Chapter 2

REAL-TIME
SEQUENTIAL PROCESSING
OF BINARY PICTURES

Our goal in this chapter is to present the fundamental constraints we shall
have to comply with in our subsequent analyses, and to introduce some basic
notions and general notation. Our constraints are imposed by material limitations
in both the hardware and software realizations of most general-purpose picture
processing systems.

§2.1 The Fundamental Constraints

We shall deal with binary pictures, i.e., binary pizel arrays corresponding
to an image of a given size, whose local gray levels have been binary quantized with
a given spatial resolution. For most images of interest the conversion to binary
represention gives rise to a huge amount of binary information. For instance, with
a resolution of 8 pixels per millimeter, an ordinary A4 sheet of paper gets converted
into around 4 million pixels, hence 4 million bits. This simple observation calls for
the following comments. In the first place, the significant information contained in
an ordinary document, or for that matter, in ordinary black and white pictures,



8 2. REAL-TIME SEQUENTIAL PROCESSING OF BINARY PICTURES

can usually be compressed into a much smaller number of bits. In the second
place, if, for our present purposes, we were to store the complete pixel array in
memory, we would not only waste much storage space, but also exclude for ever
the possibility of implementing a fast, light weight and effective picture processing
system. Therefore, it is desirable to keep memory requirements as low as possible.

We shall assume that the acquisition device “reads” the picture sequentially
in a single raster scan, as is the case for facsimile readers, TV cameras, laser
scanners, etc.

These elementary considerations suggest an analogy with human reading.
The reader scans successively all the lines of a document from left to right, and
interprets every character, word, or sentence as soon as it has been read. We
shall also require that some interpretation of the contents—say, the features—be
completed at the times these features have been completely scanned.

These observations induce the fundamental restrictions we shall have to
comply with:

» The image is read sequentially in a single raster scan.

» Only a bounded part of the picture must be kept in memory.

» The feature of the image must be detected (and output) as soon
as they have been completely scanned.

Let us now examine these constraints, together with their practical conse-
quences, in some detail.

2.1.1 Sequential processing

We assume that the picture is spatially quantized by a quadruled grid G
with M rows and N columns. We write p(i, 5) for the pixel at the intersection of
row ¢ and column j. We use z(i, 7) to denote the binary value corresponding to
its colour (we use 1 for black, 0 for white) in the picture. For { = iN + j we can
write

q(t) = p(3, 3),
y(t) = =(i, 5), (2.1)



2.1.THE FUNDAMENTAL CONSTRAINTS 9

where
t=0...,.MN—1 i=0,...,.M—1 j=0,...,N—1.

Then, saying that the picture is acquired by a single raster scan means that the
pixels g(t) are “read” in increasing order, and the input signal is the flow of the
values y(¢), t = 0, ..., MN — 1. Let us note that this already excludes from
consideration the combination of direct and reverse raster scans, or the use of such
special purpose acquisition devices as flying spot scanners which are sometimes
used for line or contour following purposes [1],[2].

2.1.2 Limited memory

With a sequential acquisition system, it is quite convenient to store in a
working memory a bounded sequence of pixel values y(t), for example, a small
number of rows, or a window centered around a pixel. We shall adopt the common
practice of storing three rows of pixel values, and analyzing the properties of a
pixel by looking at the 3 X 3 window centered around it.

The major advantage of this approach is that it is easily amenable to both
hardware and software implementations. Figure 2.1 displays an actual hardware
implementation. Squares represent delay flip-flops, and the whole construction is
a shift register of length 2V -}-3. Note that when the 3 X 3 window in Figure 2.1
is centered on, say, one vertical border of the image, i.e., when j =0 or N — 1,
some of the pixzels in the window belong to the opposite border of the picture.
We will not dwell on the subject right now, but we might anticipate that such
situations will deserve special consideration.

Let us now turn our attention to the software implementation of Figure
2.1. Tt differs sligthly from its hardware equivalent in that the basic elements of the
input file are rows, i.e., arrays of length N of binary values. We take as window
three successive rows, and the local 3 X 3 windows are obtained by scanning
these rows from left to right. Our program handles only the rows numbered
1, ..., N — 2, and adds automatically two blank rows numbered 0 and N — 1.

The windowing procedure, centered on pixels from row i is called window(i).
The code can be found in Appendix B, Section B.3. The procedure window con-
structs three arrays frow, srow, and trow (whose names are mnemonics for first,
second and third row) corresponding to the rows indexed by ¢ — 1, ¢, and ¢ 4 1.
Note that, for ¢ > 1, frow and srow can be obtained by a mere shift of srow



10 2. REAL-TIME SEQUENTIAL PROCESSING OF BINARY PICTURES

D

~ )
—di-1j-1i-1,j li-1js1] - - - -
WA RO |
L iget [l d [Rged |- » - -
| T

Li+‘],j-1 e Vi)

. > 3x3 window

FYgure 2.1. Hardware implementation of 3 X 3 window

and trow respectively. This is the approach which is followed in the procedure
transitiontothenextrow (see Section B.2. in Appendix B).

Now, as the rows of the picture are acquired, the algorithm builds different
structures corresponding to the features of the image, and outputs them in real-
time. Features can be connected components as well as surrounding relations
between them. Additional memory space will be necessary to store the description
of these features at the time they are being discovered. The memory space
required for these purposes will be discussed in due time.



2.2.80ME DEFINITIONS AND NOTATIONS 11

2.1.3 Real-time processing

Let us presently examine the significance of our real-time requirement.

As was just said, the features of interest are the connected components
of the image, ie., the set of black pizels, their contents, and, possibly, the
surrounding relations between them. The description of these features will be
stored in appropriate data structures. Our goal will be to be able to output
these data structures as soon as the corresponding features have been completely
disclosed. The words “as soon” should not be taken to mean “in a fixed time” for
it is clear that the time required to transfer a data structure in, say, some output
buffer, is proportional to the size of that data structure. Feature detection and
some analysis will be carried out at the time that the rows on which they appear
are processed. At the moment when a feature has been completely disclosed, for
instance, when the scan is on the last pixzel of a connected component, an output
procedure is activated which requires a time linear in the number of bits necessary
to describe the component in question. In particular, the time requirement for the
whole algorithm must be proportional to the size of the picture. This corresponds
to what is usually meant by the words “real-time processing”.

In a number of applications, the real-time requirement is a crucial one.
When it is combined with dynamic memory management, it permits to avoid
congestion of the main memory. It is also frequently the key to an harmonious
cooperation of serial processes.

§2.2 Some Definitions and Notations

The description of the algorithm needs a minimum of mathematical for-
malism concerning pictures on a square grid. As already mentioned, G designates
a quadruled grid with M rows and N columns. The elements of G are the pixels
(or pels). The image on G is a partition of the pels of G into two tones, black and
white. We write F' for the set of black pels and we call it the figure. We write B
for the set of white pels and we call it the background.

For reasons already alluded to, we shall constantly make the Frame Assump-
tion which states that the pixels of rows 0 and M —1 and of columns 0 and N —1
are all in B, (3]. In this way, we avoid the problems occurring when the window is
centered on any of these pixels. In actual fact, our program automatically turn
these two rows and columns into white thereby preventing accidental violations of
the frame assumption due to noise or any other cause.



12 2. REAL-TIME SEQUENTIAL PROCESSING OF BINARY PICTURES

It is well-known that two adjacency relations can be defined on a square
grid, namely, the 4-adjacency and the 8-adjacency, [4]. Let us recall, however,
that one must always take opposite adjacencies on the Figure F' and the back-
ground B. Our program leaves the choice of the adjacency on the figure as an
option to the user. We will write & for the number 4 or 8 representing the ad-

jacency chosen for F', and &' for the adjacency which applies then to B. In fact,
K =12 —k.

Further definitions and notations will be introduced as we proceed through
the following chapters.

REFERENCES

(1] N.G. Altman, “Automatic digitizing of engineering drawings,” Prac.
Electro 78, Electronic Show and Convention, Session 22/3, pp. 1-3, May
1978,

(2] E.C. Greanias, P.F. Meagher, R.J. Norman, and P. Essinger, “The recog-
nition of handwritten numerals by contour analysis,” IBM Journal, vol.
7, pp. 14-21, Jan. 1963.

(3] C. Ronse, Digital Processing of Binary Images on a Square Grid,
Philips Res. Rept. [R.454], June 1981.

[4] A. Rosenfeld, “Adjacency in digital pictures”, Information and Control,
vol. 26, pp. 24-33, 1974.



