrounds y.

In [19 ] , pages 345-346, the authors give a method for constructing
X when for any neighbouring Y, éu(X,Y) and an element of E+(X,Y) are given
(they suppose there that (k,u) = (8,4)).

Note that if €+(X) is given, then it is trivial to reconstruct X,
because X is the union of horizontal runs [ a,b ] such that a is bordered
on the left by an edge element +, b is bordered on the right by an edge
element +, and there is no vertical edge element of E+(X) between pels of
[a,b].

Let us now consider the problem of k-surrounding.

Given a set X, Ok(X) is the k-connected component of G \X containing
FG \X. This k-connected component can be found by Algorithm 2 ("propaga-
tion") for example.

If X is a kl—component of F and Y is a neighbouring k,-component of

2
B, where (k],kz) # (4,4), then the two following tests determine which of
X and Y surrounds the other (see Theorem 14 and Proposition 15)

Test 1. Let x = (i,j) be a pel of X such that j is maximal. Then we have

the following :

(a) If j=N-1 or if j < N-2 and y = (i,j+1) € Y, then X k.-surrounds Y

2

(b) If j < N-2 and y = (i,j+1) € Y, then Y kl—surrounds X.
Test 2. Let x = (i,j) be a pel of SU(X,Y) (where u = 8 or 4) such that j
is maximal. Then either :

(a) X kz—surrounds Y, =1 and Yp = (i,ij-1) € Y; or

(b) Y k]—surrounds X, j < N-2 and A (i,j+1) € Y.
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The proof is elementary and follows from Theorem 14 and Proposition
15.

If we know the set C of kl—connected components of F and of k2-
connected components of B, if we know which element of C contains FG (we
assume the RFA) and what is the neighbourhood relation on C, then we can
construct the oriented (kI,kz)—neighbourhood tree (see Figure 1-32).
Indeed, we start with the element Z of C containing FG, and we put an arrow
(Z,Y) for any y € C neighbouring Z. Then for any such Y, we put an arrow
(Y,X) for any X € C neighbouring Y such that X # Z. Then we continue in
the same way; whenever we have an arrow (U,V), we mark an arrow (V,W) for
any W neighbouring V such that W has not yet been considered. We stop when
there are no more elements of C left.

If the image is given as a union of black and horizontal runs, if
for every run we know the number of runs of the same colour in the next row
that are adjacent to it (we use k-adjacency for black runs and k'-adjacency
for white ones), then one can derive from that information the (k,k')-

neighbourhood tree (see [1 ] and § 5 of [18 ]).
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§ IX. The Euler number (or genus) of a figure

The concept of the Euler number (or genus) is defined for surfaces
in a space over the real numbers. Indeed, let S be such a surface. We
draw on it a graph G such that two edges of G may intersect only in a
vertex of G, and that S is decomposed by G into simply connected surfaces
called faces. One often chooses G in such a way that all faces are triangu-

lar; then this decomposition is called a triangulation. Let v be the number

of vertices, e the number of edges and f the number of faces of G. Then

the number

g(8) = v—e+f (83)

is independent of the choice of G. This number is called the genus or

Euler number of that surface.

It is well-know that the genus of the Euclidean plane (or the sphere)
is equal to 2.

Consider now a bounded and connected surface S of the plane having
h holes and let us decompose it by a planar graph as explained above (see
Figure 1-37), obtaining v vertices, e edges and f faces. Now this decompo-
sition is also a decomposition of the plane, but the plane has h+] more
faces : the h holes of S and the portion of the plane surrounding S. We

get then :

2=g (plane)= v-e+(f+1+h) = g(S)+h+l, (84)

in other words we have :

g(S8) = 1-h. (85)
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Now if S is not connected and has ¢ connected components SJ,.,.,S

C
having respectively h],...,hC holes, then § has h = hl+"'+hc holes and we
get

8(S) = g D+...+g(S ). (86)
= (]~h1)+...+(]—hc,
= c¢-h. (87)

Thus the genus of a bounded surface is equal to its number of compo-
nents minus its number of holes.

Now let us turn to grid surfaces. If F is a figure, then we want
to define the genus of F in such a way that (87) holds. But then the defi-
nition depends on the choice of the adjacency relation for F and B. If we

take the k-adjacency for F and the k'-adjacency for B, if we call a k'-hole

a k'-connected component of B neighbouring a k-connected component of F and
4=surrounded by it, then we define the (k,k')-genus of F as the number of
k-connected components of F minus the number of k'-holes of B. We write it
g(k,k.)(F)-

As we assumed above that the surface S is bounded, we make the EEEEE
assumption of F.

Now we want to find a decomposition of the figure F —or of a world
surface F* similar to F- such that we can apply (83).

In fact, we will choose as graph G a graph defined on the dual grid,
whose vertices are the pels of F and whose edges are some pairs of 8-
adjacent pels. The surface F* will be the portion of F (as world surface)
enclosed in G.

Let us define the numbers v,e,d,t,s,d* and t* as the number of confi-
gurations in F which are -up to a rotation of k % (k=0,1,2,3)- equal to the
configurations V,E,D,T,S,D* and T* shown in Figure 1-38. It is easily seen

that we have



t* = t-4s (88)

(by counting the number of pairs (X,Y), where X C Y, X is of type T and Y
is a square),

* *
and d = d-2s-t

= d-t+2s. (89)

(by counting the number of pairs (X,Y), where X € Y, X is of type D and Y
is a square).

Let us now consider the case where k=4. We define the graph G on
the dual grid ¢ as follows : the vertices of G are the pels of F and the
edges of G are the pairs of 4-adjacent pels in F. Let P be the world
surface equal to the portion of F (as world surface) enclosed inside G.
It is clear that under this decomposition of F*, the faces of G are the
condifurations of type S in F.

We have illustrated this construction in Figure 1-39. It is easily
seen that there is a 1 to 1 correspondence between the 4-connected compo-
nents of F and the connected components of F*, and between the 8-holes of

F and the holes of F*. Hence g(4 8)(F) = g(F*) by (87). By (83) we get :
-

g(4’8)(F) = v—e+s (90)

If k=8, we do the same thing, except that we add to G the following
edges : the pairs of diagonally adjacent pels in configurations of type D*
and T*. Then the faces of G are the configurations of type S and 7" in F.

We illustrate this construction in Figure 1-40. We have algo
g(8,4)(F) = g(F*), for an argument similar to the one used above. By (83)
and (89) we get



1.67

8eg,4) (F) = v=(erd +£ )+ (sre )

e e (91)

I

v-e-d+t-s. (92)
The formulas (90) and (92) can be found in page 349 of [19].
We will now give another formula, which comes from [8 ] and can also
be found in page 349 of [19].

Let Q be the configuration 1

00 and R the configuration

1
00° Let g
and r be the number of configurations in F which are —up to a rotation of
k % (k=0,1,2,3)- equal to Q and R respectively.

By counting the number of pairs (X,Y) such that X C Y, X is of type

E and Y is 4a square, we get :

2e = r+2t*+45
= r+2t-4s (using (88))
and hence :
r = 2e-2t+4s, (93)

By counting the number of pairs (X,Y) such that X C Y, X is of type

Vand Y is a square, we get :

by = q+2r+2d*+3t*+és
= qtbde-4t+8s+2d-2t+4s+3t—12s+4s
= qt+he-3t+2d+4s (using (88),(89) and (93))
and hence
q = 4v-be+3t-2d-4s. (94)

Then it is easily checked that by (88), (89), (90) and (91) we have :

(q—t*+2d*) = y—e+s = 8(4 8)(F) (95)

| =
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and :

% (q—t*—Zd*) = v-e+s-d (F) (96)

~€(8,4)

Note that in[19 ], (95) and (96) are interpretated as follows : the
genus of F is one fourth of the number of convex corners minus the number
of concave corners.

Other formulas for the genus of a figure can be found in[8 ].
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Note : Elementary topology of the hexagonal grid

It seems that most of the topics of this chapter are relevant to
the hexagonal grid. Thus one can speak of paths (instead of k-path), of
the hexagonal distance d (corresponding to d4 and d8), of simple closed
paths, of surrounding (instead of k-surrounding), of the border &§(X,Y)
(instead of the k-border Gk(X,Y)), of the edge—-following algorithm (which
is then unique, since it does not depend on k or k'). Moreover, it is
likely that all important results of this chapter can be proved in the
hexagonal case, but they become simplified by the uniqueness of the adja-

cency relation.
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Appendix 1. A sequential algorithm for computing distances to a set

Let U be a set of pels. Suppose that the pels of G are ordered; we
label them Xgs oo s X (we suppose that the grid is finite). Let d be a
regular distance. Assume the following :
c < i c
If {xb,xc} C Nd(xa) for a < b,c, then either {xb,xc} - Nd(xe) for
some e > b,c, or {Xb’xc} c u. (97)

If X & U, then there exist b < a such that

Xy € Nd(xa). (98)

Now if d is isotropic, then for two pels x = (i,j) and y = (i',j'"),
y € Nd(x) if and only if (i'-i, j'-3]) € I for some set I invariant under
the transformations (u,v) - (+u, +v) and (u,v) - (+v,*u). Let q = |I| and
let Fd be the set of pels x such that |Nd(x)] < q. For example, if d = d4
or d8, then Fd is the frame FG.

If we order the pels in the lexicographical order, then for an iso-

tropic distance d, conditions (97) and (98) are implied by the following :
F._CU. (99)

Indeed if in (97) =, = (1a, ja), X, = (lb’ Jb) and E, = (1c’ Jc),
then if Xy & Fd we have only to take X, = (1b+1c-1a, Jb+JC—Ja) (in other

words X o XX, and X, forming a parallelogram) and then xe has the required

properties. On the other hand, if %" (ia,ja) in (98), then we take

X, = (ia+i,ib+j), where i < 0 or i = 0 and j < 0.

Let us now give a consequence of (97) :
For any X € G, if d(xA,U) = r > 0, then there is some s € {0,...,1r}

and a sequence X_ ;X ,.14,%X y X such that :
a a a a
0 1 r—1 r
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(i) X =x and x €U
a a a
0 r
(i1) X, € Nd (xa.) for i=0,...,r.
1+1 i
‘. & E o
(i11) a; < ai for 0 <1 < g-1.
a; > a1 for s < i < r-1. (100)

Indeed, by the regularity of d, we know that there is a sequence

satisfying (i) and (ii). For any such sequence, we write

A. =1 1if a. < a.
i 1 i+1
= 7 < ] < -
0 if a; > a1 (0<1i<r-1)
r—1
and A= ) ix..
. i
i=0

If we take such a sequence with minimum A and if (iii) is not satis-

fied, then there is some i € {0,...,r-2} such that a, > a1 < a.,,, in

1. By (97) there is some a! such that

other words Ai = 0 and Ai+ i+

1

€ <. 8" > E, i ;
X, 0%, Nd(xa! ) and a; aly a9 By replacing a1
i i+2 i+1

the sequence, we get Ai = 1 and Ai+

by a£+] in
1= 0, and so A is decreased by 1,
which is a contradiction. Thus (iii) holds.

Now the algorithm can be performed in two passes over the pels X

the first one the direct order, and the second one in the reverse order.

Indeed we define sequentially :

g(xa) 0 if X, € U,

1 + min{g(xb)[xb € Nd(a) and b < a}
if xa & U, (a=0,...,NM-1), (101)

and then :
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h(xa) = min{g(xa),1+h(xb)|xb € Nd(a) and b > a},

(a=NM-1,...,0). (102)

Now we claim that h(xa) = d(xa,U). First we show that g(xa) >
d(xa,U) for any a=0,...,NM-1. We use induction on a. If a=0, then it is
true by (98). If a > 0 and the result is true for b < a, then either a € U
and so g(a) = 0 = d(xa,U), or there exists some b < a such that Xy € Nd(xa).

For any such b we have :

g(xb) > d(xb,U) (by induction hypothesis)

and d(xb,U) > d(xa,U)—] (by triangularity)
Therefore, we get :
I+g(xb) = d(xa,U).

Using (101), it follows that g(xa) = d(xa,U). By induction hypothe-
sis, the result is thus true for any a.

We now show that h(xa) = d(xa,U) for any a. If a = NM-1, then
h(xa) = g(xa) and so the result holds. Suppose that a < NM-1 and that the
result holds for b > a, If there is some b > a such that Xy = Nd(xa),

then we have for any such b :

h(xb) = d(xb,U) (by induction hypothesis

and d(xb,U) = d(xa,U)-] (by triangularity)

Hence we get :

I+h(x,) = d(xa,U).

b)

Using (102) and the fact that g(xa) = d(xa,U), we obtain that

h(xa) = d(xa,U). By induction hypothesis, the result is thus true for any a.



Finally we show that h(xa) < d(xa,U) for any a. We use induction
on r = d(xa,U). If r=0, then g(xa) = 0 and h(xa) = 0 by (101) and (102).

Suppose that r > 0 and that the result is true for any x, such that

b
d(xb,U) < By
Consider the sequence X = X_ ,X ,...,X € U described in (100). It is
a ay’"a, a
clear that d(xa ,U) = r—-i for i=0,...,r. We have two cases : s> 0 or s=0.

i

If s > 0, then a, > a and we have thus by (102) and the induction

1

hypothesis :
h(xa) < 1+h(xal) < l+d(xal,U) = r,
If s=0, then asi < a; for i=0,...,r-1 and (101) implies that for
1=0,...,r=1

<
g(xa') g(xa. )+1
1 1+1

As g(xa ) = 0, it follows that g(xa) = g(xa ) = r and so (102)
r 0
implies that h(xa) S r. Thus the result holds for a in any of the two cases.
By induction hypothesis, it holds for any a.

This algorithm is presented in page 356 of [19 ] in the case where

d=d4, and a short proof is given in [20 ].
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Appendix 2. Proofs of propositions concerning simple closed paths

Proof of Proposition 1. From the center of any pel z € B we can draw a half-

line L in any direction and a perpendicular line M; then M and L determine

two quarters of the plane, II. on the right of L and I, on the left (see

1 0

Figure 1-41). It is clear that for any v=0,...,n-1, |av(z)| < % . Thus if

P crosses L, then it passes from a pel in I, (including the right side of M

1

but not L) to a pel in HO (including L), or conversely. Now ap(z) is the
number of times that P turns around z. Thus it is equal to the number of

u € {0,...,n~1} such that x € II, and x € II., minus the number of
u 1 u®l 0

e - € S . 1
v € {0,...,n-1} such that x, €T, and o1 I If one has two pels z

and z' € B, one can make the construction of Figure 1-42, It is clear that

P cannot go from HB to HD or from HA to HC. Therefore o (z)—up(z') is the
(S - S (S5 i
number of u € {0,...,n-1} such that X HA and X @1 ,, minus the
= = e e . . :
number of v {0,...,0-1} such that X, HD and L HA Applying this

to Yo and Vs the result follows.

Proof of Theorem 3. As said in (45) for any t=0,...,n-1, BN S8(xt) has

two k'-connected components. Now it is easily seen from Figure 1-15 that

Sq (

3 ) intersects both of them.

tol

Let us now show that SS(Q) N B has at most 2 k'-connected components
(here Q is the set defined in point (iii) of the Theorem). We use induc-
tion on s. If s = 0, then the result holds by our preceding remark.
Suppose that s > 0 and that the result holds for s-1. Write Q' = {xr,...,

» M = N i N M !

R @ (s—])} Now B Ss(Q) (B 88(Q )) U (B 88(xr ® S)), both B 88(Q )
and B N S8(xr ® S) have at most two k'-components, and by our preceding

remark (with t=r ® s), both k'-connected components of B N SS(Xr ® S)
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intersect S8(xr ® (s-l)); thus they intersect B N 88 (xr ® (s—l)) c

BN SB(Q'), and it follows that B N SB(Q) has at most two k'-connected com-
ponents, and the result holds for s. Thus it holds for any value of s, and
in particular for s=n-1; in other words, B N SS(P) has at most two k'-connec-
ted components.

Now it is clear that any pel y € B is 4-connected in B to a pel
z€ BN SS(P);indeed there is a 4-path from y to any X € P, and the pel
of that path preceding the first pel in P can be chosen as z.

Therefore B has at most two k'-connected components, containing each
all the pels which are 4-connectéd in B to a same k'-connected component of
SS(P) N B.

If y € FG, then ap(y) = 0, because P cannot pass beyond the side of

FG to which y belongs. (See also the proof of Proposition 1 and Figure

1-41).

If we take y and z in two distinct k'-connected components of
58(xr) M B, then it is easily seen from Proposition 1 and Figure 1-15 that
Jap(y)-up(z)| = 1. More precisely, we have ap(z) = ap(y)—l if (xr o1 Xpo

X o 1) leaves z on its right, while we have ap(z) = ap(y) + 1 if it leaves
z on its right.

It follows thus from Corollary 2 (iii) that y and z do not belong to
the same k'-connected component and so B has at least two k'-connected com-
ponents. By what we say above, it follows that B has two k'-connected com—
ponents C0 and Cl’ where CO contains a pel u € FG, By Corollary 2 (iii),
ap(v) = up(u) = 0 for any v € CO’ while ap(v) = ¢ for any v € CI’ where € 1is
a constant equal to 1 if P leaves C, on its left and -1 if P leaves C, on

1 1
its right (this follows from the preceding paragraph).



Clearly C, N SS(Q) and C, N 88(Q) are k'-disconnected in B. As

0 1

BN SS(Q) has at most two k'-conmnected components, it follows that

c, N SB(Q) and C

0 n SB(Q) are the two k'-connected components of B N SS(Q).

1

Consider x € B and the set H(x) defined before Theorem 3. When
H(x) intersects P in a run R, let y be the pel in H(x) preceding R and z
be the one following it. Clearly y,z € SB(R), and it follows from the defi-
nition of touching and crossing that if H(x) touches P in R, then y and z
belong to the same k'-connected component of S8(R), while the contrary holds

if H(x) crosses P in R. As these two connected components are C, N SS(R)

0
and C1 N S](R), there is a touching if and only if y and z belong to the

same k'-connected component Ci (i=0,1). If u is the last pel in H(x), then
u € FG C CO' If x € I(P), then there is an odd number of crossings and so

x €C If x € 0(P), then there is an even number of crossings and so

1
X & CO.

Therefore C0 = 0(P) and Cj = I(P).
Hence the points (i), (ii), (iii) and (v) of the Theorem hold. Now
point (iv) follows from the fact that for any such symmetrical y and z,

they belong to distinct k'-connected components of Sg(xr) N B, as can be

seen in Figure 1-15.
Proof of Proposition 4. Define the closed k-path P' = (xé,...,x&) as
follows :

(i) Xy = X,

(ii) TIf for some i = 0, x! X i
1 n-1

]

then set m=1i

(iii) For i = 0, if x! # x
i n

_1 then let j = max{r € {0,...,n—]}|ni, €N

k

1 —
(Xr)} and set Xig] = Xj'

Then it is easily checked that P' is a simple closed k-path and that
p

x' = x and x! = x,, in other words that x s, X, and X, are successive
m n—1 1 1 n—1 0 1

pels in P'.
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Now S8(xo) N B must by hypothesis be one of the configurations of
Figure 1-15, except that in the second one for k=4, the condition may not
hold. Then one easily verifies that SS(XO) N B has two k'-connected compo-
nents, which are included each in one of the two connected components of
Sg(xo) N B' (where B' is the background of P'), in other words in I(P')

and O(P').



Appendix 3. Proofs of propositions concerning edges

Proof of Theorem 5. We have only to prove the result for E(XA’YS)’ because

the result for E(XS,YA) follows then by interchanging F and B. We subdivide
*
each pel of G in 9 as shown in Figure 1-43, and we get then a new grid G .
*
For any set V of pels, write V for its image by this transformation.
Now this transformation respects the RFA, the property of k-connec-—
*
tedness and the relation of neighbouring between sets. Thus X4 is a
*
4-connected component of F, Y8 is a neighbouring 8-connected component of B
d Y.) b Y
an E(X4, 8) ecomes E(XA, 8)'
* ) * % * : * %
Let C be a cycle in E(X4,Y8). Let P be the portion of 68(X4’Y8)
* * %
along C . It is easily seen from Figure 1-44 that for every pel x € P ,
*

* * *
[N4(x )y NP | =2, As C 1is a cycle, P 1is a simple closed 4-path.

* * *
Let R be the background of P . By theorem 3(i), R has two 8-connec-

* * * * *
ted components, I(P ) and O(P ). As Y8 is 8-connected and Y8 C R, we have
* * * * * * . * *
Y8 C I(P) or Y8 C 0(P ). We can suppose that Y8 C o(p ) (if Y8 C IR

*
.

* * *
then we interchange I(P ) and O(P ) in the following argument). Now P C X4

For any three successive edge elements in c” arising from a single edge
element of E(Xa'Ys)’ we get the configuration of Figure 1-45. Following
Theorem 3 (iv), it follows that the three pels in the bottom row of that
square belong to P* or I(P*). In particular, the one in the middle of that
row belongs to I(P*). Thus I(P*) N Xz # 0. Now XZ is 4-connected. Let

* * * * * .

X € XA N I(P) and let y be any other element of X4; then there is a 4-
* * . . . * * * * .
path Q C X4 joining X and y . If Q intersects O(P ), then the first pel

% ; ;
2" of Q" n O(P*) belongs to Y;, since it belongs to 64(0(P*),P*), a set
which is included in Y;, as can be seen from Figure 1-45. But this is impos-—

; : %
sible, since Q* C XZ. Thus Q* C P* U I(P*) and so y* €p’ U I(P ). As y*
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) * % * * * *
was an arbitrary element of X,, X4 CP VI ). If u€ X4’ v € YS and
* * * % *
{u,v} € E(X4’Y8)’ then v € 0O(P ), u € P U I(P ) and d4(u,v) =1, It follows
* * *
then (by Theorem 3(i)) that u € P and so that {u,v} € C . Thus C 1is the

*
only cycle of E(XA,Y;) and so €(X4,Y8) has only one cycle.

Proof of Proposition 6. We will in fact show the following result : If Y is

an 8-connected component of B, if X is 8-connected and is a union of 4-
connected components of F, and if X and Y are neighbouring, then e+(X,Y)
contains only one cycle. This result contains Proposition 6, because X8 is
a union of 4-connected components of F.

We use induction on the number t of 4-connected components of F con-—
tained in X. If t=1, then the result holds by Theorem 5.

Suppose now that t > 1 and that the result is true for 1,...,t=1.

Write X = Zl uo.,.,. U Zt’ where Z ,...,Zt are 4—connected components of F,

1
At least one of the sets Zi must be neighbouring Y. We may suppose that it

is Z;+ Let U]""’Us be the 8-connected components of X \Z, 6 ; each u; is a

K
union of Zj's. As X is 8-connected, Z] is 8-connected to each Ui'
*
We make the same transformation from G to G as in the proof of

)
Theorem 5. Then taking P = 68(ZT’Y*)’ p" is a simple closed 4-path and we

*

) * * * * * * *
have either Y C 0(P ) and Z] CP UI( ), or Y CI(P) and Z1

*
CP U O(P*).
* ®
We can assume that the first holds (otherwise we interchange I(P ) and O(P )
in the following argument).
For i=l,...,s, either Ui is not neighbouring Y or Ui satisfies the
same hypothesis as X, but with a smaller number of 4-connected components.
+ , * * * * *
In that case ¢ (Ui’Y) forms a single cycle. As P C Z, Ui CI(P )V O);
* * * * * * *
as Ui is 8-connected, we have Ui C I(P ) or Ui C 0(p ). 1f Ui C I(P ), then
* . . * . * * . .
Ui may not be neighbouring Y (since Y C O(P )), and so Ui is not neighbou-

ring Y.
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* * *
Hence if Ui is neighbouring Y, then Ui - 0(P ), and Ui is 8—connected

* ® * * * *
to Z, CI(P)UYP ., As O(P ) is not 8-connected to I(P ), Ui is 8-connected

o

da u * *
such that z € P and u € U.,
z b i

* *
but a,b ¥ F (since Ui is not 4-connected to Zl)° Thus a,b € 0(P ) (since

to P . Thus there is a 2 x 2 rectangle

* *
a,b # P and O(P ) is 8-connected), and so a,b € 64(O(P*),P*). Now 64(O(P*),

* *
P ) €Y (this is explained in the preceding proof with Figure 1-45). Thus

a. u.
L

. b.
1 1

* *
a,b € Y and the square in G as in the center of a 2 x 2 square

au
z b
€ Z

in G, with a,,b, € ¥, z. and u. € U,.
124 i i i

1
Now e+(Ui,Y) contains the two successive elements (ui,ai) and (ui,bi),
while e+(Zl,Y) contains the two successive elements (Zi’bi) and (Zi’ai)'
Now we know that e+(Zl,Y) and E+(Ui,Y) form each a single cycle. Now we
change the ordering of the edge elements of e+(X,Y) in the following way :
- (zi’bi) is followed by (ui,bi) (i=l,...,8)
- (ui,ai) is followed by (zi,ai) (i=l,...,8)
Then the cycles of E+(X,Y) are merged in a single cycle and so the

result holds.

Proof of Proposition 7. Write €+(X,Y) = {EO,...,EH_I}, where e, = (Xi’yi)

(xi € X,yi € Y) for each i. Now for each i, €; and Ej (where j = i+l (mod
n)) form (up to a rotation) one of the configurations of Figure 1-46.

We have 54(X,Y) = {xo,...,x }. Now it is clear from Figure 1-46

n-1
that each X is an 8-neighbour of Xj' Thus SB(X,Y) is a closed 8-path.

Now we can write SS(X,Y) = {xo,zo,...,x _

E ],zn_]}, where z; is an

element of X between X, and x,, which is 8-adjacent to Y. Concretely we
have z, = X, in (a) and (b), while in (c) z, = %, if v € Y and 2, =V if

v € X.
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Then it is clear that X, and xj are 8-neighbours of z, and so GS(X,Y)
is a closed 8-path. Moreover, if X is 4-connected, then a+(X,Y) can be found
by the edge-following mapping E+, in other words, we have e. = €; E;. It
follows thus (see Figure 1-23) that in (c) we must have v € X and so z, = V.

But then it is easily checked that X, and xj are in (a), (b) and (c)

4-neighbours of z; and so 68(X,Y) is a closed 4-path.

Proof of Proposition 8. It is clear that e(X,X) = &(X,B). Moreover, it is

easily seen that e(X,X) and €(X,B) have the same cycles under the edge-
following algorithm, because this algorithm depends only on the shape of X.
If Y],...,Ym are the k'-connected components of X neighbouring X, then these
cycles are a(X,Yl),...,s(X,Ym). Moreover, B has m k'-connected components
neighbouring X, say Zl,...,Zm, where E(X,Yi) = s(X,Zi) for each i=1,...,m.

It follows that 6,(Y;,X) = 8,(Z;,%), §,(X,Y,) = §,(X,2,) and 8,(X,¥,) =
GS(X,Zi) for each i. It is clear that each Yi M B is a union of k'-connected
components of B; as Zi and Yi M B have 64(Yi,X) in common and as Zi is
k'-connected, Zi Ein M B and so Yi is the k'-connected component of X con-

taining Zi for each 1i.
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Appendix 4. Proofs of results concerning surrounding

Proof of Theorem 9. The "if" part follows from Theorem 3(iii). The "only

if" part is proved in 4 steps
Step 1. We may suppose that § N FG = @,

Proof. If S N FG # P, then we extend the grid by one pel on each side of

FG, and we get a new grid G' with frame FG'. We have then S N FG' $ and
we have only to prove that S k-surrounds T primitively in G'. If P = (XO,
...,xm_]) is a k-path from a pel in T to a pel in FG', if X is the first
pel in P such that X € FG', then P' = (xo,...,xn_l) is a k-path from a
pel in T to a pel in FG and so P' intersects S; thus P intersects S. If

§' € S, then there is a k-path Q = (YO""’ym—J) joining a pel in T to a

is 4-adjacent

pel y _, in FG such that Q does not intersect S. Now Yoe1

c ‘. _ v g
to a pel Y FG'; hence the k-path Q (yo,...,ym_],ym) joins a pel of T
to a pel of FG', and Q' does not intersect S. Therefore S surrounds T pri-

mitively in G'.

Step 2. Let V be the k-connected component of G \ S containing T, and let
W be the one containing FG. Then V # W and for any y € S, Nk(y) NV # 9 ¢
N (y) N W,

Proof., If V=W, then T is k-connected to FG in G \' S, which is impossible;
thus V # W. Let y € S. As S k-surrounds T primitively, S \{y} does not
k-surround T. Thus there is a k-path P from T to FG, which does not inter-
sect 5\ {y}; however P intersects S, since S surrounds T, and so P N Y ={y}.
As P is a k-path from V to W, it follows that the pel v preceding the first
occurrence of y in P belongs to V, and that the one w following the last

occurrence of y in P belongs to W. As v, w E Nk(y), the result holds.



Step 3. Choose y = (i,7) € S such that iN+j is maximum. Then Nk,(y) ns=
iyV, "}, with " & N (y), and Sg(y) \'S has two k-connected components,
namely SB(y) N V and Sg(y) N W,

Proof. It is clear that the pels (i,j+1), (i+1,j-1), (i+1,j) and (i+1,j+1)
are in G \S and are 4-connected to FG in G \S (by the path (x],...,xn_l),
where X, = (i+r,j) and n=M-i ; hence they belong to W.

Now y has a k-neighbour x € V. As V is not k—connected in G \S to
pels in W, there must be two k'-neighbours y' and y" of y such that x lies
between y and y' in Ss(y) (see Figure 1-47). If k=8, then the result
holds, TIf k=4, then the result holds, except if N8(y) contains 3 elements
y',y',y* of S. This situation is illustrated in Figure 1-48. Now we get
a contradiction as follows

In a), y' has a 4-neighbour in V. Thus u € V. But then we must
have z € S, since u may not be 4-connected to W in G \'S. But now z=(i',j")
with i'N+j' > iN+j, which contradicts the hypothesis.

In b), y* has a 4-neighbour in W. Thus f € W and hence ¢ ¢ V, since
V and W are not neighbouring. Now y'" has a 4-neighbour in V. As c € V,
it follows that d € V., As d is not 4-connected to W in G \'S, we must have
g € 5. But themn g = (i',3') with i'N+j' > iN+j, which contradicts the

hypothesis.

Step 4. The result holds.

Proof. Let Y be the k'-connected component of S containing y. Then

Y = Sk(Y,V) and by Proposition 7, Y is a closed k'-path. By Proposition 4,
Y contains a simple closed k'-path P such that y', y and y" are successive
pels in P. By Theorem 3 (iii) and by Step 3, {I(P) N SS(y), o@E) N SB(y)} =

{fvn SS(y), wnN Sa(y)}. As I(P) and O(P) are the two k-connected components
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of G\P, as FG C W and as V and W are k-connected, we have V C I(P) and
wc 0(P). Thus P k-surrounds V, and as T €V, P k-surrounds T. As P C S

and S k-surrounds T primitively, P=S and the result holds.

Proof of Lemma 12, Let z € Y \{y} and let Q be a k-path from z to FG. By

definition of ¥, there is a k-path R from y to z such that R does not inter-
sect X. Let P be the k-path built by concatenating R and Q. As X surrounds
y and P is a k-path from y to FG, P must intersect X and so R intersects X.

Thus X k-surrounds z and the result holds.

Proof of Corollary 13. If Y’E{Ok(X), then there is some y € Y such that
X k-surrounds y. But then X k-surrounds Y by Lemma 12, which is a contra-

diction.

Proof of Theorem 14. By Corollary 13, it is clear that if X 4-surrounds Yi’
then X C Ok(Y), and that if Yi 4-surrounds X, then Yi c Ok,(Y). Thus the
results (a) and (b) reduce to

(a) X k'=-surrounds Yi'

(b) Yi k=surrounds X.

Suppose that for some i = 1,...,m, result (a) does not hold. Then
FG C G \X and Yi is k-connected to FG in G \X. Now by Proposition 8 the k'-
connected component of G \X which contains Yi and FG may not contain any
other Yj, j#i. Therefore there is at most one i € {1,...,m} such that Yi
does not satisfy (a). Moreover, this happens if and only if FG € G \X,
i,e. FG N X = ¢,

Let P = (xo,...,xn_]) be a 4-path from a pel of X to a pel of FG. Let
x be the last pel in P which belongs to X. Then x & F (since x €N

u+1l u+l 4

(Xu) and X is a union of 4-connected components of F) and so X4l € Yj for
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some j=l,...,m. If j#i, then Q = (x n—l) is a 4-path from a pel

SRERERTE S
in Yj to a pel in FG and Q does not intersect X; this means that X does
not 4-surround Yj, which is impossible, since Y. satisfies (a). Hence

j=1 (i.e. x € Yi) and as P was chosen arbitrarily, it follows that Yi

u+l
4-gurrounds X.
As the RFA is symmetrical between F and B, we can apply the prece-
ding argument to Yi’ where we intervert B and F and also k and k'.
Thus if the k-connected components of F neighbouring Yi are X = Zl’
""Zw’ then for any j=1,...,w, Yi k-surrounds Zj or Zj 4—surrounds Yi'
As Yi 4-surrounds X, X may not 4-surround Yi. It follows then that Yi

k-surrounds X and so Yi satisfies result (b).

Now we prove first Proposition 16, and then Proposition 15.

Proof of Proposition 16. If Yi 4-surrounds X, then Yi c 08(X) by Corollary

13, and so (b) holds. If Yi does not 4-surround X, then consider the

4-connected components Z sevesZy of X which neighbour Yi' If some Zj

1

8-surrounds Yi’ then X 8-surrounds Yi and X E-OB (Yi) by Corollary 13, in
other words (a) holds. If this does not happen, then Yi 4-gurrounds every
Zj by Theorem 14. As Yi does not 4-surround X, there is some y,z € X such
that Yi does not surround y and z € Zj for some j=1,...,u. As X is 8-con-

nected, there is an 8-path P = (YO""’Yn~]) such that Yo, " % My = ¥ and

each ¥ (s=0,...,n-1) belongs to X. Let % be the last pel in P which is

4-gurrounded by Yi; then v < n—-1. Write x then there is a 4-path

0~ Yy+1?

Q = (xo,...,xg_l) connecting Yariii to FG, such that Q does not intersect Yi'

If we N4(yv) N N4(y ), then the 4-path R =(yvn5x0,...,xg_1) connects y_

v+ 1
to FG. As Yi 4=-surrounds yv R must intersect Yi’ and as Q does not inter-
sect Yi’ we get w € Yi' Thus Yy+1 neighbours Yi and so Vsl € Zj for some

j=1,+...,u, which is a contradiction, since Yi 4=surrounds Zj, but not Yug®
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Thus we have proved that either (b) or (a) holds.
Clearly if FG € X, then (b) holds for no Yi' Let us now show that
if XN FG = P, then (b) holds for exactly one Yi'

Let X ..,Xt be the 4-connected components of X which are not

1’

8-surrounded by other 4-connected components of X. Then X' = X] u.,..u Xt

is 8-connected. Indeed, given any x,x' € X', there is an 8-path P = (xo,

...,xh) such that Xg = X, X = x' and every X € X (r=1,...,h). Now for
any r=l,...,h, X € X' or X € IS(Xq) for some g=1,...,t. If for some r,
i < . € < ] <
s (with r s) we have R b By & 18 (Xq) but xJ IS(Xq) for r < j S,
€ i = “en
then we have X 19%arq Xq and so the portion Q (xr—l’xr’ ’Xs’xs+l)

of P can be replaced by a path Q' in Xq. Thus if we make this replacement
for any such r, then P is replaced by an 8-path P' which is included in X',
and so X' is 8-connected.

If for two distinct p,q € {1,...,t}, Xp and Xq are 8-adjacent, then
there is some x € Xp and x' € Xq such that x and x' are 8-adjacent, but
not 4-adjacent. Let y € N4(x) N NA(X')' Then clearly y € B. As Xp does
not 4-surround Xq, % £ Oh(Xp) and so y € Oa(Xp) by Lemma 12. Similarly
y € 04(Xq). If, in consequence of Theorem 14, we write Va for the unique
8—component of B which neighbours Xa and 4-surrounds it (a=l,...,t), then

P

there is an 8-component V of B such that Va =V for a=l,...,t. Then

yEeEV N Vq, in other words Vp = Vq. As X' is 8-connected, this means that

clearly if Yi 4-surrounds X, then Yi neighbours some Xa (a=1,...,t) (other-
wise Yi would neighbour a 4-component of X in some I8 (Xa), and we would
have Yi c IS(Xa)), and so Yi = V. Conversely V 8-surrounds X and neighbours

it. Thus V is the only Yi which satisfies (b).
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Proof of Proposition 15. We use Proposition 16. As X is an 8-connected

half-component of F, for any i=1,...,m, either (a) holds or we have the
following
(") Yi 4-surrounds X.

Now Proposition 16 can be applied interverting F and B. As each Yi
is an 8-connected half-component of B, for any i=l,...,m, either (b) holds
or we have the following :

(a') X 4-surrounds Yi.

As (a') and (b') are incompatible, (a') must imply (a) and so either

(a) or (b) holds. By Proposition 16, there is at most one i such that (b)

holds, and this happens only if X N FG = @,

Proof of Proposition 18. We use induction on d8(X,Y). If dS(X,Y) =1,

then X and Y are neighbouring 8-connected components of F and B. Suppose
now that d8(X,Y) > 1 and that the result holds for any Y' satisfying the
hypothesis such that dS(X,Y') < dS(X,Y).

We can suppose without loss of generality that Y C B. Let Y' be
the 8-connected component of F which neighbours Y and 8-surrounds it (Y'
exists and is unique by Proposition 13). Then X 8-surrounds Y'. Indeed,
if X does not 8-surround Y', then as YU Y' C G\X and YU Y' is 8-connec-
ted, Lemma 12 implies that X does not 8-surround Y, which is impossible.

If d8(X,Y) = d, then there is an 8-path U = (uo,...,ud) such that

u, € Y and u, € X. Then Upseesly g & Y and so u

4 € 08(Y), since X C 0

1 8

(Y). As u, belongs to an 8-connected component of F neighbouring Y, we
must have u, € Y'., Thus d(X,Y') < d-1 and so we may apply induction hypo-

thesis : There exists a sequence X = ZO,...,Z = Y' satisfying (i) and

n-1

(ii). Taking Y = Zn, then the result holds,
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Proof of Proposition 19. We use induction on da(X,Y). If d4(X,Y) =1,
0

then X neighbours Y and by Proposition 16, e(X,Y) = € 8(Y). Let X}""’Xg

be the 4-connected components of X such that for every i=1,...,g, X. neigh-
0

bours ¥ and X; € 0,(¥). Let X' =X U...UX. Nowase (1) Ce (V)

e(X,Y) and as X N OA(Y) is a union of 4-connected components of X (by

0 0
Lemma 12), (X',Y) = ¢ 4(Y). By Proposition 17, € 4(Y) consists of a sin-

gle cycle. Thus, following the argument of Proposition 7, 54(X',Y) is a
closed 8-path. As 64(X',Y) = 64(X],Y) u...u dé(xg’Y)’ this means that
X' is 8-connected. It is clear that X' 4-surrounds Y, because any 4-path
from Y to FG must cross 304(Y) and so cross SA(X',Y) = 524(Y). Taking
ZO = X' and Zl = Y, the result holds in this case.

Suppose now that da(X,Y) > 1 and that the result holds for any X*,
Y* satisfying the hypothesis with da(X*,Y*) < da(X,Y). We can suppose
without loss of generality that Y C B. Let Z be the 8-connected component
of F which 4-surrounds Y. As d4(Z,Y) = 1, the induction hypothesis implies

that Z contains an 8-connected half-component Z' such that the result

holds for Z' = Z. and Y = Z

0 In fact Z' is (by the preceding paragraph)

l .
a union of 4-connected components of Z neighbouring Y. Thus Z' N X = @
and every pel of Z' is 4-conmnected in YU Z' to a pel in Y. Hence X 4-

surrounds Z' (by Lemma 12). Now an argument similar to the one used in

Proposition 18 shows that d4(X,Z') < d4(X,Y). By induction hypothesis,

there is a sequence ZO""’zn—l = Z' which verifies to the statement of the
proposition. Let us take Zn = Y. Then clearly for every j=0,...,n-r,

nz, C . N . = 16
Zn 7 E I4 (ZJ+1) O4 (Z]+]) @ and so the sequence ZO’ ,Zn verifies

the result.
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Proof of Proposition 20. It is the same as the proof of Proposition 18,

except that we use induction on dA(X,Y) (instead of dS(X,Y)), and that we

replace 8-connected components by k- or k'-connected components.
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