Chapter 4

DECOMPOSITION OF A FIGURE
INTO BLOCKS AND HINGES

Using runs, a figure gets converted into a series of one-dimensional structural
elements. However, our goal is to recover, somehow, the two-dimensional
structure of the figure. To this end, we shall partition the figure into two types
of objects called blocks and hinges. Both are built with runs of F.

4.1 Blocks, Hinges, d-Blocks and Block-Continuations

Any run of F that is k-adjacent to no more than one run above it and/or
one run below it will be called a block run. Any run which does not qualify as a
block run will be called a hinge. Formally, let run|s,] be a run of F; it is a block
run if and only if

conpr(i, t] < 1,
and
consuli, t] < 1; (4.1)

otherwise, it is a hinge.

22 4, DECOMPOSITION OF AFIGURE INTO BLOCKS AND HINGES

Now, we define a block as a union of k-adjacent block runs. Formally, a
block of F" is a union of 1 4 w runs (w > 0) on successive rows i, ..., + w, say
runli, to], ..., runli 4+ w,ty], such that both the following conditions hold:

() For j=0, ..., w, run[i+ j,t;] is a block run.

(f5) If w > O, then for j =0, ..., w—1, runf[i+ j,t;] is k-adjacent to
run[z’ + j + 1, tj+1].

We can express these two conditions in terms of the run parameters defined
in Chapter 3. Upon noting that for any » > 0, the rth run on any row—if it
exists—has index r—1, it readily follows that conditions (¢) and (i¢) taken together
can equivalently be replaced by the following three conditions taken together:

(a) conpr[i,to] < 1 and consul[i 4+ w,ts] < 1. (4.2)
() If w>0,thenforu=0,...,w—1,

lefsuli + u,tu] = nrisu[i 4 o,ts] — 1 = tut1. (4.3)
(¢) fw>0,thenforv=1,...,w,

lefor[i 4 v,to] = nripr(i 4 v,ty]| — 1 = tp—1. (4.4)

In Figure 4.1, we give an example of a figure (¢) subdivided into blocks
and hinges (b). One can see that blocks correspond to downstrokes or tails in
the figure while hinges serve to join blocks together. It is also apparent that the
topological structure of the figure can be derived from the structure of blocks and
hinges, and the adjacency relations between them.

In a variety of applications it is justified to impose one further condition
in the definition of a block. This additional condition is nothing but a restriction
on the extent to which k-adjacent block runs may extend to the right or left of
each other.

Let d be a positive integer. Then, a block is called a d-block if the following
condition holds:

(¢3¢) If w > 0, then for j =0, ...,w — 1,
| beli + 7+ 1,85 41] — be[i + 7, 85] [< d,
and
l en[z'-l-j-|—1,t_,-+1]—en[s’—}-j,tj]ls d. (4‘5)

4.1. BLocKS, HINGES, D-BLOCKS AND BLOCK-CONTINUATIONS 28

IS0 =

8 o HoBess__

HE BN ===

8 5 . e Bans
CIEE =

B[]

|

|5

HEE = U
Fa o EEEEEE IIIIIIIIIIIII(IIII}IlIIIIIIIIIII

Figure 4.1. Decomposition of a figure (a) into hinges 8a and
maximal blocks & (b), and maximal 3-blocks, £ and [lll (¢).

Figure 4.1.(c) shows the decomposition of (a) into 3-blocks and hinges.
Figure 4.2 provides another interesting example where the letter “T”, which
consists of one block only, (4.2.a), gets decomposed in two 3-blocks, (4.2.5).
Clearly, the two strokes are separated by the additional constraint imposed on
d-blocks. This example suggests a first reason for using d-blocks instead of blocks:
Some geometrical features are detected with d-blocks, provided a suitable value
for d is chosen. For additional rationale behind the use of d-blocks, see e.g.,

[2] on vector representation of engineering drawings, and Section 4.4 on data
compression.

A block which is not contained in a larger block is called a maximal block.
One defines similarly a maximal d-block. A maximal block (resp. d-block) is
constructed from a block (resp. d-block) by extending it from above and below
as long as this is possible.

In practical applications, blocks or d-blocks can have any length. However,
from an operational point of view, it is frequently convenient to deal with objects
of bounded size. For instance, in our implementation, and with the code written
in Pascal, blocks and hinges are coded as records (of bounded length). With this
operational constraint, a block can be coded only if its length does not exceed a
given bound. If this constraint is violated, we split that block into smaller ones.
The topmost one is considered as a block. The other ones are its continuations.
We call them block-continuations.

24 4. DECOMPOSITION OF AFIGURE INTO BLOCKS AND HINGES

2 B AR
EIEEE RO ORE

= IR
RSO R REE

&
Sy’
S~

o

FYgure 4.2. T, which is a block, gets decomposed in two 3-blocks

As stated earlier, hinges, blocks and block-continuations are what we call
objects. To each object we associate a type, an integer between 0 and 3:

Objects of type 0 are hinges.
Objects of type 1 are blocks.
Objects of type 2 are block-continuations.

The unique object of type 3 is the empty set @. (4.8)

4.2 Basic Properties of Blocks and d-Blocks

Let X and X’ be two blocks, and Y and Y’ two d-blocks. The following
properties are straightforward:

(1°) A block run is a block, and a d-block.

(2°) If X (X' % @, then X ()X’ is a block.

(3°) It X (X' # @ or X is k-adjacent to X', then X |J X’ is a block.
4°)

(4°) X is contained in a unique maximal block X™*, which is the union
of all blocks X" satisfying the property of X’ in (3°).

(5°) f Y (Y’ 5 @, then Y []Y’ is a d-block.
(6°) T Y(Y' # @, then Y |JY’ is a d-block.

4.3 ADJACENCY RELATIONS BETWEEN OBJECTS 25

(7°) Y is contained in a unique maximal d-block Y*, which is the union
of all d-blocks Y” satisfying the property of Y’ in (6°).

(8°) The figure F' is partitioned in a unique way into hinges and maximal
blocks (or maximal d-blocks).

Property (8°) is illustrated in Figure 4.1.(b) and (c).

§4.3 Adjacency Relations Between Objects

Very much in the same way that adjacency relations between runs were
coded by the run parameters defined in Section 3.2, adjacency relations between

objects (hinges, blocks and block-continuations) will be coded by object parameters
which are introduced hereafter.

Let S designate a nonvoid object with topmost run runls, ¢], and bottom-
most run run{j, 8. Let

lefpr[i,a] = ¢,
lefsulj, b] = d,
conpr|i, a] = u,

consulj, b = v. (4.7)

If w > 0, let run|i — 1,¢],...,run[i — 1,¢ + u — 1] belong to the objects
Xoy +vy Xu—1 respectively. If v > 0, let run[j+ 1,d], ...,run[j+ 1,d+ v — 1]
belong to the objects Yo, ..., Y,—1 respectively. (Note that if S is a block, then
u,v < 1, whereas if S is a block-continuation, then u = 1, and v < 1.) Readily,
under these conditions, S is k-adjacent to the objects Xo, ..., Xu—1 above it
and the objects Yy, ...,Y,—1 below it, and it is k-adjacent to no other object.
Presently, our goal is to develop an efficient way of storing that information.

We note that it is not possible to label the objects in such a way that the
labels of Xy, ...,Xu—1 and Yo, ...,Y,—; form a subrange of integers as in the
case of runs. So, one might think of associating to S the arrays [Xo, ..., Xy—1]
and (Yo, ...,Y,—1]. However, this is definitely too costly, because, a priori, the
numbers u and v may be as large as N /2. Thus, we shall have to steer a more
economical course.

26 4. DECOMPOSITION OF AFIGURE INTO BLOCKS AND HINGES

In essence, our approach consists in attaching to S—in actual fact, to
every object—a fixed number of ten parameters. The first two are the numbers
(v and v) of k-connected objects above or below S. The next four are the labels
of leftmost and rightmost X's and Y's k-adjacent to S. The last four serve to
recover the left-to-right and right-to-left sequences of labels of X's and Y’s. (See
[1, p.256] for a very similar approach applied to tree-coding.)

Accordingly, using the notation just introduced, we define first

precnnb|S| = u,

sucennb|S] = v. (4.8)
Next, (see Figure 4.3)
prefi[S] = X, ifu >0,
= @ or is undefined if u = 0;
prelalS] = Xy—1 ifu >0,
= @ or is undefined if u = 0;
sucfi[S] = Yo ifv > 0, (4.9)
= @ or is undefined if v = 0;
sucla[S] = Yy—1 ifv >0,

== (¢ or is undefined if v = 0.

Finally, if « > 1, then for z =0, ..., u—2,and y =1, ...,u — 1, we set
preletori|Xz| = Xat1,
preritole[Xy] = Xy—1, (4.10)
andif v > 1,thenforz=0,...v—2,andy=1,...,v — 1, we set
sucletori|Yz] = Ya41,
sucritole[Yy] = Yy—1. (4.11)
The prefixes “pre” and “suc” are shorts for “preceding” and “succeding”,

while the suffixes “cnnb”, “fi”, “la”, “letori” and “ritole” are shorts for “conection
number”, “first”, “last”, “left to right” and “right to left”.

4.3.ADJACENCY RELATIONS BETWEEN OBJECTS 27

preletori
— T R e

|
P
| |
] 1

preritole

runli-1,cl] runli-1,c+1] runli-1,c+21
runli,al

prefi prela

sucfi sucla

runlj,b]

sucritole

run(j+1,d] runlj+1,d+1) run(j+1,d+21
| sucletori | :

| —_— —

o Ygeediouis Al NqRdlial. « ai ba B

!

I

Figure 4.8. Object parameters

So far, the definitions of preletori, preritole, sucletori and sucritole depend
implicitely on the object S. Obviously, this is not satisfactory, and we need equiv-
alent definitions that do not depend on any particular object.

Let Z and Z’ be two nonvoid objects with respective topmost runs runl[s, a]
and run[f’, ¢’], and respective bottommost runs run[j, b| and run[s,¥]. Then:

If =1, = a4 1 and there is a run on row § — 1 which is
k-adjacent to both run[i, a] and run[i, ¢ 4 1], then sucletori]Z] =
7', and sucritole[Z'] = Z. (4.12)

If / = j, ¥ = b+ 1 and there is a run on row j + 1 which is
k-adjacent to both run[j, b| and run[j, b + 1], then preletori|Z] =

28 4, DECOMPOSITION OF AFIGURE INTO BLOCKS AND HINGES

Z', and preritole[Z'] = Z. (4.13)

If the value preletori[T], preritole[T], sucletori[T] or sucritole[T]
is not defined by (4.12) or (4.13), then it may be set to @ or it may
be left undefined. (4.14)

With the parameters just defined, the description of adjacency relations
between objects becomes an easy matter. Indeed, given the object S considered
above, the u objects X, ..., Xy—1 above it and k-adjacent to it can be traced
out as follows:

(¢) If precnnb[S] = 0, then there is no such object.
(¢7) If precnnb|S] = 1, then the unique such object is Xo = prefi[S].

(¢49) If precnnb[S] = u > 1, then these objects can be found from X, =
prefi[S] by repeated application of preletori:
X1 = preletori[X;], J=0,...,u—2. (4.15)

In this example, objects are accessed from left to right. They could be accessed
from right to left with prela, and preritole. The v objects Yy, ..., Yy—1 below
S and k-adjacent to it are accessed in a similar way by using the appropriate
parameters.

Our ten parameters convey a significant amount of redundant information.
Therefore, depending on the application at hand, both the definition and use of
some of these will be left optional, (see Section 5.2). However, when it is intended
to take full advantage of the potentialities of the approach, redundancy in the
input data enables us to significantly improve the algorithmic efficiency. This
is but another occurrence of the ubiquitous time-space tradeoff in algorithmic
complexity.

§4.4 Representation of Objects and Adjacency Relations

As we pointed out previously, a careless approach to the extraction of
connected components is likely to place overwhelming demand in terms of storage
space. Anticipating slightly upon what follows, let us note that our goal is to
reserve primary storage for objects belonging to connected components which are
not yet completely disclosed; to transfer the corresponding data to some secondary
storage once the disclosure of any connected component is completed; and to

4.4REPRESENTATION OF OBJECTS AND ADJACENCY RELATIONS 28

release the primary storage space in order that it may be re-used in the sequel.
Clearly, these considerations reveal much of our motivation for using Pascal—
with its dynamic storage allocation—as a programming language. From now on,
this choice will reflect more and more on the presentation, but is should remain
clear that the implementation of our approach could be seasoned to very different
tastes. Incidentally, it will be assumed hereafter that the machine-dependent,
Pascal procedure dispose—which releases the record to which its argument is a
pointer— enables all of the corresponding memory to be re-used.

To every object (hinge, block, block-continuation) we associate a record, of
type “objrec” indexed by pointers of type “link”. Thus we write link =1 objrec.
(In accordance with Pascal notation, the procedure new(p) creates a component
of type objrec whose name is p f, whereas the procedure dispose(p) erases the
variable p 1 and releases the corresponding memory.)

The record corresponding to an object has a fixed part, and a variant part
depending on the object’s type. The discriminant component (tag field) for the
variant part is the type variable ¢{y : 0. .3, see (4.6). In terms of the variables
defined thus far, the declaration of such a record is as follows:

objrec= RECORD
precanb, succnnb: O..maxnbr; {see p. 34}
prefi, prela, sucfi, sucla,
preletori, preritole, sucletori, sucritole: 1link;

CASE ty : t03 OF {t08 = 0..3}
0: (hro: 1..mm2; {am2 = m-2}
hbe, hen: 1..nm2); {om2 = n-2}

1: (fr: 1..mm2;

b, e: 1..0m2;

bll: O..blen; {blenmi = blen-1}

blbedif, blendif: ARRAY[O..blemmi] OF -d..d);
2: (ctl: 1..clen;

ctbedif, ctendif: ARRAY[O..clemnmi] OF ~-d..d);
3: ({clenmi = clen-1}
END;

Declaration of an object record

As can be seen in this piece of code, the fixed part of the record merely
contains (optionally):

80 4. DECOMPOSITION OF AFIGURE INTO BLOCKS AND HINGES

» Both the numbers precnnb[S] and succnnb[S], where S is the
object coded by the record.

» Pointers of type link, corresponding to prefi, prela, preletors,
preritole, etc. (In the case that one of these functions has its
valuation set to @, or left undefined, we set the corresponding
pointer to NIL.

» Not shown here are some additional parameters which will be
defined and entered at a later stage.

In the variant part of the record we store the number of runs that make
up the object, and their respective rows, beginnings, and ends.

Recall that a hinge is a type 0 object, (ty == 0), and consists of a single
run, say run[i,t]. Then, using an obvious notation, the entries in the record
declaration, namely, hro : 1. .M — 2, and hbe, hen : 1. .IN — 2, are set to
hro = 1, hbe == be[i, t], and hen = en[i,].

Blocks—in actual fact d-blocks—are objects of type 1, (ty == 1). Given
a block consisting of 1 4+ w runs, we will call w the length of that block. Let
blen designate the chosen maximal block length. d-blocks are coded differentially.
Suppose that the d-block consists of 14w runs, (w < blen). Forj =0, ..., w—1
we define

blbedif|j] == be[i + j + 1,tj41] — be[i + J, ¢4],

and

blendif[j] = en[i + J + 1,t;41] — en[i + 4,¢;]. (4.18)

Then the entries in the object’s record are: fr = i (fr is a short for first
row), b= belt, {o], e :== enli,to], and bll :== w (bll is a short for block length).
blbedif[j], and blendif[j] are determined by (4.16) if ; < w, and can be left
undefined otherwise.

We define the length of a block-continuation as the number of runs that
it contains. (Note that the definitions of length do not coincide for blocks and
block-continuations.) In the case of block-continuations which are type 2 ob-
jects (ty :== 2), we use the term clen to denote the chosen maximal length. In
view of what precedes, the interpretation of the other entries is straightforward.
Therefore, it is omitted.

4.4 REPRESENTATION OF OBJECTS AND ADJACENCY RELATIONS

81

=)
!

—
SageRananen. .
E=o3 E==1q
PEECERRREE
EEESRARANE — 5
EEE‘— 6
===

Il

NI 7
i

Figure 4.4. The same as Figure 4.1.c.

ty=20
n® | hro | hbe | hen
o 2 1 6
59 4 1 5
ty=1
n® | frib|e|bll| blbedif blendif
12 ook o2 o4 Ji0sil ik oo ®l oy o
3° 1 3 [1]2]0* % | £ x
42. 1 8 15 1T 0. Lm0 com]k, om. o
67 | Bi:| 2Ll 31 05 == Tl 222005 w1
ly =2
n® | ctl | ctbedif | ctenbedif
T 2 11 =% 4 1 =*

Table 4.1.a. Objrec records, variant part

82 4. DECOMPOSITION OF AFIGURE INTO BLOCKS AND HINGES

n° 1° 2° 3° 4° 5° 6° 7°
precnnb 0 1 1 1 2 1

sucennb 1 2 E 1 1 1 0
prefi NIL | —=+1° | —=2° -+ 92° | —»3° -y —+ @°
prela NIL | -1° | =+2° | =+2° | —4° | =+5° | —=6°
sucfi —+2° | =+3° | —=5° | =5 | —¢6° - 7° NIL
sucla —2° | —=+4° | —=5° | =+5° | —46° | =+T7° | NIL

preletori | NIL | NIL | —+4° | NIL | NIL NIL | NIL
preritole | NIL | NIL | NIL | —+3° | NIL NIL | NIL
sucletort | NIL | NIL | —4° | NIL | NIL NIL | NIL
preritole | NIL | NIL | NIL | —+3° | NIL NIL | NIL
ty 1 0 1 1 0 1 2

Table 4.1.b. Objrec records, fixed part

There is one particular advantage in using d-blocks (and d-block-continuations)
instead of blocks: The numbers in (4.16) can be coded in log,(2d + 1) bits each.
Now, if we take d = 2! — 1 with e > 0, these numbers can be coded in ¢ bits.
Thus, the corresponding arrays may be stored economically in the form of packed
arrays.

In Figure 4.4, we show a decomposition of Figure 4.1.a into objects, with

blen = clen = d = 3. We give a label to each object and display the correspond-
ing records in Table 4.1.

§4.5 Real-Time Construction of Object Records

Presently, we wish to examine the processing involved by the construction
of object records in real-time, and with a single raster scan of the figure. To
clarify matters, this part of the program is described in two stages. The first
stage introduces the data structure used to acquire the necessary information at
the run and row level, and formulates the algorithm in terms of basic processing

4.5 REAL-TIME CONSTRUCTION OF OBJECT RECORDS 38

steps. In the second stage we shall be concerned with creating or updating object
records.

4.5.1 Data structure and basic processing steps

Let us first decompose the processing as shown in the following algorithm:

BEGTIN

initialization

FOR 1:=1 TO M-2 DO
Processonrow;
IF i<M-2 THEN transitiontothenextrow
END

END;

Basic processing steps

At any time during the execution of this program, we assume that the
following is known;

(!) The records corresponding to the objects of the figure in the state
they were left at the end of the processing of row ¢ — 1.

(#) The runs of row i — 1, their parameters, and the name of the record
of the object to which each of them belongs.

(¢47) The runs of row ¢ and their parameters.

Assumption () is quite natural: it is the basis of the iteration process. We
have seen in Section 3.3 that assumption (i77) can be satisfied in real-time. Our
problem, then, is merely to meet the requirements of assumption (¢i). To this
end, we shall presently introduce two more types of auxiliary records. The first
one, of type “rowrec” is associated with a given row. Its major data subfield is an
array of records of the second type, namely, “runrec” each of which is associated
with a given run in the row. We have the following declarations:

84 4. DECOMPOSITION OF AFIGURE INTO BLOCKS AND HINGES

rowrec= RECORD

nbr: 0..maxnbr;
runpar: ARRAY[0..maxi] OF runrec
END; {maxl = maxnbr-1i}

runrec= RECORD

objpoin: link;
objty: 0..3;

CASE objty : t03 OF
0: (rri: 0..max1);

i: (rbe, ren: 1..nmi); {nm1 = F-1}
2,3: O
END;

Declarations of rowrec and runrec records

In the above declarations, “maznbr” (maximum number of runs on a row)
is an upper bound for the number nbrun[j] of runs on row j; “par” and “rec”
stand for parameters and record. Given a row v, we can now proceed with the
(self explanatory) assignment of the following values:

nbr == nbrun|v].
If j < nbrun|[v] — 1, then
runpar|j]. objpoin = z,

where z is a pointer to the record corresponding to the object containing runf{v, j]
(see next section for the determination of z}); if, in addition, run{v, j] is a hinge,
then

runpar|j]. objty = 0,

runpar(j].rri = nrisulv, j] — 1,

while if run[v, j] is a block run, then
runpar|j]. objty = 1,
runpar(j] . rbe == be[v, 5],

runpar(j] .ren = en[v, j].

45 REAL-TIME CONSTRUCTION OF OBJECT RECORDS 85

Note that here the case objty = 1 correspands to objects of both types 1 and 2.
On the other hand, if j > nbrun[v], then:

runpar(j] . objpoin = NIL,
runpar|j]. objty == 3.

For initialization purposes, we need a variable of type rowrec corresponding
to a row of white pels. We call it “emptyrow”. In emptyrow, we have: nbr := 0;
and runpar(j] := blank; (j := 0, ..., maznbr — 1;) where blank is the variable
of type runrec defined by blank.objpoin := NIL; and blank . objty := 3.

During a standard iteration, we need two variables of type rowrec for

rows v == ¢ — 1, and v = {, (see assumptions (1) and (i) above). We call them
“precrow”™ and “thisrow” respectively.

In terms of these variables, the “initialization” and the “transition to next
row” in our basic program read as follows:

BEGIN {Initialization}
Precrov:=emptyrow; ' '
thisrow:=emptyrow

END;

BEGIN {transition to next row}
precrow:=thisrow;

thisrow:=emptyrow

END;

Initialization and transition to next row

It is easy to see that these steps meet the real-time requirements. The
initialization step is, clearly, no problem. The transition to next row requires a
time proportional to maznbr. However, that time can be made proportional to
nbrun|i] + maz(nbrun[z’ — 1], nbrun| s']) with the following improved program:

86 4, DECOMPOSITION OF AFIGURE INTO BLOCKS AND HINGES

BEGIN
xm:=thisrow.nbr;
xn:=max (precrow.nbr, m);
FOR j:=0 TO xzn-1 DO
precrow.runpar [j] :=thisrow.runpar[j];
FOR j:=0 TO xm~1 DO
thisrow.runpar[j] :=blank;
thisrow.nbr:=0
END;

Improved transition to next row

4.5.2 Creating and updating object records

Let us now turn to the stage “process on row i” in our basic program. As
one could expect, this is a crucial stage.

The operations performed at this stage essentially consist in creating new
object records whenever this is required, and updating existing records in accor-
dance with the run configuration prevailing on rows ¢ and ¢ 4 1. All these opera-
tions are combined in a unique procedure called “allocate” which, depending upon
the current configuration, may activate a number of auxiliary subroutines. Ten
of these serve to create and update the data structure defined so far. Some more
subroutines will be introduced in the following chapter. Let us however have a
look at allocate as it would read at this stage. (See Appendix C for the exhaustive
code of procedure allocate, and Appendix D for the code of auxiliary subroutines.)

PROCEDURE ALLOCATE(u : tOmaxnbr); {tOmaxmbr = 0..maxnbr}
VAR p,z : link; wrec : ruarec;
BEGIN
thisrow.nbr:=u+1; wrec:=precrow.runpar [lefpr];
z:=wrec.objpoin;
IF (conpr=1) AND (consu<=1) AND (wrec.objty=1)

AND (abs(be-wrec.rbe)<=d) {for d-blocks only}

AND (abs(en-wrec.ren)<=d) {id} {condition 1}

THEN

45 REAL-TIME CONSTRUCTION OF OBJECT RECORDS 87

IF (zT.ty=1) AND (zt.bll<blen) {condition 2}
THEN
BEGIN
thisrowobjtyi(z); blockenlarge(zt,wrec);
conbelow(z)
END {statement 1}
ELSE
IF (zt.ty=2) AND (zt.ctl<clen) {condition 3}
THEN
BEGIN
thisrowobjty1(z); continuationenlarge(zt,wrec);
conbelow(z) {stateoment 2}
END
ELSE
BEGIN

newobject; thisrowobjtyl(p);
newcontinuation(pt,wrec); conbelow(p)

END {statement 3}
ELSE
BEGIN
newobject; {statement 4}
IF (conpr<=1) AND (comnsu<=1) {condition 4}
THEN
BEGIN
thisrowobjtyl(p); newblock(pt); conbelow(p)
END {statement 5}
ELSE
BEGIN
thisrowobjty0(p): newhinge(pt); conbelow(p)
END {statement 6}
END
END{allocate};

The procedure allocate

From the mnemonics used as subroutine’s names, the reader may have
guessed much of the operational significance of procedure allocate. Let us, however,
examine it in some detail.

In the first place, when conpr(i, u} 7 0, the connections between a given
run, say run[q, u|, and the objects on preceding rows are established via run[i—1,

88 4. DECOMPOSITION OF AFIGURE INTO BLOCKS AND HINGES

lefpr[i,u]] which is the first run not to the left of run|i,u] on row i — 1. The
runrec record associated with that run is precrow . runpar|lefpr[i,u]], and that
run belongs to the object precrow.runpar|lefpr[s, u]]. objpoin 1. Hence, the
assignments of variables wrec and z at the beginning of the procedure.

In the second place, the body of allocate is structured around four IF ...
THEN ... ELSE decompositions. Condition 1 is satisfied if run[i,u] and run[i —
1,lefpr| form together a d-block. If, in addition, object z { is a block whaose cur-
rent length is less than blen (condition 2), then statement 1 which activates three
subroutines is executed. This has the effect of (a) assigning the appropriate values
in the run record thisrow.runpar[u] (subroutine thisrowobjtyl); (b) updating
the parameters bll, blbe(en)dif in the variant part of object record z { (subroutine
blockenlarge); and (c) updating the connectivity parameters succnnb, sucfi(la),
preletori(ritole) of z 1 (subroutine conbelow). As a matter of illustration, the
subroutine blockenlarge reads as follows:

PROCEDURE blockenlarge(VAR t: objrec; VAR w: rumrec);
BEGIN
WITH t DO
BEGIN
blbedif [bll] :=be-w.rbe;
blendif [bll] :=en-w.ren;
bll:=bll+1
END
END{blockenlarge};

The procedure blockenlarge

If condition 2 is not satisfied and if condition 3 is, in which case object
z 1 is a block-continuation of current length less than clen, then the very same
operations are performed in terms of a block-continuation instead of a block
(statement 2), else a new block-continuation is created (statement 3). In statement
3, we are confronted with the first occurrence of the subroutine newobject which,
in this case, is followed by the subroutine newcontinuation. The reason for this
apparent duplication of effort is quite simple: Subroutine newobject is a fairly
general subroutine whose role is to create a new object record whenever this is
required, to fill the fixed part of that record in every possible configuration, and,
if necessary, to update the records of the preceding objects accordingly. This
procedure is thus invoked again whenever a new hinge and the beginning of a
new block are encountered. In the case of statement 3 the role of subroutine

4,5 REAL-TIME CONSTRUCTION OF OBJECT RECORDS 89

newcontinuation is then to fill the appropriate variant part of the object record
just created.

At this point, the remainder of procedure allocate should be nearly self-
explanatory. If the requirements in condition 1 are not met, run[s, u| is, in any
event, the first run of a new object. Hence statement 4. If condition 4 is satisfied,
that new object is in fact a new block, else it is a new hinge. Hence, statements
5 and 6.

Now, the procedure allocate could be activated in two slightly different
ways. On the first hand, it could be invoked, during the processing of row i,
as soon as the parameters of run[i,u| are acquired. In this case, the algorithm
operates in real-time at the run level. On the other hand we might defer the calls
of allocate until all the runs of row 7 have been acquired. The algorithm would
gains in modularity and still operate in real-time, but at the row level. The reader
may have inferred from our last comments in Chapter 3, that it is the first of these
option which has been implemented.

4.5.3 Comments

Presently, we wish to point out a number of possible, minor simplifications,
and to comment on the time and space complexity of procedure allocate.

Condition 1 involves two tests which apply to d-blocks only. Clearly, if
one uses blocks instead of d-blocks, these conditions should be deleted without
further ado. (The same remark applies in various places in the program.)

If the procedure was implemented in a language admitting dynamic arrays
and records, then we could handle blocks of arbitrary length, and there would be
no need for block-continuations. Readily, Conditions 2 and 3 and Statements 2
and 3 would disappear altogether, as well as the procedures continuationenlarge
and newcontinuation.

If we were to take blen = clen, it would be advisable to use the same
data structure for type 1 and 2 objects. Both procedures blockenlarge and con-
tinuationenlarge could be merged in a unique procedure. The branching due to
Condition 3 would disappear as well as the test “z { .y = 1” in Condition 2.

Let us now turn our attention to the time-complexity of procedure allocate.
For what concerns adjacency relations, it is proportional to conpr(s, u]. The time-
complexity of auxiliary operations is dominated by that of procedure endof which,

40 4. DECOMPOSITION OF AFIGURE INTO BLOCKS AND HINGES

in turn, is bounded from above by maz(blen, clen). Procedure endof is called only
once (in procedure newob ject) for each block or block-continuation. Therefore, as

conpr(i, u] < [(enli, u] — be[i, u])/2] + 1,

allocate operates in real-time at the run level.

At the end of the scan of the current row, the stage transitiontothenext-

row is also linear in the number of pixels of the row. Therefore, the whole process
is also real-time at the row level.

For what concerns memory requirements, they merely consists in objrec
and rowrec records. The number of objrec records is the number of objects under
consideration. The rowrec records thisrow and precrow have a size which is
proportional to IV as was the case for the arrays used to store the 3-row window.

REFERENCES

(1] P. Grogono, Programming tn Pascel, Reading, Ma.:Addison-Wesley,
1978.

(2] K. Ramachandran, “Coding method for vector representation of en-

gineering drawings”, Proc. IEEE vol. 68, pp. 813-817, July 1980.

