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Abstract. This report is a complement to R454., We study first the turns
made by a simple closed path or by an edge between two connected compo-—
nents. Then we define a discrete correspondent to the topological isomor-—
phism (called homeomorphism) between two 2-tone images, and show several

of its properties.



Erratum to R456

- page 13 : - lines 5,6 : interchange "k" and "k''".
n " n

- line 11 : "g.." instead of "o..
ii ij

- lines 17,18 : "dk” instead of "d".

Addendum to R456

- Let I and I' be two images satisfying the RFA and having isomorphic
oriented (k,k') - neighbourhood trees T and T' . Let i} be a graph isomorphism

T =+ T'. Define the relation O between G and G' by :
x 0 x' if XE C, x'&C', when Cy = C'.
Then 6 is a topological isomorphism for the adjacency matrix :

k' 44;B}

{4,8} k

The proof of this result is immediate and is left to the reader .
- It is also easy to see that for an image-preserving relation 6 on G
(i.e. satisfying (5°)) such that x0x for every x & G, then ® is a topological
isomorphism if and only if the condition (35) in (6°) on the connectivity

of p(x) and A(x) is satisfied.



Erratum to R. 454

— Page 1-36 : Theorem 3, point (v).

Interchange "e=1" and "e=-1" in the statement.

- Page 1-60 : line 11.

Replace "is the set of'" by "contains"
P

- Page 1-61 : line 2,
Replace "(v,w-1) € B" by "(v,w-1) € Y" .



§I. Turns along a simple closed k-path.

Consider a simple closed k-path P=(x0,...,xn_l). On each
pel X: P makes a turn determined as follows

Let Pj be the center of the pel Xj as a world object, and
let Dj be the directed line joining Pj and Pj@l (j=0,...,n-1) (see Figure
A-1(a)). Then the turn T(Xi) on X, is the oriented angle that Di makes with
Dﬁ@l (-n < T(Xi) < 1) (see Figure A-1(b)).

It is easy to see that the only values that T(Xi) can take are :

T(x;) = -r/2, 0, +w/2  for k=4
= -r/2, -n/4, 0, ©w/4, w/2 for k=8. (1)
Let us write :
* . 2
T (xi) = F‘T(Xi) (2)

Thus T*(Xi) is the number of quarter turns made by P on X

We have :

T*(xi) = -1, 0, +1 for k=4 .

=-1, 0, + +1 for k=8 . (3)

1
5:
The different possibilities (up to a rotation) for the
configuration (Xigl’xi’ Xi@l) are shown in Figure A-2, together with the
: *
corresponding value of T (xi) ‘

We have the following result :



Proposition 1. Let P=(x0,...,xn_]) be a simple closed k-path. We have :

n-1
) = ] () = 4e®)
1=0

where €(P)= -1 1f P leaves O(P) on its left and €(P)=1 if P leaves
O(P) on its right.

If we refer to Theorem 3 of R454, then T*(P)=4a(y) for
y € I(P).

Note that this result does not require the FA.

Proof. Suppose that the result is false and that P is counterexample such
that n is minimal. If k=8, we assume further that the number d of pairs

{Xi’ xi@l} such that x.

i@l S NQ(xi) is minimal.

Consider the configuration B(m) (m=1,2,...) shown in Figure
A-3, If P contains no such configuration (up to a rotation), then P has
the shape of a stair (see Figure A-4) and so P cannot be closed. Thus
P contaiﬁs such a configuration B=B(m), and we can choose B such that m is
minimal. In Figure A-5, we show B and some neighbouring pels. It is clear
that SpseeesS belong all to the background B of P. Consider the set
T={t1,...,tm} (see Figure A-5). Suppose that T C B. If k=4, then we build
the path P' from P as follows : delete B and replace it by {a,sl,...,sm,b}.
Then n is replaced by n'=n-2 in P'. If k=8, then P' is built as follows

delete B and replace it by {sl,...,sm} U R, where R C {a,b} and :

(1) a € R iff tO € P,

(ii) b € R iff t, € P .

1



Then (n,d) is replaced by (n',d') in P', where n'=n—1+|R|
and d'=d-|R]|.

Now for both k=4 or k=8 it 1s easily seen that P' is a
simple closed k—-path, that ¢(P')=e(P) and T*(P')=T*(P). As P was a minimal
counterexample, the result holds for P', and so it must also hold for P.
Thus P is not a counterexample in this case. Therefore T NP # ¢

Let T'=T if k=8

=TU {t l} if k=4

O’tm+

Consider a maximal connected segment S of T' N P
(S = {tu | i<us<j}, where i < j), such that S N T#¢ (we know that
such a segment exists by the preceding argument). Suppose that dk(S,B) > s

in other words :

0<i<j<mtl if k=4

1<i<j<m if k=8 .

Let a' and b' be the two pels preceding and following S in P.
Then S U {a',b'} is a configuration of the type B(m'), where m'=i-j-1
if k=4 and m'=i-j+1 if k=8 (see Figure A-6). Then m' < m, which contradicts
the minimality of m.

Thus dk(S,B)=1. We can suppose that dk(S,a)=1 (in other words
i=0 for k=4 and i=1 for k=8). Otherwise we intervert the roles of i and j,
a and b, etc... We know that j 2 1 (since S N T # @#). The situation is illus-
trated in Figure A-7. In cases (c) and (f), BUS is closed and so P= BUS ,
But . then it is easily seen that the result holds then. In the other cases,

we make the following transformation to P.



- In case (a), we replace (tl,t ,a,0,1) by (tl,sl,l,Z).

0]

— In case (b), we replace (tl,to,a,O,l,Z,b) by (tl’sl’b)'
- In case (d), we replace (tl,a,],2) by (tl,sl,Z).
- In case (e), we replace (t2,t1,a,1,2) by (tz,s],Z).

Then P is replaced by P', where P' is also a simple closed
k-path. Now the length n' of P' is smaller than n and so the result holds
for P'. Morevoer we have e(P')= £(P) and T*(P')=T*(P), as it can easily
be checked case by case. Hence the result holds also for P and so P
cannot be a counterexample.

Note. The method used to prove this result could also be used for the

proof of point (v) of Theorem 3 of R454.

§II. Turns in edges and Euler numbers.

Consider a figure F with background B. Let X be a k—connected
component of F and Y a neighbouring k'-connected component of B. Let
# . . .
e=e (X,Y). We can write e~{go,...,en_]} , where €i@) 18 the direct follower

of €; for i = l,... n-1 (we assume here the RFA).

As in simple closed paths, we can define turns in edges.

Let T(Ei,ei®l) be the angle that € @1 makes with e+ We have
r(ei,si®1) = -n/2, 0, w/2 . (4)
Let us write :
T*(Ei’si@l) - % w(eireipr) )



Thus Tk(ei’EiGH) is the number of quarter turns made by & be-—

tween €. and €..,. We have :
1 1®

1

-K = -
T (Ei’eiﬁl) =-1,0,+1 . (6)

We show on Figure A-8 the different possibilities for the
configuration (gi’€i®l) (up to a rotation) and the corresponding values
.}(
T (€ .
of T (5,0
The following result corresponds to Proposition l:

Proposition 2. We have for E=€+(X,Y)

-
) = T t(eprei) = KLY

where A(X,Y)=1 if Y 4-surrounds X and )(X,Y)= -1 if X 4-surrounds Y.

Proof. Suppose that k=4. As in the proof of Theorem 5 of R454, we sub-

divide,each pel into 9 pels (see Figure 1-43). For any subset Z of G,
# : ; * * ¥

let Z be corresponding subset of the new grid. Let P =68(X oY Y

* . .
Then P is a simple closed 4-path as shown in that theorem. Let

* t % % . * * ¥ * * # #*

e =€ (X ,Y ). We can write € _{EO,O’EO,I’EO,Z’""Ei,O’Ei,l’ei,Z’ -

+ ¥ ¥ G ® % %

€ = PP - . .

n—l,O’En-l,l’ En—l,Z} , where for 1=0, ,n—1, 81,0’€1,l and Ei,2 are

. * . s
the three consecutive elements of € corresponding to € (see Figure A-9)

%, %
Then we see that T (ei -,E*

- * PR
3 i,j+l)—0 (j=0,1) and that T (ei’ei@l)_T (Ei’z,

*

€‘1@1,0) 4

Now from Figure A-10 one deduces that T*(Ez Z,EIQI 0)= Z

3 3 * ®
* #« ] .
T (p ), where P? is the set of pels of p* along the edges P EPI
#® * *

Ei,l’si,2’€i®l,0 i



Therefore T*(E) = T*(P*).
.. * %k . * ® .

By Proposition 1, t (P7)= -4 if P” leaves O(P") on its left
(1.e. if GA(Y*’X*)<¢ O(P*) and T*(P*)= +4 if px leaves O(Pk) on its right
(i.e. if 64(Y*,X*) 5 O(P*)). Now it is clear that if X 4-surrounds Y, then
X* 4—surrounds ™ and so 64(Y*,X*) E_Y* c G*\O(P*) ; 1t is also clear that
. * * p R
if Y 4-surrounds X, then X~ does not 8-surround Y and so that 54(Y ,X7)
c Y coe".

Thus T*(S) =T*(P¥)= -4 if X 4-surrounds Y and T*(€)=T*(P*)= +4
if Y 4-surrounds X. Thus the result holds in this case.

Now suppose that k=8, We can apply the result to e'=e_(X,Y)
=e+(Y,X), interchanging the role of F and B. We get thus

*
 (g) = 4)X(Y,X).

Now A(Y¥,X) = -2(X,Y) and it is easily checked that
T*(S))= ‘T*(E)- Hence the result holds for e in this case.

Now consider the edge e=€+(F) of a figure F (we still assume
the RFA). We define Ti(e).as the sum of all T*(E+(X,Y)), where X 1s a
k-connected component of X and Y is a neighbouring k'-connected component
of B. Let N(k,F) be the set of all such pairs (X,Y). By Proposition 2
we have :

1 %
7, () = ) A%, Y) . (7)
& (X,¥) EN(k, F)

Now we define

C(k,F) = {k-connected components of F} .

c'(k,F) = {x € C(k,F) | FG C X} .

c(k',B) {k'-connected components of B}.

c'(k',B"')={Y € c(k',B) | FG C Y} .



M(k,F) c(k,F) U c(k',B)

I

M'(k,F)= ¢'(k,F) U C'(k',B) . (8)

Now there is a bijection m: M'(k,F) = N(k,F) defined as
follows
- For x € C'"(k,F), m(X)=(X,Y), where (X,Y)E N(k,F) and Y 4-surrounds X.
- For Y € C¢'(k',B), n(¥)=(X,Y), where (X,Y) € N(k,F) and X 4-surrounds Y.
(9
The fact that ™ is well-defined and is a bijection follows
from Theorem 14 of T454.

Now by definition of A(X,Y) and by (7) and (9), we have :

1 =

% Tele) = X Al [X)T + ¥ Al (Y))
XECy (F) YECy, (Y)
= |C£(F)]- |c!, (B) | (10)

But we have two cases in the RFA :
(1) FG € F and so :
lc,(®)| = [cp(B) ] + 1
and Ck.(B) = Cé,(B) (11)
(ii) FG € B and so :
]Ck,(B)| = [Ci,(B)| + 1

and Ck(F) = CL(F) (12)

Thus, combining with (10), we have :
- If FG C F, then :

I = g ®|-le @] - 1 (13)



- If FG_E B, then :

1 «
7 % (&) = |6 (F) |-[C,, (B) [+1 (14)
We note that in (14) (the case where the FA holds), the
right—hand side of the equality is in fact g(k k,)(F) (see §IX of R454).
bl

Therefore :

S (=7 () if 6 C3 . (15)

In § IX of R454, we defined the configurations Q, T* and D*.
We show them in Figure A-11.

Now a pair of consecutive edge elements (Ei’Ei®1) in
e+(X,Y) can be found only in configuration which are up to a rotation
equal to Q, * or D*. For Q and T*, the configuration contains only one
such pair, while for D*, it contains two pairs, which depend on k. We
illustrate these palrs, together with the value of TX(Ei’€i©l) in Figure
A-12. If we write q;F,t:¥ and d¥ for the number of configurations of type

Q, ™ and D" respectively (up to a rotation), then we get from the values

of'ﬁ(ei,eigl) in Figure A-12 the following equalities

0, (F) = g-t*+2d" (16)

q-t*-2d* . (17)

T:(F)

Combining with (15), we deduce from (16) and (17) the formulas
(95) and (96) of R454 for the genus (g(4’8)(F) and g(8’4)(F)) of F when

the FA holds. These formulas were proved using a topological argument in



the real plane. The proof presented here uses the properties of the
grid G.

Note that the formulas (90), (91) and (92) of R454 can be
derived from (95) and (96). Thus all arguments on the genus of a grid
figure do not depend anymore on the topology of the real plane, but only

on the properties of the grid G.

§ III. Topological isomorphisms between grid images.

In the real plane, a topological isomorphism (called homeomor-
phism) is defined as a permutation of that plane which induces a permutation
of the set of open subsets of that plane. However two grid images can be
considered as topologically equivalent, although there may be no bijection
realizing that equivalence. For example, in Figure A-13, I and I' are to-
pologically equivalent, but there may not be a bijection mapping F onto E'.

Thus we need to define a topological isomorphism in another
way, by making a correspondence between parts of I and parts of I'.

Such a correspondence must have suitable properties. We will find them
by analogy with homeomorphisms in real planes.

Consider two grids G and G' on which we define the images
I and I' respectively. We will not restrict ourselves to binary images.

We suppose thus that for some set K={0,...,m-1} (m=>1) I is a map from
G onto K and I' is a map from G' onto K.

If I and I' are topologically equivalent as real images,
then there is a homeomorphism i of the real plane mapping the rectangle

- -1
G onto the rectangle G' and such that n € K, (I l(n))=I' (n) .
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Now any set V of pels of G corresponds to a surface in the real
plane, which is mapped by y onto a surface v* inside G'. If we quantizise
v by square-box quantization, we get a set V' of pels of G', and V' is
the set corresponding to M. We write V'=p (V). For a pel p, we write
p(p) for p({p}).

Now for a set W' of pels of G', we can construct in the same
way, but this time using $_1, a set W of pels of G, and we write
W=A(W'). For a pel p', we write A(p') forA({p'D.

Now we define a relation O between G and G', in other word
a subset of GXG)in the fellowing way :

For p €EG and p' € G, p 8 p' (i.e. (p,p') € 0) if and only if
U(p) Np' # @ (where p and p' are considered here as subsets of the real
plane). Note that this is equivalent to p N w_l(p')# o .

We will now give the properties of 6,A and p. Let p € G, p' € G',

VCGand V' C G'. We have the following features

(1°) Reciprocity :

p € A(p') iff p o p' iff p' € p(p) . (18)
Thus

o(p) = {¢" €6 | poq'l}. (19)

A(P') = {a€6G | qep'} . (20)

(27%) Additivity :

p(V) = U p(q =1{q'€G" | g€V, q0q'} . (21)
qEV
A(VD)= U a(@") ={q€G|3Iq¢'E€V',q0q'} . (22)

qTE V!
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(3°) Totality :

o(p) # @ and A (p') # @ . (23)

(4°) Frame preservation :

If VN FG # @, then p(V) NFG' # @ . (24)

If V' N FG' # @, then A(V') NFG # ¢ . (25)

Note that (23) and (24) are respectively equivalent to the following

two statements

If p € FG , then p(p) NFG' # @& . (26)

i 63 p' € FG', then A(p') NFG # @ . (27)

For an infinite grid, the frame is the infinity and the condi-
tion is the same, but we replace for X € G (resp. X! c G') the statement
"X N FG # @" (resp. "X' NFG' # @") by "|X| =« " (resp. "|X'| = «").
Note that we can have an isomorphism between a finite image and an infinite

one.

(5°) Image preservation

LE p6ep's then I(p) =1I'(p"') . (28)

Although 6 was defined from the homeomorphism of the real plane,
we will now attempt to characterize the isomorphism purely in terms of
grid features. We start from a relation 6 between F and G' and we define p
and A by the properties (1°) and (2°) of reciprocity and additivity, and
we suppose that 6,A and p satisfy the properties (3°), (4°) and (5°) of

totality, frame preservation and image preservation.
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For any n € K, write An=I—l(n) and A'(n)=I'_1(n). Suppose
that 6,\ and p are defined by (1°) and (2°) and that they satisfy (3°),

(4°) and (5°). We have the following results

- If VCWCG, then p(V) € p (W) . (29)
- If V'C_W' € G', then A(V) C (W) . (30)
- If VC G, then VC A(p(V)) . (31)
- If V' CG', then V' C p(A(W)) . (32)

—A! 1y —
Lemma 3. For any n € K, p(An)—An and A(An) An.

Proof. By (5°) we have p(An) C Aé and A(Aé) C A,. Now if we apply the

four preceding results, we get

A S A(p(Ay)) € A(a!) and

Al Cp(A(A)) Cp(a) .

Hence the result holds.
As we defined it now, our isomorphism is purely set-theoretic,
it does not take in account topological features, which are based on adja-

cencies. If K={0,...,m~1}, we define the adjacency matrix of I, written

A(I), It is a symmetric mxm matrix

“0,0 ° 0,m-1

(33)

am‘*l,O. ) 'am—l,m—-l
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where each oy 3 is a subset of {4,8}. Here a; 3 is the set of adjacencies
b s

a: . is the set

which are taken in account inside Ai’ while for i#j oy j= e
b ]

of adjacencies between A; and Aj which we take in account. For example,
in a binary image, we take generally the matrix :
k 4
(34)
4 k'
We will now define the adjacency condition for the isomorphism
between two images. Suppose that I and I' have the same adjacency matrix.

Then we add to (1°-5°) the following condition

(6°) Adjacency preservation:

For any i € K, p, q € A, pL4q' € Ai and k € o, i

b

- p(p) and A(p') are k-connected . (35)
- if 4, (p,0) < 1, then d (o (®),p(@) < 1 . (36)
- 3 dk(p',q') < I, then d (A (p"),A(q")) < 1. (37)

For any i#j € K, p € A;, q € Aj’ p' € Ai, q' € A3 and

k€ a. .,
1,]

- if d(p,q) = 1, then d(p(p),p(q)) = 1 . (38)

- if d(p',q')=1, then d(A(p"),A(q")) =1 . (39)

The conditions (35,36,37) ensure that 8§ preserves the k—connec-—
tivity inside Ai and A{, while (38,39) are for the preservation of neigh-

bourhood relations between Ai and A. and between Ai and Ai.
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We will now prove some more results.

Proposition 4., Let i € K, k € g. ., and let A. ,,...,A. be the k-connec-
1,1 i,l1 i,t

L]

ted components of A, . Then Ai has t k-connected components Ai 1,...,A£ g
bl b
such that for j=l,...,t, we have :
A, L) = A L,
p( l,J) 1,]
and AA! Y= A o
i,] is]
1 - t = ! t
Proof. Let Ai,j p(Ai,j) for any j=l,...,t. Then each Ai,j C A.1 by
Lemma 3 and is k-connected by (35) and (36). If we had dk(Ai 53 A{ j)sél,
] ’

then we would have dk(A.l 3 Ai J.,)ﬁil by (37). Thus the k—-connected compo-

»]

1 1 1
nents of Ai are Ai,]""’A'

i Now it is clear from (35) and (37).that
b

for each j A(A! .) is k-connected. But A. . C A(A! .) by (31), and as
1,] 1,] — 1,]

A. . 1is a k-connected component of A. and A(A! .) C A., A, . = A(A! .)

1,] 1 1,7 — 1 1,] 1,]

Note that by (38) and (39), if k € a;

, then a ki-connected
H]

component of Ai (ki € oy i) is k-adjacent to a kj-connected component of
3
Aj (kj € s j) if and only if the corresponding ki-connected component
’

of A{ is k—adjacent to the corresponding kj—connected component of Ai.

Before going further, let us define :
E={XCG | A(p(X) =X} (40)
' ={X'"CG | p(A(X)) = X"} (41)

If we consider the restriction p]g of p to £ and the restric-

tion A £t

and we have

of XA to &', then p‘g is a map £ » &', k*g' is a map ¢' » £

|
—

Alg,. p|E m L (42)

p[g.l|€

|
[
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and p constitute a bijection &'» £ and its inverse.

£* £

Now we state the second result, which is on k-surrounding. As

Thus A

the property of k-surrounding is based mn k-paths in G, we need to take k
such that k-adjacency is taken in account between any two pels, in other

words k € aL o for any r,s € K.
H

Proposition 5. Suppose that k € g 5 for any r,s € K. Let A,B € ¢ . Then

Ll

A k-surrounds B if and only if p(A) k-surrounds p(B).

Proof. We need only to prove the "if" part, because the "only if" part
uses the same argument, interverting I and I', A and p, £ and £', A and
p(A), B and p(B), etc...

Suppose that p(A) k—-surrounds p(B). Then p(A) Np(B) = @ .
As p(A NB) Cp(A) Np(B), we must have also ANB =@ . Let p=(x0,...,xn)
be a k-path from B to FG. For i=b,...,n, write Xi=p(Xi). By (4°) and (6°)
there exist Vi S Xi (i=0,...,n) such that z € FG' and for 0 < i < n,

dk (zi, yi+1) < | ; moreover ‘each Xi is k-connected. Thus there is a

k-path R=(y0,...,zo, SATEREFEITRERE AP PRRRFE MR yn,...,zn) in

XO U ...UXn. As X, € B, Yo € p(B). As p(A) k-surrounds p(B), R intersects
p(A). Thus p(a) N X, # @ for some 1. As Xi=p(xi), x; € A(p) for some

p Ep(a)y N X, and so x; € A(p(A)). Now by definition A=X(p(A)) and so

P intersects A in X, . As P was arbitrary, it follows that A k-surrounds B.

Now let us define the following four sets

c ={x C G] i € g, Jk € oy 1o X is a k—connected
- ’

component of A;} . (44)

' ={x"C6'|di€K, IkE€q; ;, Xis ak'-connected
3

component of Ai} . (45)
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D = {unions of elements of C }. (46)

D' ={unions of elements of C' } . (47)

Then by Proposition 4, CC &, C' C g', and p and A interchange
C and C'. By additivity, DC ¢, D' C & , and p and A interchange D and D'.

Therefore Proposition 5 is true for A,B € C or A,B € D.

Now let us consider the general case, where A and B do not

necessarily belong to &:

Proposition 6. Suppose that k € oL g for any r,s € K Let A,B C G. If

b

A k-surrounds B and p(A) N p(B) = @, then p(A) k-surrounds p(B).

Proof. Let P(x .,xr) be a k-path from p(B) to FG'. As in the proof

0’
of Proposition 5, we build a k-path R=(y0,...,ym) in A(xo) U...U A(xn) such
that Yo € B and Vo € FG. As a k—-surrounds B, Vi € A for some j. Now
Yj € A(xi) for some 1. Thus X € p(yi) € p(A). As P was arbitrary,
p(A) E—surrounds p(B).
Note. There is of course a dual version of Proposition 6 , where we take
A", B' € G' and X instead of p.

Now let us consider the problem of the composition of two
isomorphisms 6§ and 6'.

Suppose that we have three images
I : G+K,
I': ' + K,

I": ¢" > K, (48)

an isomorphism 6§ between I and I' and an isomorphism 0' between I' and I".
How to define the composition 68' of G by 8', which would be an isomorphism

between I and I’?
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We will again use the analogy with the real case. Thus
suppose that there are two homeomorphisms Y: (G,I) - (G',I') and y'
(G',I1') »~ (G",I") determining 6 and ©', in other words, for any p € G,
p' € G' and p" €6" :
p O p' iff Y(p) Np' # P (49)

p' & p" iff V' (p') Np" # 0 . (50)
Now if ¢" = ¢'.¢ , 6"=0.0"' is defined by :

p 0" p" iff V"(p) Np" £ @ . (51)
Now (51) is equivalent to the following statements

p O p"AEE U(PIN VT (p") £ 6 . (52)

p 6" p" iff there is some q' € G' such that
-1
@#vmE)NyY (@ Nqg . (53)
Now they imply the following :

If p 6" p', then there is some q' € G' such that y(p) N q'#@

and q'M tp'_l(p") # @, in other words P 6 q' and q' & p" . (54)

Now we can again forget v,y and y" and define 6" =6.6' by
po" p" iff p(p) N A # 0 . (55)

(Indeed, p(p) N A'(p") # @ means that there is some q' € G'

such that p 6 q' and q' 6' p"). (Here A' and p' correspond to 6').
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Now )" and p" are defined by reciprocity and additivity and

we get for any V C G and V"' C G" :

p" (V) = p'(p(V)) . (56)
ATV = a0t (v .

" and A" verify the properties

It is easily checked that 8", p
of totality, frame preservation, image preservation and adjacency preser-
vation.

This shows that (55) is a valid definition for the composition
6.08"'. Moreover, it corresponds to the natural definition of the composition
of two relations.

If we say that two binary images (on a square grid) are topo-
logically disomorphic if there is an isomorphism @ between them (having
the above properties), then the relation of topological isomorphism is

clearly an equivalence relation (i.e. it is reflexive, symmetric and tran-

sitive).
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