Chapter 1

INTRODUCTION

§1.1 The Problem and Possible Approaches

Separation of objects from their background is a major problem in pattern
recognition and scene analysis [3], [9]. In the case of grey scale pictures, it is
commonly referred to as segmentation. In the simpler case of binary pictures,
it is going by the name of “detection of connected components”. It is the latter
case which is adressed in this report. An algorithm to perform the detection of
connected components is examined in great details, and a computer program is
presented in Appendices.

Detection of connected components in binary pictures is an indispensable
step in such applications as automatic visual inspection, optical character recog-
nition, extraction of karyotypes from photomicrographs of mitotic cells, robot
vision, fac-simile coding systems, etc.

The approach to the detection of connected components which is described
here is appropriate when the size (in bits) of the picture, and the number of
pictures to process prevent storing the whole image fields in permanent memory.
Our work is based on the assumption that the picture is scanned in raster mode
and only a small part of it is accessible concurrently. This requires that the



2 1. INTRODUCTION

detection of connected components be achieved in real-time, and in a sequential
fashion.

Within this framework, two possible approaches can be advocated. One
is based on border finding techniques, see e.g., Cederberg [2]. According to
Rosenfeld, the second approach which is adopted here and is based on tracking
runs of the figure rather than its borders is the best choice for most purposes [9].
We shall have more to say on the appropriateness of these approaches later.

Some will object that sequential operations are “slow”, and connected
components can be counted and even labelled at much higher speed using parallel
(cellular) array processors [5],[6],[8]. In actual fact, the reasons why parallel
operations were excluded from consideration here are twofold. In the first place,
the largest cellular arrays to date consist of up to 128 X 128 processors (7], and
this is still much too small for the kind of pictures we have in mind. For larger
pictures, the processors have to be applied blockwise. In the second place, in
existing cellular arrays, each cell has very little memory (up to 128 bytes) [8].
This sole constraint would place unbearable restrictions on the kind of processing
we wish to perform.

With this alternative settled, we shall say more, in Chapter 2, about what is
really meant by “real-time” and “sequential’” detection of connected components.

§1.2 Topological and Geometrical Information

In virtually every application, it is normally expected that the detection
of any connected component be accompanied by some concise description of
that component. Component description usually consist of information of both
topological and geometrical nature.

Topological information is concerned with neighborhood and surrounding
relations between connected components of the figure and its background. For
instance, the number of pin-holes in some conducting track on a printed circuit
board, or surrounding relations between such tracks represent information of a
topological nature. Topological information may be represented by ad jacency- or
neighborhood-trees (1], which in turn can be coded by their vertex- or edge-string
(see also Chapter 5). In the algorithm described here, the choice of the level
of topological information desired is proposed as an (interactive) option in the
computer program.



1.3.PROGRAM OPTIONS 8

For what concerns geometrical information about connected components,
we are confronted with a very wide spectrum of possible choices. At one end, one
might be content with the sole chain code of the component’s borders, or some
equivalent representation of the component’s edges, see [2] and [4]. This kind of
representation is quite appropriate for data compression purposes [2]. However,
from the viewpoint of pattern recognition and scene analysis, it does not reveal
much of the “structure” of the connected components. In order to illustrate the
other end of the spectrum, let us suggest one possible description of character M.
In addition to the chain code of its border, we might wish to know its perimeter,
area, center of inertia, moments, etc; we might also want to learn that it is made
of four strokes, two vertical ones and two skew ones, and three 2-junctions; that
two 2-junctions turn their skew angle downwards while the third one turns its
upwards; that it has two end points, that these end points are the lower ends of
the two vertical limbs, etc.

Evidently, this detailed geometrical description could be recovered, in a
two-stage system, from the knowledge of the component’s borders. However, such
a processing would involve a significant duplication of effort with a concomitant
waste of execution time and computing power.

The algorithm described here offers the possibility to go a long way towards
obtaining—in real-time-—a detailed geometrical description of connected com-
ponents. As in the case of the topological information, however, the choice of the
desired level of geometrical information is proposed as an interactive option. Let
us then briefly turn our attention to these options.

§1.3 Program Options

Before we embark on a discussion of the two options offered in our program,
a few words are in order about the hierarchical structure of entities handled by
the algorithm.

At the lowest level, we are dealing with 1-dimensional structural elements,
namely runs. Runs are described by the coordinates of their extremities and a few
“run-parameters” characterizing adjacency relations between runs on successive
FOWS.

At the next level, adjacent runs are assembled in 2-dimensional entities
which we call objects. We distinguish essentially two classes of objects, namely,



4 1. INTRODUCTION

blocks and hinges which correspond, roughly, to downstrokes and junctions of
downstrokes respectively. Adjacency relations between objects—within a con-
nected component—are described by “objects-parameters” which can be readily

derived from the run-parameters corresponding to those runs the object is made
of.

Finally connected components appear, at level 3 of hour hierarchy, as
concatenations of adjacent objects. It is at that level that we shall come accross
the discussion of our two options.

For what concerns the topological information, the point can be quickly
made. The offered alternative is either to retain all of the topological structure
of the image (this choice goes by the name of full surrounding), or to consider
connected components of the figure taken in isolation, and to retain only the
number of their holes, (this is called restricted surrounding). The former choice
provides fairly exhaustive information. The latter is appropriate when we are
dealing with collections of patterns which are simply connected.

It should come as no surprise that the decomposition of connected com-
ponents into blocks and hinges—we shall make finer distinctions later, but there
is no need to dwell on this at this stage—permits to lay bare or to make easily
accessible much of the geometrical structure alluded to in the previous section.
Thus, in terms of the geometrical information, the offered alternative is either
to acquire and retain a small number of object-parameters which merely enable
us to recover the edges of connected components, (this is, somehow, equivalent
to chain-coding), or to acquire and retain a rich collection of object-parameters
which reveal in an explicit way the adjacency relations and relative positions of
objects within a connected components. These choices are called restricted and
full ad jacency respectively. There should be no need to insist that full adjacency
is most appropriate for pattern recognition purposes.

We would like to stress that both surrounding and adjacency options are
fully orthogonal in the sense that, everywhere in the computer program, they
are implemented in an independent manner, hence any combination of both is
readily feasible. Likewise, it would be a simple matter to condense the code of the
program in order to optimize its performance for a given combination of choices.

§1.4 Summary of the Report

In Chapter 2, we make more precise the meaning of the words “sequential”



1.4.SUMMARY OF THE REPORT 5

processing under “limited memory” and in “real-time”. They represent the
fundamental constraints we have to comply with in the sequel. We also introduce
some fairly general terminology and notation.

Chapters 3 and 4 are concerned respectively with the first and second levels
of our hierarchy of structural elements, viz., runs, and objects. The organization
of both chapters follows essentially the same pattern. Entities are formally defined
together with the parameters required to represent their adjacency relations. We
show how to compute these parameters and outline our real-time implementation
of the computation.

In Chapter 5, we show how to recover connected components from the
objects they are made of, and we discuss our surrounding and ad jacency options.
Adjacency comes first, in relation with edge-following in a figure (Section 5.2).
Next, we introduce the neighborhood-tree as a representation for the topological
information in Section 5.3 where we also suggest to represent that tree by its edge-
string. There, we also formalize the concepts of full and restricted surrounding.
Under appropriate—yet, fairly unrestrictive—assumptions, the detection of a
connected component occurs at the time that its outer edge gets closed into a
cycle. The discussion of this major event is the subject matter of Section 5.4.

In Chapter 6, we are concerned with the question of outputting the results
of the program. We also display a sample output which illustrates the results
obtained under each choice of the adjacency and surrounding options. Finally,
Chapter 7 proposes an introduction to the program which can be found in appen-
dices, and suggest some possible extensions.

The full program can be found in Appendices A through F. The code is
written in Pascal. The program was tested on the VAX 11/780 computer at the
Philips Research Laboratory, Brussels.

Acknowledgment: The authors would like to express their appreciation to M.
Dekesel for his assistance with the implementation and testing of the program.




1. INTRODUCTION

REFERENCES

[1]

2]

3]

[4]

[5]

[6]
7]
8]

9]

O.P. Buneman, “A grammar for the topological analysis of plane figures”,
in Machine Intelligence 5, B. Meltzer and D. Michie Eds., Edinburgh:
University Press, 1969, pp. 383-393.

R. Cederberg, On the Coding, Processing, and Display of Binary Ima-
ges, Ph.D. Dissertation No. 57, Linkoping Univ., Dept. Electr. Engrg.,
Link6ping, Sweden, 1980.

R.O. Duda, and P.E. Hart, Pattern Classification and Scene Analysts,
New York: Wiley, 1973.

B. Kruse, “A fast algorithm for segmentation of connected components
in binary images”, Proc. First Scandinavian Conf. Image Analysis,
Lund, Sweden: Studentlitteratur, 1980, pp. 57-63.

D. Nassimi and S. Sahni, “Finding connected components and connected
ones on a mesh-connected parallel computer”, SIAM J. Comput. vol. 9,
pp. T44-T5T, Nov. 1980.

S. Levialdi, “On shrinking binary picture patterns”, Comm. ACM, vol.
15, pp. 7-10, 1972.

J.L. Potter, “Image processing on the massively parallel processor”,
Computer vol. 16, pp. 62— 67, Jan 1983.

A.Rosenfeld, “Parallel image processing using cellular arrays”, Computer,
vol. 16, pp. 14-20, Jan. 1983.

A. Rosenfeld, and A.C. Kak, Digital Picture Processing, New York:
Academic Press, 1976.



