Chapter 5

THE DETECTION OF
CONNECTED COMPONENTS

§5.1 Preliminaries

In the preceding two chapters, we have studied the 1- and 2-dimensional
building blocks or structural elements of a figure, namely runs and ob jects together
with their adjacency relations. We also showed that exhaustive information about
these structural elements can be acquired in real-time.

In this chapter, we turn to the consideration of the third level in our
hierarchical decomposition of figures, namely, the connected components and their
adjacency relations. The real-time requirement can presently be formulated as
follows: A connected component of the figure must be detected at the end of the
scan of the last run contained in it, and the amount of processing involved must
be proportional to the sum of the sizes of the records associated with the objects
contained in that component.

Other approaches have used the structure of the cycles formed by the bor-
der of the figure to ascertain that connected components or holes are completely

42 5. THE DETECTION OF CONNECTED COMPONENTS

disclosed [2,3]. Indeed, a connected component is completely disclosed when its
outer border, which forms a cycle, is closed. In very much the same way, we shall
use the closure of the edge for that purpose. To this end, we shall keep track of
chains, i.e., unclosed cycles, in the edge, together with the pairs of their current
endpoints. Clearly, coincidence of endpoints will reveal the closure of the edge
cycles.

Thus far, the description of our approach has a definite “general purpose”
flavor. This point is well exemplified by the redundancy in the information stored
in the object records. It is quite clear, however, that one should not use the same
program for the purposes of isolating characters in typed text and analyzing the
topology of conducting tracks in sophisticated printed circuit boards. It is at the
present stage that we shall encounter two possibilities of specializing our technique
to the needs and taste of a wide range of potential users. Both these specializations
offer two ways of acquiring and handling information about ad jacency relations
and surrounding relations respectively. It should be stressed at the outset that
they are fully orthogonal in the sense that any combination is feasible (and directly
available in the code).

For what concerns adjacency, we introduce two options called full ad-
Jacency, and restricted adjacency. With the former, we use exclusively—and
extensively—the ten object parameters pre(sucjennb, prefi(la), preletori(ritole),
sucfi(la), sucletori(ritole) for the purposes of following the edges of connected
components and holes, and detecting the closure of edge cycles. Thus, the full
ad jacency option is the natural continuation of the approach discussed up to now.
However, we made it clear that these parameters offer us more than what we ac-
tually need. Thus, with the restricted adjacency option we eliminate the redun-
dancy in the contents of object records, and we show that edges can be followed
and closures detected by using a different approach which completely ignores these
ten parameters but uses only four new parameters defined in Subsection 5.2.3. As
the name implies, full adjacency is intrinsically richer and facilitates subsequent
analysis of connected components, for instance, the recognition stage in an OCR
application. On the other hand restricted ad jacency yields a less detailed output
but results in a simplified program.

The second specialization concerns surrounding relations. Here again two
options are available, namely full surrounding and restricted surrounding. Latter
focuses on connected components taken in isolation. In other words, under restric-
ted surrounding, we extract only the surrounding relations between every con-
nected component and its respective holes. On the contrary, under full surround-
ing, we extract the surrounding relations between all connected components of

5.2.EDGE-FOLLOWING IN A FIGURE 48

the figure and all connected components of the background except the one which
contains the grid (as it is plain that this one surrounds everything anyway).

This chapter discusses a variety of subjects which will be brought to bear
on the design of the program in a number of different ways. Therefore, a brief
overview should prove helpful.

Section 5.2 is concerned with edge-following in a figure. Brief theoreti-
cal developments are followed by minute examination of full and restricted ad-
Jacencies. Accordingly, we describe two versions of an edge-following operator
which will be called into action at the time we want to output the cycles of the
edge of the figure.

In Section 5.3, we introduce the neighborhood-tree as a representation for
neighborhood and surrounding relations in a figure. In turn, neighborhood-trees
can be represented in the form of strings. We discuss two possible string represen-
tations, namely, the vertex-string and the edge-string. We provide evidence that
the latter proves more convenient for our purposes, and we discuss edge-strings in
both full and restricted surroundings. Eventually, we introduce the data structure
which is used to store cycles and edge-strings.

Detection of the closure of cycles and construction of edge-strings is the
subject matter of Section 5.4. We show how cycles can be found by growing
chains (parts of cycles) in the edge of the figure. We introduce the data structure
required to store chain extremities together with their properties under both full
and restricted surroundings, and we show that the operations to be performed
on chains and edge-strings can be conveniently distributed between six new sub-
routines which are again nested in procedure allocate.

§5.2 Edge-Following in a Figure

5.2.1 Notation and theoretical background

We first introduce the notation for the edge of a figure, and we recall some
basic properties which will be useful in the sequel. It should be borne in mind
that we constantly assume that ' satisfies the frame assumption (see Section 2.2).

44 5. THE DETECTION OF CONNECTED COMPONENTS

X}V 5] ¥

(x,y) {x,y}

Figure 5.1. Oriented (z,y), and unoriented {z, y} edge-elements.

Let X and Y be two neighboring subsets of the grid G. Then, the oriented
edge ¢¥(X,Y) between X and Y is the set of all ordered pairs (z,y) such that
z € X,y €Y and z is 4-adjacent to y. Such an ordered pair (z,y) is called an
(oriented) edge efement, and is represented in Figure 5.1.a as an arrow between z
and y. The orientation of the edge ¢1(X,Y) is such that the set of arrows leaves
X on the left and Y on the right.

One can also define the unoriented edge ¢(X,Y) between X and Y. It
consists of all unordered pairs {z,y}, and such a pair is represented in Figure
5.1.b as a straight bar between z and y. Obviously, we could also use the inverse
orientation of the edge, leaving X on its right and Y on its left, and denoted
e (X,Y). In fact, we have

e (X,Y)=et(Y,X), (5.1)
and
Y, X)=¢X,Y). (5.2)
We define
et (x) = et (X, G\X), (5.3)

and similarly for ¢7(X') and ¢(X). These are the positive oriented, unoriented
and negative oriented edges of X'. Note that

e (X) = et (G\X). (5.4)

Let us now consider the edge ¢ (F) of figure F', or equivalently the edge
€~ (B) of the background B = G\F. Let X denote a k-connected component of

5.2.EDGE-FOLLOWING IN A FIGURE 45

< y'
1*0 i 1 T [xy| 0] 1
k=4
1}0 x| 1 0 1 Oy x 1 A0
X y X y X y x y
x' y'
l+0 YPo | 0 1 T |x 0|1 [x
k=8
1+0 xf 1 0 1 0 (v 140 |y
X y X X X y

Figure 5.2. The successor of an edge-clement,

F'and Y denote a k’-connected component of B. Now, ¢t (F) is the disjoint union
of et(X,Y) for all such X's and Y’s with ¥ neighboring X. It is also the union
of €7(X) for all such X's, and the union of ¢ (Y) for all such Y’s. Furthermore,
et (F) is a union of cycles, and conversely, these cycles are the ¢ (X,Y) obtained
for all possible pairs (X,Y).

The cycle €*(X,Y) can be obtained from one of its edge-elements (zo, yo)
by successive application of the edge-following operator, which is a permutation
of e+(X , Y) associating to each edge-element another edge-element which is its
successor in the cycle. Thus, starting from (2o, yo), we obtain successively (z1, y1),
(22, 92); -+, (Zn, ¥n) = (20, Yo0) and the cycle is completed.

Figure 5.2 displays the successor (z', ') of (=, y) for all possible configurations
over a 2 X 2-window containing (z, y), and for both k¥ = 4 and % = 8.

In the next two subsections we shall address the problem of devising real-
time, edge-following operators for the objects we are dealing with. In accordance

with our discussion in Section 5.1. full and restricted ad jacencies will be examined
separately.

[PA9]-UNI 51} B SUIMO[[0J-o8pH ‘TS 2199

11 —tlpeg 5 ¢f sa0ym
[T+ 5 2]pag ‘g “[s ‘s]pas
aouanbas a1y 798 o

21 —tnsbra > ¢
‘s ‘s]4dbr4 =: 3 10} pure

0 < [s4luduoo (,9)

11 —1lpag S ¢ sroym
‘[s t]par g ‘[T — s ‘t]pau
souonbes o) 185 o\

T —2nsfor < s
‘[4]4d fo7 =: 7 10] pue

(o8)

0 < [s“2]eduoo

fro43lpar S 1 oregm

‘I “s]pas ‘1 {1 + ¢ ‘t]pay
aousnbas 9] 198 op\

Tor A o]udbrs > 6

‘[s “s]nsbru =: 3 30§ pue

(-8)

0 < [s“]nsuoo

a1 4 tlpaz S £ szoym
‘(1 — s 2lpas ‘4 “[s 2]pay
aouanbas 9} 108 oM
o1+ 1l4dfor < s
‘Is “4]ns fo; =: 1 10} pue

(o8)

0 < [s‘t]nsuoo

T —slpagNIslper S p
S3ELITN
To‘r —tlpas < p “[s ‘t]pas
souonbos oY) 108 o\
1 —insbri=s
‘s “¢]4dbrs =: 2 30] pue

(%4)

0 < [s ‘3]uduoo

e —slpae e tp2s 5 5
aIoyM
‘[s“tlper “p [T — tlpa
souanbas o) 198 app
Trr—slnsfo)=s
‘[s 4]ud fag =: 3 10} pure

(o2)

0 < |[s ‘1]4duoo

T4l selpag S5
STy M
‘s lpas > (2T +2]pa4
aouanbas oY) 198 opp
Tar +2Judbze =
‘[s s]nsbie =: 3 10} pue

0 < [s9lnsuor (,2)

a1 4 tlpaz () [s “2lpag S 3

IoYM
‘[¢ T +1lpag 3 [s 2lpag
souanbas ay) 108 ap
Tt aedfop=s
‘[s ‘s]ns fa =: 3 10§ pue

(:8)

0 < [s‘t]nsuoo

[s “2]par “[s ‘t]pas [s “t]pas
douanbas a3y} 198 oM

(oT)

0 = [s ‘2]uduoo

[s ‘2]pay “[s “t]pay ‘[s 2]pas
douanbas oY) 195 o

fl)

0 = [“4juduoo

[s ‘slpas “[s 4]pag [s “t]pa1
oouanbas ay] 198 oM

1)

0 = [s ‘t]nsuoo

[s ‘2]pas ‘[s ‘t]pag ‘[s ‘2]pay
aouonboes 243} 193 o

(E)

0 = [s“1]nsuoo

[¢ 3]pa+ Swmoiog "

[s “t]pa; Swipaserg D

[s “4]pas Supooaag g

[s ‘2]pa; Sumoqiog 'V

5.2.EDGE-FOLLOWING IN A FIGURE 47

top edge

m—

- < - - &
£ <€ 3 & <

left edge y A right edge

P
:

P
=

-
~"

bottom edge

Figure 5.3. The edge of a run.

5.2.2 Full adjacency

Let us recall that under full adjacency all of the object parameters defined
thus far are available and can therefore be brought to bear on the specification
of our edge-following operator. To simplify matters, we shall first examine this
problem at the run-level.

In Figure 5.3, we show how the edge et (R) of a run R can be subdivided
into 4 parts called the top, left, bottom and right edges of R. If R = run[i, s], then
these 4 parts will be written ted[i, s], led[i, s], bed]i, s] and red[, s] respectively.

We will henceforth concentrate particularly on left and right edges. We
do so because the left and right edges of a run R of F always belong to the edge
of ', while this is not always true of the top and bottom edges of R (since R may
have adjacent runs of I from above or below).

Next, let us consider run|s, s] embedded in some connected component
of F. We already know that led[i,s] and red|s, s] belong to some cycle(s) in
¢t(F). Let us now examine what follows or precedes them, up to the next
led[j,t] or red[s,t] in this or these cycles. A close examination of all possible
configurations of adjacent runs reveals that the answer to that question follows
from the consideration of only three configurations. This exhaustive analysis gives
rise to Table 5.1 which shows the parts of ¢+ (F) which follow or precede led][t, s]
and red[i, s] in each of the three configurations of interest. Columns A and D of
Table 5.1 are illustrated by Figure 5.4. Columns B and C of that table specify
what precedes the left or right edge of run|i, 5], and are merely illustrative.

Table 5.1 demonstrates that the sequence of left and right edges of the runs
of F'in e+(F) is completely determined by the parameters of these runs. However,
it seems worthwhile to point out that, at the run-level, the information

48

5. THE DETECTION OF CONNECTED COMPONENTS

conpr [i,s]=0.

conprli,s]>0,

t:=rigpr li,sl,

s=rigsuli-1t]

conpr [i,s]>0,

c=rigprli,s],

s< rigsu [i-1,t].

consuli,s] =0

consu [i,s] >0,

lefsuli,s],

lefpr [i+1,t].

t:

S

"

consu li,s1>0,
t:= lefsu [i,s],

s> lefprli+1,tl

led ¥

- li,s-1] Lred 1

led

tgd
led v [i,s] \ red
————)
li-1,t] red
[i,s] € Ared
[i-1,t] € Ared
[i,s]jred
[i-1,1]
li,s) pred B tedy [i,s+1]
[i,s] \red
bed
IedwE li.s]
ledy [i+1,t] -+ -
led ¥ [i,s]
ledy € [i+1.t]

F[i,s]

[i+1.t]

Figure 5.4. Edge-following at the run level

5.2 EDGE-FOLLOWING IN A FIGURE 49

required to achieve this goal can sometimes be accessed only in an indirect manner.
This point is well apparent in cases A.3° and D.3°. There, the edge elements
red|f, s — 1] and led[i, s 4 1] which follow led[d, s| and red][i, s] can be found only
by inspection of the parameters of run[i — 1,¢] and run|i + 1, t] respectively.
This observation provides most of the justification for the redundancy that was
introduced in the object parameters. As we shall see hereafter, object parameters
will enable us to follow the edge of F' in a more straigthforward manner.

Let us now apply these properties of runs to our 2-dimensional objects:
hinges, blocks and block-continuations. Consider first a block X formed by 14w
block runs: run[i,to], ..., run[s,t,]. Then, the edge e+ (X) of X consists in 4
parts:

» The top edge ted[i, to].
» The bottom edge bed|, t].

> The sequence: led[i, o], €o, ..., Ew—1, led[i + w, tw],
where €, ..., €y—1 are as € in Table 5.1.A. (5.5)

> The sequence: red[i + w, tw], €,, ..., €5, red[i, to],
where €,, ..., ¢, are as ¢ in Table 5.1.D. (5.6)

The sequences (5.5) and (5.6) are the left and right edges of block X. We
illustrate in Figure 5.5 the edge of a block. Now, we can obviously proceed in
the same manner for a block-continuation. On the other hand, a hinge is a run,
and so what was said above about the edge of a run applies to hinges, except for
the fact hinges are described by objects parameters instead of run parameters.
Thus the edge of a 2-dimensional object can again be subdivided into 4 parts, the
top, left, bottom and right parts. Given an object S, we will write them ted(S),
led(S), bed(S) and red(S) respectively.

Adjacency relations between objects correspond to adjacency relations of
their topmost and bottommost runs. This enables us to translate the (run-based)
Table 5.1 in the (object-based) Table 5.2 which specifies how the edge of F* can
be followed at the object-level. Here again, columns A and D provide essential
information with regard to the algorithm, while columns B and C are illustrative.
Table 5.2 shows that the sequences of left and right edges of objects of F' are
completely determined by the adjacency relations between these objects, as they
are expressed by the ten object parameters. Let us also note that these parameters

[0A3[-399{q0 2y} e SUIMO[[0J-3PH &S)92

‘[s]eomppons = 5 pue
(Z)pag S ¢ oroym
(uSIPo1 ‘g ‘(S)po+

aouanbas 3] 198 app
‘[Ilrens #£ g
‘[s]op4d =: f 10} pue
0 < [slquuosid (.g)

‘[sleioprsons =: g pue
(L)pag S ¢ 21oum
‘($)par g (,8)pa+

aouenbas oY) 198 oM
L]t fons £ 5
‘[S]sfo4d =: [10} pue
0 < [slguwoasd (g)

‘[s]ts08p24d =: 5 pue
(L)pa1 S 1 ozoym
“(s)pas 2 (,8)pa1

aouanbos ay) 793 aM
‘|L]vpad # 5
‘[S]pons =: [1o} pue

0 < [glquuoons (.g)

‘[slerosss04d =: 5 pue
“Z)par S + szaym
“(,S)pa+ ‘1 (s)pay

aouonbas a) 998 app
[Llsfoad £ 5
‘[Slefons =: [10} pue
0 < [slguwoons (.¢)

(L)paq 10 (S)pa1 S p
dlaym
“(L)pa+ ‘p ‘(s)pas
2ousnbas ay) 393 9\
._.H_Su:m. =g
‘[s|vp4d =: [10} pue
0 < [Slquuosud (2)

(Z)pag 10 (S)pa1 S p
aloyMm
‘(s)pa1 ‘7 ‘(T2
souanbas oY) 193 ap
Ll fons = s
‘[l fo4d =: [10} pue
0 < [Slquuossd (3)

(Z)poz 10 (S)p2g 53
8loUuM

“9)pa4 9 ‘(I)pa+
aouanbas o) 193 o
._&_Sm.& =g
‘[slepns =: [10] pue
0 < [slquuoons (,3)

(L)pa1 10 (S)pag 52
2IsyM
“(L)par 5 (S)pa1
aouanbos ay) 198 9\
(Zlsfo4d = 8
‘[s]sfons =: [10] pue
0 < [glquuoons (.2)

(S)pa1 (S)paz (s)pas
aouanbas 97} 193 9M

0 = [slauuwoaud (1)

(s)pa1 ‘(s)paz (s)pa+
aouanbas a1y 308 oA

0 = [slquuoasd (,T)

(s)pa+ (S)paq ‘(S)Par
souanbas oY) 198 oM

0 = [Slquuoons (,T)

(s)pa+ (S)paq ‘(S)Pat
aouanbas a9 798 o

0 = [slquuoons (,1)

(m.uﬁﬁ Summoqod '

(g)pap Butpessig D

(s)pa4 Surpedarg g

(S)pa; Suimoiod 'V

5.2.EDGE-FOLLOWING IN A FIGURE 51

A
A

A
y
Y

P right
edge

left
edge <

Y
A

Y

L.
o

Y A
\ >

L
C > F o

L

\-_-w_—/
bottom edge

Figure 5.5. A block and its edge.

give us now direct access to the information required for that purpose. (The alert
reader will soon notice that the information which was lacking at the run-level
was that conveyed by the parameters preritole(letori) and sucritole(letors), one
of which is defined 5 @ in each occurrence of case 3°.)

In the cycles of the edge ¢t (F), the three cases occuring in colums A and
D of Table 5.2 can be determined from the parameters of the current topmost and
bottommost runs of each object. Therefore, it should come as no surprise that it
is possible to determine, within the procedure allocate, which case of (1°), (2°) or
(8°) holds for the successor of the left and right edge of a given object. This will
bring about a first, though natural expansion of this procedure. However, before
getting immersed into the implementational details of Subsection 5.2.4., it will be
convenient to examine how the succession of left and right edges of objects in the
cycles of e (F) can be followed with the help of this decomposition in 3 cases.

It has proved useful to write in the object records the case (1°), (2°) or (3°)
which holds for the successor of the left and right edges of that object. This can
be done by adding to these records two components called f0l0 and foll taking
values in the subrange 1. .3. Here, 0 stands for “left”, and 1 for “right”. Thus
Jol0 indicates the number of the case which holds for the successor of the left
edge of the object (in Table 5.2.A), while fol1 indicates the number of the case for
the successor of the right edge of the object (in Table 5.2.D). Addition of these
two components eliminates the need to recompute the cases when one wants to
follow the cycles of ¢™(F).

52 5. THE DETECTION OF CONNECTED COMPONENTS

Record Edge side Case Pointer New side Destination

rl left folo =2 sucft same rl.sucfi {=r2
r2 left Jolo =2 sucfi same r2.sucfi f=1r3
r3 left folo =2 sucfi same r3.sucfi f=1r5
r5 left, folo =2 sucfi same r5.sucfi t==ré6
ré left fol0 =2 sucfi same ré.sucfi 1= r7
$T left folo =1 . change rf=r7

r7 right foll =2 prela same rT.prela 1= r6
ré right foll =2 prela same ré.prela 1= r5
rh right foll =2 prela same r5.prela {=r4
r4 right Joll =2 prela same rd.prela 1= r2
r2 right foll =2 prela same r2.prele {=rl1
rl right foll=1 change rl=rl

Table 5.8. Following the outer cycle in Figure 4.4,

Record Edge side Case Pointer = New side Destination
r4 left folo=3 | preritole change rd.preritole = r3
r3 right | foll=238 | sucletori change r3.sucletori 1= r4

Table 5.4. Following the inner cycle in Figure 4.4

Let us show on an example how this allows us to follow the cycles of the
edge of F. Consider the decomposition of Figure 4.4 into 7 objects numbered
from 1 to 7, and whose records are labelled r1, ..., r7 respectively. The edge of
the figure has two cycles. They can be followed with the help of a binary variable
stde representing the edge side of the object. Tables 5.3 and 5.4 show how this
can be done.

With Table 5.2 handy, this example is fairly self-explanatory. Hence the
details are left to the reader. One sees that the variable side determines whether
one examines fol0 (left) or foll (right). In fact, Table 5.2 was organized in such
a way that this variable changes its value when fol0 or fol1 is odd. This example
also shows that, aside from the determination of the case, edge-following can be

5.2 EDGE-FOLLOWING IN A FIGURE 58

implemented with the help of only four out of the ten object parameters. We
shall pursue this idea further in the next subsection.

5.2.3 Restricted adjacency

As mentioned before, the restricted adjacency option completely ignores
the ten objects parameters but uses instead four other parameters which we shall
presently introduce. Thus, our goal becomes that of collecting in the object records
the minimum information necessary to follow the succession, in €*(F'), of left and
right edges of objects. For this purpose, we must only specify which edge (left or
right) of which object follows the left or the right edge of a given object. This
can be done by introducing in the object records the following four components

folOposn, follpoin : link,
folOside, follside: binary, (5.7)

where binary = 0. .1 and link =1 objree.

With these four components we proceed as follows: The left edge of an
object r is followed by the left or right edge of the object r.f0lOpoin 1 according
to whether r.fol0side = 0 or 1. Likewise, the right edge of r is followed by the
edge side r.follside (O==left, 1==right) of the object r.follpoin 1. For example
the objects of Figure 4.4 give rise to the following values for these components:

Record rl r2 r3 r4 r5 ré r7
folOpoin 1 r2 r3 r5 r3 r6 r7 r7
folOside 0 0 0 1 0 0 0

follpoin t rl rl r4 r r4 r5 r6
follside 0 1 0 1 1 1 I

Table 5.5. Edge-following in restricted ad jacency

Note that if r is a block-continuation (i.e. if .ty = 2), then r.follpoin is
the object (block or block-continuation) of which r is the continuation.

54 5. THE DETECTION OF CONNECTED COMPONENTS

5.2.4 Implementation

Let us now examine how fol0 and foll (in the case of full adjacency) or
folOpoin, folOside, follpoin and follside (in the case of restricted ad jacency) can
be computed in real-time. The computation takes place in two of the subroutines
invoked by procedure allocate, namely, conbelow and newob ject, (see Appendix
D, Sections D.2, and D.3). In fact, these are the subroutines that compute the
ad jacency relations at the object-level.

At this stage, it becomes virtually impossible to discuss our implementation
without referring to the detailed code available in the appendices. Therefore, the
reader might be well advised to defer the reading of this subsection until the time
when he wishes to penetrate the darkest corner of the program.

In the first place, the implementation is discussed herafter in a form
which is independent from the chosen adjacency option. Subsequently, full and
restricted ad jacencies will be considered separately.

OK, we assume that the reader has a copy of Appendix D handy. Recall
from Chapter 3 that object parameters are going by simplified names. In par-
ticular, the variables consu, conpr, lefpr, etc, stand for consu[,u], conprli, u],
lefpr[i, u], etc. We write pnp for nripr[i,u — 1]. Moreover, there are several
pointers of type link, namely, z, p, last, s, and ss which must be interpreted as
follows:

» 2z points to the object to which procedure conbelow is applied.
> p points to a new object starting with run[t, u).
» last points to the object containing run[i, v — 1].

> When conpr|i, u] > 0, we consider for z = 0, ..., conpr|i,u] —
1 the zth object adjacent to run[i,u] and above it. Then, s
points to that object, while ss points to the (z — 1)st object.

Now, one of the six cases of interest in Table 5.2 is treated in the procedure
conbelow. The other five cases are handled in the procedure newob ject.

(¢) In conbelow, to the compound statement following IF consu = 0 THEN we
must add the following information:

red(z 1) follows led(z 1), (5.8)

i.e., case (A.1°) holds for led(z 1).

5.2.EDGE-FOLLOWING IN A FIGURE 55

(¥7) In newob ject, there are several additions:

(2) To the compound statement following IF conpr = 0 THEN we add the
information that:

led(p 1) follows red(p 1), (5.9)
i.e., case (D.1°) holds for red(p 1).

(6) In the “IF z = O THEK” part, we add to the compound statement
following the “ELSE” of the condition “IF u > 0 ARD lefpr < pnp” the
following information:

led(p 1) follows led(s 1), (5.10)
L.e., case (A.2°) holds for led(s 1).

(¢) In the compound statement following

IF z = conpr — 1 THEN IF
(zrec.objty = 1) OR ((:crec.objty = 0) AND (zrec.rri = u))

(this statement means that run[s, u] and run[i, s 4 1] are not ad-
jacent to a common run above them), we add the following:

red(s 1) follows red(p 1), (5.11)

i.e., case (D.2°) holds for red(p 1).

(d) In the compound statement following the “ELSE” of the condition “IF
z = 0" we get:

red(ss 1) follows led(s 1), (5.12)
i.e., case (A.3°) holds for led(s 1).

(¢) In the case where z = 0 and u > 0 AND lefpr < pnp, which means
that run[i,] and run[i,u — 1] are adjacent to a common run above
them, we have the following:

led(p 1) follows red(last 1), (5.13)
i.e., case (D.3°) holds for red(last 1).

Now, let us see how this can be implemented in both cases: full and
restricted ad jacencies.

56 5. THE DETECTION OF CONNECTED COMPONENTS

In full adjacency, we have only to add in the compound statement cor-
responding to each case (7}, (¢i.a), ..., (¢5.e) above the information conveyed by
equations (5.8) to (5.13) in terms of the cases (1°), (2°) or (3°) of Table 5.2 with
the fields fol0 and foll of the given record. Thus we write:

z 1.fol0 =1 in case (3).
p1.foll =1 in case (ii.a)
s 1.fol0 = 2 in case (5i.b).
p 1 .foll = 2 in case (i1.c).
s 1.fol0 = 3 in case (¢i.d).
last 1 .foll = 3 in case (ii.e). (5.14)
In restricted adjacency, there are more transformations. We delete from
the two procedures conbelow and newob ject all the statements concerning precnnb,
preft, prela, preletori, etc. We insert the contents of equations (5.8) to (5.13) in

terms of the fields folOpoin, folOside, etc, at the appropriate places. Thus we
write:

21 .fol0side =1 and z { .folOpoin = z in case (3).

p 1 .follside = 0 and p 1 .follpoin = p in case (ii.a).

s 1 .foloside = 0 and s 1 .fol0poin = p in case (£i.b).

p1.follside=1and p t .follpoin = s in case (ii.c).

s 1.fol0side = 1 and s 1 .folOpoin = ss in case (i1.d).

last T .follside == 0 and last 1 .follpoin = p in case (ii.e). (5.15)
Note that with these transformations, the last ELSE in the body of newob-

ject disappears, because it commands only one statement concerning a pointer
sucla.

5.2.5 Comment

We have shown above how the records of type obsrec can be adapted to
make feasible the following of the cycles of the edge of F'. We showed that the ten
components of the object record describing the adjacency relations can be used in

5.3.THE NEIGHBORHOOD-TREE AND ITS REPRESENTATION 57

order to follow these cycles. We showed also that they may be replaced by only
four components, in which case the adjacency relations between objects are less
explicitely detailed. Now several problems remain:

(1°) We must be able to determine when a cycle of the edge is completed.

(2°) We must be able to detect the relation between the different cycles
of the edge of a given connected component.

(8°) We must be able to describe these cycles and the relations between
them in a form that can be exploited by the user.

Problems (1°) and (2°) will be dealt with in Section 5.4, while problem
(3°), which has the flavor of a theoretical prerequisite for the solution of the other
two, is the subject matter of the next Section.

§5.3 The Neighborhood-Tree and its Representation

In this Section we examine the nature of the neighborhood and surrounding
relations between connected components of F' and B, and between cycles of the
edge et (F). We also show how these relations can be represented in an economical
and practical way. The problem involves the topology of the plane, the dynamical
coding of graphs, and some other theoretical problems on which we have to
concentrate before returning to the description of the program.

The reader should take it just on faith right now that the procedure
allocate can still be further modified in order to detect and describe in real-
time the surrounding relations between the connected components of F' and
B. 1t is well-known that these relations form a tree. We will be confronted
with a problem similar to the one which we encountered when we described
the representation of the adjacency relations between the objects, namely, how
to describe relations of unbounded degree with records of bounded size. (For
instance, a connected component of F' may have up to M.N /4 holes, but we must
represent the link between that component and its holes with a small, constant
number of parameters). We will show in this Section how the tree representing
the surrounding relations between connected components of F* and B can be
represented as a string whose length is twice the size of that tree, and how this
string can be represented with records and pointers.

58 5. THE DETECTION OF CONNECTED COMPONENTS

It should be clear that, at this stage, the whole information contained in
the neighborhood-tree is implicitely available. We now have to decide which part
of it should be contained in the output. This question leads us to the second option
alluded to in Section 5.1, viz., the choice between full and restricted surrounding.
Let us briefly examine this issue.

First, in any case we can delete the top vertex from the neighborhood-tree
for it represents the connected component of B which contains the frame of G and
surrounds all other connected components of F' or B. Clearly, the information
contained in that vertex is redundant. Moreover, if we were to retain it, no part
of the neighborhood-tree could be output before the completion of the scan of the
figure. When it is deleted, every remaining part of the tree can be output when the
corresponding components have been fully disclosed, (see Section 6.1 for details).
With that top vertex deleted, our approach offers the following alternatives:

» We retain the rest of the neighborhood-tree, in other words, all
the surrounding relations between all connected components of
F and all connected components of B, except the component
of B which contains the frame of G. This is full surrounding.

» We delete from the neighborhood-tree all the edges occurring
when a connected component of B surrounds one of F'. In other
words, connected components of F' are taken in isolation; we
retain only the surrounding relation between each connected
component of F' and its holes. This is restricted surrounding.

This Section is organized as follows: In 5.3.1, we recall some theoretical
properties of binary pictures on a square grid, such as the neighborhood tree, the
surrounding relation, etc. In 5.3.2, we show how the neighborhood tree can be
described by either its vertex-string or its edge-string. We justify our choice of
the edge-string as a representation. In 5.3.3, we concentrate on full and restricted
surroundings. In 5.3.4, we outline our implementation of the edge-string approach.

5.3.1 The neighborhood-tree of a figure

Recall that the frame of grid G is the set of pixels p(?, j) such that j =0
or N—1,ori=0o0r M—1, and we make the frame assumption that the frame
of G is included in B.

5.3.THE NEIGHBORHOOD-TREE AND ITS REPRESENTATION 59

Given two disjoint subsets V and W of the grid G, we say that V surrounds
W if every 4-path from W to the frame of G intersects V. (This corresponds to
the definition of “4-surrounding” in [4]).

The frame assumption garantees that every cycle of the edge is closed.
(This would also be true if we made the reverse assumption that the frame of G
is included in F). A well-known result of digital topology (see for example [4],[5])
states the following:

For any k-connected component X of F' and k'-connected com-
ponent Y of B neighboring X, either X surrounds Y or Y sur-
rounds X ; moreover, there is at most one such Y neighboring X
and surrounding it, and there is at most one such X neighboring
Y and surrounding it.

This property entails the following: If we draw the graph whose vertices
(nodes) are all k-connected components of F* and &’-connected components of B
and whose edges join neighboring components, then that graph is a tree. This
tree is called the neighborhood-tree or sometimes the adjacency tree of F. We
can represent it as a descending tree as in Figure 5.6.b, where for two adjacent
nodes, the component represented by the parent node surrounds the component
represented by the successor node. The top vertex of the tree represents the
connected component of B which contains the frame of G. As an example, Figure
5.6.b displays the neighborhood-tree of Figure 5.6.a.

We will now exhibit two correspondences between cycles of the edge ¢+ (F)
and edges of the neighborhood-tree, and between vertices and edges of that
tree. First, a cycle of et (F) is of the form ¢+ (X,Y), and it corresponds to
the pair {X,Y} of adjacent vertices of the neighborhood-tree, in other words,
to the edge joining them. Thus, cycles of the edge ¢t (F) correspond to edges
of the neighborhood-tree. Second, to every edge of the neighborhood-tree there
corresponds one vertex of that tree, which we choose to be the bottom vertex of
that edge. By this we define a one-to-one correspondence between the set of edges
and the set of all vertices of that tree, except the top vertex.

Next, if we combine these correspondences, we get a new correspondence
between cycles of ¢t(F) and connected components of F and B: The eycle
¢t (X,Y) corresponds to Y if X surrounds ¥, and to X if ¥ surrounds X.

6o 5. THE DETECTION OF CONNECTED COMPONENTS

ol TR \\\\\ N d
AANINAL o M
S YA
\ \ \ e f
N g N\ f ‘b N
N i
B \\ d S g
NN
(b)
(a)
, (a]
Y 3
; b/\h
[c/\d
: e/\f
: g
: (d)

.(c)

Figure 5.6. Neighborhood-trees representing connected
components (a,b) and cycles (c,d).

We have thus a one-to-one correspondence between the cycles of et (F)
and all connected components of F' and B, except for the connected component
of B which contains the frame. To such a connected component corresponds the

5.3.THE NRIGHBORHOOD-TREE AND ITS REPRESENTATION 61

outer cycle of its edge.

Now, we can extend this correspondence, in order to include in it the
connected component of B which contains the frame, by drawing an edge of the
grid along the frame, and declaring that it belongs to the edge eT(F). It is the
outer cycle of the edge of the connected component of B which contains the frame.
Then, the correspondence is complete. It is illustrated in Figures 5.6.c and 5.6.d,
where we show how the labels of the connected components (and of the vertices
of the tree) can be used for the cycles of ¢+ (F) and for the edges of the tree.

This correspondence between vertices and edges, between connected com-
ponents and cycles will be used in Subsection 5.3.2 for the purpose of defining the
vertex-string and the edge-string which represent the adjacency-tree.

5.3.2 The vertex-string and the edge-string

It goes without saying that it is desirable to represent the neighborhood
tree of F' in an economical way. Indeed, it would be unwise to represent the
surrounding relations by giving for each component an array whose entries point
to its holes, since the number of holes in a connected component may be very large,
while arrays have a bounded size. This problem is similar to the one which we
encountered in Section 4.3, when we proposed a representation for the adjacency
relations between objects. We opted for a dynamical solution, with transversal
pointers pre(suc)letori(ritole) scanning the sequence of objects adjacent to a given
object. This allowed us to represent the adjacency relations with a fixed number
of object parameters.

Here, we will also adopt a dynamical solution. We will show that the
neighborhood-tree can be represented as a string. This provides a concrete solu-
tion for the representation of cycles and surrounding relations: Cycles will be

represented by records, and strings will be represented by double chain of pointers
between these records.

Let us next examine two possible string representations for the neighborhood-
tree, namely, the vertex-string and the edge-string.The vertex-string is explicitly
defined in [1], though under a different name, while the edge-string is implicitely
used in [5].

62 5. THE DETECTION OF CONNECTED COMPONENTS

Let T be the neighborhood-tree of a figure and let ¢ be its top vertex. Let
P be a path in T such that:

() P begins and ends in ¢.

(¢1) P passes through every vertex of T at least once (and so P passes
through every edge of T at least once).

(#33) P is shortest possible with respect to (i) and (:3).

If V is the sequence of vertices of T in P, then the string ‘V’ is the vertex-
string of T. Now the names of the vertices of T (except) can be used to label the
edges of T, as explained above. If E is the sequence of edges of T in P (labelled
with the names of the corresponding vertices of T), then ‘¢E?’ is the edge-string
of T. We add ¢ before and after E, because ¢ is the only vertex which does not
appear in E.

Clearly, as P is not uniquely determined, the vertex and edge-strings of
T are not uniquely defined. In fact, the different forms that they may take
correspond to the different geometrical representations of the tree T in the plane.

The strings which correspond to the neighborhood-trees in Figure 5.6 are

for the vertex-string, and

i a'vbvcvc\./dv evevag\dg\/f vdvbvhvhva ’
for the edge-string.

Now, the path P can be visualized by a 4-path @ in G as follows: @ begins
and ends in the frame of G and passes through every connected component of
F and B a minimal number of times. Then the vertex-string is the sequence of
connected components of F' and B in @, while the edge-string is the sequence of
cycles of e (F") which are crossed by Q (where we suppose that the edge of G is
labelled ¢ and is crossed by Q).

Let us now give some elementary properties of these two strings. Write
V(T) for the number of vertices of T, and for any vertex z of T, let v(z) be the
number of (adjacent) successors of # in T. For any two vertices £ and y of T, we
will say that z is below y if there is a path in T descending from y to . Then,
we have the following properties:

5.3.THE NEIGHBORHOOD-TREE AND ITS REPRESENTATION 68

(%)

The vertex and edge-strings have respective lengths 2V (T)—1 and
2V(T).

The vertex x appears v(z)-+ 1 times in the vertex string and 2 times
in the edge-string.

(177) In the vertex-string, two adjacent labels correspond to two neigh-

(iv)

boring connected components of F' and B and vice-versa. On the
other hand in the edge-string two neighboring labels correspond to
two cycles of et (F) which are separated by only one connected
component of " or B (and therefore to two neighboring connected
components of F' and B), but the converse is not true.

Let = and y be two vertices of T. Then the following holds for both
the vertex and edge-strings:

(¢v.a) If = is below y, then all occurrences of in the string are enclosed

by two successive occurrences of y in that string.

(fv.0) If z is not below y, then no occurrence of z in the string is

enclosed by two occurrences of y in that string.

Property (iv) is quite important from our present viewpoint. It really
means that the vertex and edge-strings contain all the information conveyed by T'.
Thus any of these strings can be used as a representation for the neighborhood-

tree.

Let us briefly outline how the edge-string can be derived from the vertex
string. Consider the succession of pairs of consecutive vertices in the vertex-string.
Every such pair corresponds to an edge in T'. Then replace every such pair by the
vertex it contains which is below the other. Then by adding ¢ at the beginning
and end of the resulting string, one gets the edge-string. With the example of
Figure 5.6, we get the following derivation:

t

a

Y Y Y I Y I Yy
b ¢ ¢ d e b

vertex-string

do ufisbga g o b ageiisige

€ i silangy I iod i B’

edge-string

A simple, iterative method for constructing the vertex and edge-strings
from the neighborhood-tree can be described as follows:

64

5. THE DETECTION OF CONNECTED COMPONENTS

(1°) A tree containing only one vertex, say v, has vertez-string ‘v’ and

edge-string ‘v v’.

(2°) Let T be a tree having vertex-string ‘Vo’ and edge string ‘Et’.

Suppose that we attach to a vertex v of T (and below it) another
tree § having vertex-string ‘Vs' and edge string ‘Es’. Let R desig-
nate the resulting tree. Then, its vertex and edge-strings ‘Vz' and
‘Er’ can be constructed by applying the following rules:

‘Vr' is obtained from ‘V7' by replacing in it the first occurrence of ‘v’
by ‘v Vs v,

‘E'r’ is obtained from ‘E'v’ by replacing in it the first occurrence of ‘v’
by ‘v Er’.

These are the main properties of the vertex and edge-strings which are
relevant to our present concerns. Either are about equally convenient for the
purposes of representating surrounding relations in an image. A choice has been
made for the edge-string for the following three reasons:

(¥)

(%)

The vertex-string corresponds to the connected components of F
and B, while the edge-string corresponds to cycles of ¢(F). As we
will ultimately recognize connected components by an analysis of
cycles, the edge-string proves more convenient.

In the vertex-string, the number of occurrences of a vertex v is
variable, while in the edge-string, each edge occurs exactly two
times. This facilitates the representation of these occurrences with
static structures such as Pascal records.

(¢45) In the edge-string there is a convenient way to number the occur-

rences of edges. For a label v corresponding to the outer edge of
a connected component of F' {or to that component), the first oc-
currence of v is numbered 0, while the second is numbered 1. On
the other hand, if v corresponds to the outer edge of a connected
component of B (or to that component), then we do the contrary:

‘the first occurrence of v is numbered 1, while the second one is

numbered 0. Then the sequence of numberings in the edge-string is
10. . 10. For instance, the edge-string corresponding to Figure 5.6.d
becomes:

‘alvbovclvcovdlveovel J 0 vgl ng J lvdovblvhovhlvao’

5.3.THE NBIGHBORHOOD-TREE AND ITS REPRESENTATION 65

It is readily seen that this numbering has the following topological mean-
ing: Consider the path @ defined above. The occurrences of the edges in the
string correspond to their crossings with Q. Then an occurrence numbered 0 cor-
responds to a transition of Q from white to black, while an occurrence numbered
1 corresponds to a transition of ¢ from black to white. We will see later on that
when we use row ¢ as a path crossing currently unclosed cycles, the occurrences
numbered 0 will correspond to left edges of runs, while occurrences numbered 1
will correspond to right edges of runs.

We are now ready to consider the possible restrictions in the neighborhood
tree, i.e. the matter of full and restricted surroundings.

5.3.3 Full surrounding and restricted surrounding

In the process of detecting connected components of a figure, one does not
always need to extract all surrounding relations. For instance, if the input is a
typed text, we must merely isolate the characters. Thus, one can make a choice

of which parts of the neighborhood-tree should be recognized and written in the
output.

However, we must, in any case, retain a minimum of the information
contained in that tree: We will recognize the completion of a connected component
by the closure of the outer cycle of its edge; we will also get the various objects
making up that component by following all the cycles of its edge. Therefore, it
will be necessary to store, at least, the link between the outer cycle and the inner
cycles of the edge of each connected component of F, in other words, between each
connected component and its holes. We show in Figure 5.7 the neighborhood-tree
of Fligure 5.6.b and the portion of it which represents the surrounding relations
between connected components of the figure and their respective holes. The choice
to use that minimum of information from the neighborhood-tree will be called
restricted surrounding. The opposite choice, which consists in retaining the whole
information contained in the neighborhood-tree, will be called full surrounding.
There may be other intermediate choices but they will not be considered here.

A little tought reveals that-—even if this sounds paradoxical at first sight—
the most practical way to retain the whole information in the neighborhood-tree
is to start by deleting the top vertex from that tree. Indeed, suppose that we
were scanning an image in a single raster scan, and detecting the connected
components of the figure together with the complete neighborhood-tree. The
connected component Y of the background which contains the frame, and which

66 5. THE DETECTION OF CONNECTED COMPONENTS

Figure 5.7. The neighborhood-tree of Figure 5.6.a.

corresponds to the top vertex ¢ of the neighborhood-tree T, would be completely
disclosed only at the end of the scanning. In particular, it is only at that time
that we could ascertain how many vertices of T are adjcent to £. Thus, if we were
to keep T in its original form, we should have to wait until the end of the scan
before being in a position to write any information in the output. This would
make it impossible to process the image in real-time.

Conversely, suppose that vertex ¢ is deleted from 7. Then, all the infor-
mation contained in T is also contained in T\ {¢}, because it is known beforehand
(by the frame assumption) that ¢ and the corresponding connected component Y
of the background always exist. In fact, T\{¢} is a union of disjoint trees, say
T', ..., T", and if the top vertex ¢, of each T° (s = 1,...r) is known, then T
can be reconstructed. In this way, we can meet our real-time requirement: At the
time when a connected component X of the figure is completely processed, it is
possible to determine whether it neighbors Y, in which case it is possible to write
into the output the contents of the tree T° corresponding to X. We will thus
constantly assume that the top vertex of the neighborhood-tree, in other words,
the connected component of the background containing the frame, is not taken
into consideration even in full surrounding. The top vertex of each T° is said to
be maximal for surrounding

Our program offers the choice between full and restricted surrounding, in
the same way that it offers the choice between full and restricted adjacencies.
There are no other major options except for the choices of the constants k, bl en,
clen, etc.

5.3.THE NEIGHBORHOOD-TREE AND ITS REPRESENTATION 67

Let us now examine the edge-string corresponding to the truncated form
of the neighborhood-tree in full and restricted surrounding.

In full surrounding, we consider the graph T, = T \{{}, which is a union
of disjoint trees. Each one of them can be described by an edge string. Then,
the global edge-string of T7 is, in fact, the set of edge-strings of its connected
components. For example, the edge string of Figure 5.6.c becomes:

‘I:v_‘,c_,c\m’d\‘_/e_m‘eW f_9s 9 S _d_Pb, and ‘hvh’
and, with the numbering of the occurrences, we get
‘bovclvcovdlveﬂvel J 0_g1_g0 vf 1Vd0vb1’, and ‘hovhl’.
In restricted surrounding, a new graph T is obtained from T; by deleting
from it all edges corresponding to the cases where a connected component of B

surrounds one of F. For instance, Figure 5.7 displays the tree T2 corresponding to
the tree T of Figure 5.6.b. Accordingly, we get the following set of edge-strings:

e e Jded. Pos teg ey S A 9JS and ‘hvh’
or, with the numbering of the occurrences,
‘bOvclchlevd()vbl’, ‘eﬂvel’, ‘fOVQIJOJI’, and ‘hOvhl’.
Let us note a particular property of the edge-strings in restricted surround-

ing: The string corresponding to a connected component X of F' having, say, r
holes takes the form

z _y() _y(M)_ ...) ylr) =",

where y(1)_ ... _y(r) correspond to the r holes. This string can be represented
by a cycle

(=, 3(1), ..., y(r)), (5.16)

provided that one records simultaneously that z corresponds to the outer cycle
of the edge ¢ () of connected component X. We call that string the simplified
edge-string. We will use it in the following subsection for representmg the cycles
and surrounding relations in restricted surrounding.

68 5. THE DETECTION OF CONNECTED COMPONENTS

5.3.4 The representation of cycles and edge-strings

A few words are in order about the data structure used to store the
description of cycles and edge-strings in both full and restricted surroundings.
The data structure should meet the following requirement:

() For every cycle, given an object along it, we need an access to the
(left or right) edge of that object—which belongs to that cycle—in
order to be able to follow the succession of edge-elements in that
cycle.

(15) We need to know if a given cycle is the outer cycle of the edge of a
connected component of F' or of B. This determines the numbering
of the occurrences of that edge in the edge string.

(¢9¢) In full surrounding, we need to identify the top vertex of each tree
in the truncated neighborhood-tree Ti.

(sv) Given any cycle, we need to know those cycles which precede and
follow each of its two occurrences in the edge-string. This permits
us to reconsruct the edge-string whether we traverse it from left to
right or from right to left.

We will represent cycles by records, and strings by double chains of pointers
to records corresponding with cycles. The type corresponding to cycles’ records
is called cyrec. We define cypoin =1 cyrec, in other words cypoin is the type
of pointers pointing to variables of type cyrec. Now let us examine how the
requirements (i) to (iv) can be met.

() Records of type cyrec contain a component acces of type link,
pointing to a variable of type objrec, such that if ¢ is the record of
a given cycle, then {c.acces) t is an object whose left edge belongs
to that cycle.

(1¥) We define next the component whi (standing for white) of type
0. .1 such that for a given cycle record ¢, c.whs = 0 if and only
if ¢ corresponds to the outer edge of a connected component of F.
Note that c.whi is the number of the first occurrence of ¢ in the
edge-string.

(¢¢1) In full surrounding, the identification of the top vertex of each tree
will take place in the procedure closechain which is discussed in
Section 5.3.5.

5.3.THE NEIGHBORHOOD-TREE AND ITS REPRESENTATION 69

(fv) We define four pointers pro, pri1, pl0, pi1 of type cypoin, as follows:
Let ¢ip and ¢o be the names of the records corresponding to the
two cycles which are in the edge-string respectively the left and
the right neighbors of the occurrence numbered 0 of a cycle whose
record is ¢, similarly let ¢;; and ¢,1 be the ones corresponding to
the occurrence numbered 1. Then, the role of these pointers is best
illustrated as follows:

_clo ‘Lc.plO 0 c.pr(i "

r0

epll c.prl
e o 20 % cl y C

r1

S’

It c represents the top vertex of a connected component T°¢ of Ta, then,
according to the above definitions, the two pointers c.pl0 and c¢.pll have no
destination. They may be set to NIL, or they may even be left undefined.

In the case of restricted surrounding, we can use the simplified edge-string
of (5.16). We can use only two pointers, namely, pl and pr pointing respectively
to the left and right neighbor of the single occurrence of the cycle in the simplified
edge-string. (Here pl and pr are always defined ¢ NIL). Note also that we have:

| = pll;
jr _ ngrO, (5.17)

The following table gives an example of the pointers pl0, pl1, pr0 and pr1
for the edge-string corresponding to Figure 5.6.

Record a b ¢ d e i g h
pl0 — h —a | —=c | [—d | —we | =g — b

pl1 NIL | =-d | —=-b | —¢ —e | =g | = f — h

pr0 NIL | =¢c | —=d | —b —e | =g | —=f | =h

prl —+b | =-h | —-c | —e ~+f | =d| =g —a

Table 5.6. Following the cycles in Figure 5.6

From what we just said it is clear that, in restricted surrounding, the
cyrec records use some of the components which were defined in full surrounding.
This situation differs from the choice of full and restricted adjacencies where the
pointers in objrec records were completely different in each case.

70 5. THE DETECTION OF CONNECTED COMPONENTS

Now that we have resolved the problem of representing the surrounding
relations between connected components of F' and B, we will consider that of
detecting the closure of cycles and the construction of the cyrec records.

§5.4 The Construction of Cycles and Edge-Strings

5.4.1 Introduction

In the preceding two sections, we made it clear that real-time detection
of connected components can be achieved by following edge cycles and detecting
their closure. When some outer cycle gets closed, one connected component is
completely disclosed. It can be found by following its outer cycle and the inner
cycles—if any—directly surrounded by it. We also demonstrated that surrounding
relations can be represented by edge-strings which can be coded by records and
pointers.

However, at this stage, we are still confronted with the important problem
of extending the procedure allocate in order to include in it both the data structure
representing the edge-string, and the mechanism to detect the closure of cycles.
To clarify the situation, let us examine the various possibilities that can occur
when some, arbitrary row is being scanned. As the row is traversed, we assume
that unclosed cycles, called chains are encountered. Presently, our task is to lay
bare the surrounding relations between chains and between chains and cycles in
the portion of the image that has been scanned thus far.

As the scan is progressing, four possible operations on chains may have to
be performed:

» A chain can be enlarged.
» A new chain can be created.
» Two existing chains can be merged into one larger chain.
» A chain can be closed into a cycle.
These four operations are executed by four new procedures nested inside

allocate, namely, extendchain, newchain, mergechain, and closechain. Two addi-
tional procedures, enclose and concatenate, take care of ancillary details and are

5.4.THR CONSTRUCTION OF CYCLES AND EDGR-8STRINGS 71

used in mergechain and closechain. Out of these six new procedures, closechain
plays the prominent role. It activates the creation of cyrec records, as well as the
output procedure.

With this as a preamble, let us examine the behavior of chains from the
viewpoint of their neighborhood relations.

5.4.2 Relations between chains and cycles

For the purposes of the present discussion, let us assume that the scan has
reached the end of row ¢ in Figure 5.8.a. Clearly, every chain begins and ends
on the right and left edges of some runs on row ¢ respectively. If s is the name
of such a chain, we can label its beginning s1, and its end s0. Our motivation
behind this choice is twofold.

{f) The numbers 0 and 1 correspond respectively to left and right sides
of run edges.

(¢7) As row i is scanned from left to right, this numbering is consistent
with the theory in Section 5.3.2.

Figure 5.8.c displays the (partial) neighborhood-tree corresponding to Figure
5.8.a. Marked edges correspond to chains; unmarked ones correspond to cycles.
This tree conveys various kinds of information, some of which is relevant to our
present concerns, some of which isn’t. Let us distinguish first the following three
kinds of information.

(1) Given several chains or cycles, the tree tells us whether they are
included either in the edge ¢t (X) of some connected component
X of F or in the edge ¢ (V) of some connected component ¥ of
B. This implies that there exists an edge-string representation in
which any two of these chains or cycles are adjacent. For example,
in Figure 5.8.a, this relationship applies to

» u and v (through B),

a, ¢, d, e and u (through F),

g and h (through B),

w, z, f, g and b (through F),
a, b, y, 2z and ¢ (through B).

v

v

v

v

5. THE DETECTION OF CONNECTED COMPONENTS

72
t 2y Y 7 > >
X / / A /W ///
0 2,
T — / . s /
Tl
ezl 2y 7
7] g &
/ Z A / g 2\ /
7787 7l 7
SO o 5 7 o £ £ R RO A RN DAL
ty a g o d dy & € bo fi fo 91 hg hygo byt
{a)
2 k] 6 7 11 1% 15 18 19 2 23 26 7 1
1 3 5 7] 9 11 13 15
0 2 % (6] 8 104 t12 14
0 1 4 5 8 9 12 13 16 17 20 21 24 5 28 29
(b)
t t
a b a b
y z
cd e g w x f 9 c.d. e.1 g
v h
(c) (d)
Figure 5.8.

(a) Chains and cycles in a portion of a figure.
(b) Labelling of runs and chain extremities.
(¢) Neighborhood-tree for the partial figure.
(d) Neighborhood-tree with cycles removed.

5.4.THE CONSTRUCTION OF CYCLES AND EDGE-STRINGS 78

(17) A chain or a cycle whose white side is &’-connected to the frame of
G is maximal for surrounding in the portion of the image that has
been scanned. For instance, this is the case with a, b, y and z (with
t) in Figure 5.8.a.

(#44) A cycle never surrounds a chain. But, surrounding relations are
possible between cycles as is exemplified by cycles v and v in Figure
5.8.a.

The kind of information which is expressed by (¢)-(i¢f) is relevant to our
present concerns for the very reason that it is invariant in the course of the
processing. At this point, it is an easy matter to devise examples of information
conveyed by the partial neighborhood-tree which may fail to be invariant. For
instance, according to Figure 5.8.c, ¢ “seems” to surround ¢, d and e; however, in
the course of the processing of subsequent rows, some or all of these chains c¢an
be merged into one or more cycles, and some or all of these surrounding relations
may vanish.

Let us see how the information involved in (s)-(i¢) above can be recorded,
first in general, then in both full and restricted surroundings.

In the first place, we note that the restriction of (¢) to chains is determined
by the sequence of beginning and ends of all chains along row i. To see this,
we first delete from the tree in Figure 5.8.c all the vertices corresponding to
eycles, thereby obtaining the tree of Figure 5.8.d. Then, it is readily verified that
the edge-string of that tree yields the sequence of beginnings and ends of chains
encountered when scanning row i from left to right. Thus, it is easy to see that
the information involved in (f) can be recorded by performing the following two
operations:

(@) We keep record of the sequence of chains extremities.

(b) For every connected component Z of F or B whose edge contains
at least one chain, we gather together into an edge-string, all the
cycles of €T (F') which are in the edge of Z as well as all the cycles
surrounded by them. For instance, in Figure 5.8.a, we get the
strings

§1 = ul_v0_ vl _uo,
So = yo_yl_z0_z21,
Sz = wlvwovx 1vz0.

74 5. THE DETECTION OF CONNECTED COMPONENTS

Next, for each of these strings, we choose a chain in the edge of
Z and we associate that string with the extremity (beginning or
end) whose left side is in Z. Readily, if Z is in F', we choose the
beginning of the chain; if Z is in B, we choose the end of the chain.
In this way,

$1 may be associated with either of a1, ¢1, d1 and el.
S2 may be associated with either of a0, 50, and t0.
§3 may be associated with either of b1, f1, and g1.

We note that (b) simultaneously records the information involved in (473).
Eventually, the information involved in (i) can be recorded by attaching to each
chain a number equal to one if the chain’s white side is &#'-connected in B to the
frame of G, and equal to zero otherwise. We call that number the maximality
number of the chain.

Let us now examine the specializations of this approach corresponding to
full and restricted surrounding respectively.

Full surrounding

Recall that, in full surrounding, we merely ignore the top vertex t of T.
Thus, chains of ¢ (F) corresponding to top vertices of T3 = T\{¢} can be output
together with the cycles they surround as soon as they are closed into cycles.
Thus, in the situation depicted by Figure 5.8.a, cycles y and z were output at
some previous stage and no string must be attached to a0 and 0. More generally,
we have the following rule:

No edge-string can be attached to a chain end s0
having maximality number one.

The situation is completely described by giving:

(1°) The pairs of chains extremities,
(2°) the maximality number of each chain,
(8°) the string, if any, attached to each chain extremity.

Restricted surrounding

Recall that, in restricted surrounding, we are interested in only the sur-
rounding relations-—if any—between the outer and inner cycles of the edge e*(X)
of a connected component X of F. Presently, the consequences are twofold. On

5.4. THE CONSTRUCTION OF CYCLES AND EDGE-STRINGS 75

the first hand, the maximality number becomes evidently useless. On the other
hand, edge-strings can be attached only to chain beginnings. Indeed, the outer
cycle r of some €7 (X) can be output as soon as detected and need never be at-
tached to any chain end s0. For instance, in Figure 5.8, the string ul _u0 (or the
simplified string (u)) can be associated with either of al, c1, d1 and el, whereas

the string w1l _ w0 __xz1 _z0 (or the simplified string (w, z)) can be associated with
either of b1, f1 and g1.

Thus, the situation is completely described in this case by giving:

(1°) The pairs of chains extremities,
(2°) the simplified string, if any, attached to each chain beginning.

We are now ready to turn to the consideration of the implementation of
this approach. This is the subject matter of the next two sections. To this end,
we will need to lift the temporary assumption that the scan is at the end of row
t. This will oblige us to consider chain extremities on both roew { — 1 and row i.

5.4.3 Representation of chains extremities and their properties

Let us assume that the image has been scanned up to run{i, u] included.
In this situation, chains can begin and end on rows i or { — 1. Recall that every
chain begins in the right edge of some run while it ends in the left edge of some
run. Recall also that the constant maznbr is an upper bound to the number of
runs on a row. Therefore, 2 X masznbr and 4 X maznbr provide upper bounds to
the number of runs on two adjacent rows and the number of their left and right
edges respectively. Therefore, we define four integer subranges:

mazl = 0. .maznbr — 1;

maz2 = 0. .2 X maznbr — 1;

(5.18)
maz4 = 0. .4 X maznbr — 1;

m2 = —1. .2 X maznbr — 1.

Integers in the subranges maz1, maz2 and maz4 are used to number respectively
the runs on row 7, the runs on rows 7 and i — 1, and the chains extremities.
Integers in the subrange m2 are used to number either the runs on rows ¢ and
t — 1 or the absence of runs.

76 5. THE DETECTION OF CONNECTED COMPONENTS

We now introduce various numberings. Given some w in mazl, we label

run|i,w] by 2 X w,
run[t — L, w] by 2 X w + 1. (5.19)

Now, if a run is labelled by some z in maz2, then we label

its left edge by 2 X z _
it right edge by 2 X z 4 1. (5.20)

In other words, for any w in mazl we label

led|i,w] by y = 4 X w,

red(i,w] by y =4 X w1,
led[i — 1,w] by y :=== 4 X w + 2, (5.21)
red(i — 1L, w| by y =4 X w43,

where y is in maz4. This labelling of runs and chain extremities is illustrated in
Figure 5.8.b.

Let us next examine how we code the pairs of chain extremities. To this
end we define the array

chex : ARRAY[max4] OF m2

where chex stands for chain extremities.

Given some run-edge numbered y in maz4 such that y is neither the
beginning nor the end of a chain, we set

chezly] := — L (5.22)
Given the two extremities y and z (in maxz4) of a chain, we set

chesly] = |2/2),
chez|z] == {y/2]. (5.23)

5.4, THE CONSTRUCTION OF CYCLES AND EDGR-STRINGS 77

One may wonder why we define ches|y| and chezfz] as |2/2] and [y/2]
respectively. The reason is that there is a kind of correlation between y and z
in that they have opposite parities. It turns out that chez[y] is the number of
the run containing the opposite end of the chain containing y. Note also that the
array chex allows us to determine a chain extremitiy from its opposite extremity.
Indeed, (5.22) and (5.23) imply that for any y in maz4, if chex|y] ¢ —1, then y
is a chain extremity, and the opposite end of that chain is

2 X ches[y] if y is odd, (5.24)

{2 X chez|y] + (1 — yMOD2),
2 X chezly] + 1 if y is even.

For instance, in Figure 5.8.a, we have maznbr > 8 and we get the following
values for chex:

chez[0]=
@ begins in 13 and ends in 0,
chez[13]=
chex|1]=2
ches[4]=0 ¢ begins in 1 and ends in 4,
chezx[5]=4
d begms in 5 and ends in 8,
chez[8]=2
chez[9]=6
e begins in 9 and ends in 12,
chez[12]=4
(5.25)
chex[29]=8
b begins in 29 and ends in 16,
chez[16]=14
Shealli| ST o 17 and ends in 20
chea(20)=8 f begins in 17 and ends in 20,
chez[21]=14 e A
chez{28]=10 g begins in 21 and ends in
chez[25]=12
h begins in 25 and ends in 24,
chex[24]=12

and chez|[m] = —1 for any other value of m in maz4.

78 5. THE DETECTION OF CONNECTED COMPONENTS

Aside from chain extremities, we have to define the data structure required
to accommodate maximality numbers of chains (in full surrounding), and edge-
strings attached to chain extremities.

In full surrounding maximality numbers of chains are stored in the array

sm : ARRAY[max4] OF binary

where for every y in maz4, smly| is set equal to the maximality number of the
chain containing y. For instance, in Figure 5.8.a, chains @ and b have maximality
number one. There follows that:

smly] = 1for y=0, 2, 13, 15,
16, 18, 29, 31,
= 0 otherwise,

because the edges numbered 0, 2, 13, and 15 are in chain ¢, while those numbered
16, 18, 29 and 31 are in chain b.

Let us consider next how to associate strings of cycles to chain extremities.
We already know that a string can be coded by a double chain of pointers linking
the records corresponding to the cycles of that string. This double chain allows
us to scan the string from left to right and from right to left. Thus, when we wish
to associate a string to some y in maz4, it merely suffices to attach to y two new
pointers pointing to the records correponding to the first and last cycles in the
string. To this end, we define two arrays

becs, encs : ARRAY[max4] OF cypoin
If a string u...v is associated to the chain extremity y, then, becs[y] points to u,

and encs|y] points to v. The names becs and encs are mnemonics for beginning
and end of the corresponding string.

In 5.4.2, we established the rule stating that, in full surrounding no edge-
string can be attached to a chain end s0 having maximality number one. This
rule can now be translated as follows:

If y is even and smy] = 1, then becs[y] = encs[y| = NIL.

Note also that for any z in maz4, becs[z] = NIL if and only if encs[z] = NIL.
Furthermore, chez|z] = —1 implies that becs{z] = encs[z] = NIL.

5.4.THE CONSTRUCTION OF CYCLES AND EDGE-STRINGS 70

The example of Figure 5.8.a may give the following assignments:

» becs|13] and encs[13] pointing both to w, ie., string ul _v0_v1_u0 being
associated to al.

» becs[29] and encs[29] pointing to w and =z respectively, ie., wl_w0_zl_z0
being associated to b1.

» becs|m| = encs[m] = NIL for any other value of m in maz4.

In restricted surrounding, we have no maximality numbers, and we as-
sociate strings to beginning of chains only. We could proceed as above using the
arrays becs and encs with the restriction that becs|y] = encs|y]| = NIL for any
even y. However, we can gain somewhat on storage space by defining instead two
arrays

beho, enho : ARRAY[max2] OF cypoin

where for any y in maz?2, beholy] and enholy] correspond to becs[2 X y 4 1] and
encs[2 X y + 1] respectively. (Here the suffix “ho” corresponds to “associated
string of holes”, because the cycles of that string correspond to holes of the figure.)

One should note that with these two newly defined arrays, the association
of a string to a chain extremity becomes indirect for the index of beho and enho
is of type maz2, which is the type used to number runs. Given a chain beginning
2 X y -+ 1 (where y € maz2), it is the right edge of the run numbered y, and
y is the index used (in beho and enho) to access the string associated with the
edge-element numbered 2 X y-1. It looks as if the string was in fact associated to
the run y instead of the chain extremity 2 X y - 1. In the following section, when
discussing procedures working on chains and strings in restricted surrounding, we
will indeed consider that strings are attached to runs and not to chain extremities.
It will be convenient to visualize—from a purely topological viewpoint—the cycles
of such strings as the outer cycles of small holes inside the corresponding runs.

To sum up, we have defined the following new data structures:
» chex, sm, becs, and encs in full surrounding,
» chez, beho, and enho in restricted surrounding.

There remains to be shown that they convey the information required by the
real-time construction of cycles and edge-strings inside the procedure allocate(u).
This is the subject matter of the following subsection

80 5. THE DETECTION OF CONNECTED COMPONENTS

5.4.4 Implementation

Recall from Subsection 4.5.1, that we decomposed the processing into three
basic steps, i.e.,, initialization, processonrow, and transitiontothenextrow.
Let us first briefly make the case of both the former and the latter.

In the initialization stage and in full surrounding, the arrays chez|v],
smlv], becs[v], and encs[v] are set to —1, 0, NIL, and NIL respectively for
v =0,...,4 X maznbr — 1. In restricted surrounding, the arrays beho[v] and
enho[v] are both set to NIL for v =0,...,2 X maznbr — 1.

Recall also that the stage transitiontothenextrow consisted essentially
of the assignments precrow:=thisrow, and thisrow:=emptyrow. Simultaneously,
arrays chez, sm, becs(ho) and encs(ho) must be updated. In full surrounding, this
is done by the following piece of code:

FOR x:=0 TO xn-1 DO {precrow:=thisrow}
FOR a:=0 TO 1 DO
BEGIN

IF chex[4*x+a]=-1
THEN chex[4#*x+2+a]:=-1
ELSE chox[4#x+2+a] :=chex[4*x+a]+1;
sm[4*x+2+a] :=sm[4*x+a] ;
bacs [4*x+2+a] :=becs [4*x+a] ;
encs [4*x+2+a] :=encs [4*x+a]

END{a};
FOR x:=0 TO xm-1 DO {thisrow:=emptyrow}
FOR a:=0 TO 1 DO
BEGIN '

becs [4*x+a] :=NIL;
ence [4*x+a] :=NIL
END;

Updating the arrays chez, sm, becs, and encs
at the stage “transition to the next row”

where xn = maz(precrow.nbr,thisrow.nbr) and xm = thisrow.nbr. With this
example in mind, the case of restricted surrounding is self-explanatory.

5.4, THE CONSTRUCTION OF CYCLES AND EDGR-STRINGS 81

Before we embark in a discussion of the construction of cycles and edge-
strings, it will prove convenient to do justice to a minor technical detail which
might appear to the alert reader as a slight inconsistency in the code formulation.

Let us examine the situation arising when the scan is at the end of runl[i, u,
and both run(s, | and runli, v 4 1] are adjacent to a common run on row i — 1.
This situation is reflected by run parameters satisfying the conditions

u < nrisuli — 1 u'] — 1,
where v = nripr(i,u] — 1. (5.26)

In this case, the portion of the image which has been scanned does not contain
led[i, u+1], which, in fact, follows red]i, u], (see Table 5.2, case D.3°). So, red|i, ul
currently appears to be the end of a chain, which it is not. For this reason, we
make the decision that the chain containing red|i,u] ends in led[i,u 4+ 1], and
these two edge-elements make up a new chain. Now, the apparent inconsistency
arises from the fact that, in the procedure newobject, adjacency relations between
run[i, u] and run[s, u 4- 1] are constructed in allocate(u+ 1), while the chain link
between reds, u] and led[i, u 4 1] must be constructed in allocate(w).

In the procedure newobject, equations (5.26) apply when the condition
IF (xrec.objty=1) OR ((xrec.objty=0) AND (xrec.rri=u))

is negated. Thus, after the “IF”, we get an “ELSE" statement containing no
operation on objrec records, but establishing the chain link between red[i, v] and
led[s, u 4 1].

With this technical detail settled, let us return to the main stream of
our preoccupations. The reader may find, in Appendiz D, the code of six new
procedures, nested in allocate(u), namely: concatenate, enclose, extendchain,
newchain, mergechain, and closechain. These procedures take two distinct forms
according to whether we choose restricted or full surrounding. The first two
ones are technical procedures used in mergechain and closechain. They operate
on strings. The last four ones operate essentially on cycles. Hereafter, we shall
examine all of them in some detail.

In concatenate, one starts from the situation where strings “S” and “7
are attached to chain extremities » and w respectively. When the chain ending in
v is merged with that ending in w with v (only) loosing its former status of being
a chain extremity, the two strings are concatenated into “ST” which is attached
to w, with no string being attached to v any longer.

82 5. THE DETECTION OF CONNECTED COMPONENTS

<string> <string> L
-1
_" chex ";A /
X Wy < ¥ X YW, ”

L_; it e

Wy

Figure 5.9. Procedure extendchain in restricted surrounding.

1
sn:\ sm

t
rE v,

sm

e
777

W=3 W, W,

(b) 0<W0<W|

L

22

() wy<wy

v
w1\fgl/ Wo

Figure 5.10. smfwy| in procedure newchain in full surrounding.

The procedure enclose is activated at the time a chain is closed into a
cycle. Its effect is to enclose a string “S” between the two occurrences (in the
edge-string) of the newly formed cycle addressed by ¢ : cypoin.

The next four procedures operate on chains and cycles, in particular, they
put into effect, the edge-following operations described by Table 5.2. Hereafter,
the references to Table 5.2 should not be taken too litterally, but rather as

suggestive analogies.

5.4. THE CONSTRUCTION OF CYCLES AND EDGE-STRINGS

88

w, DIV2

* ~S< =W30iV2

———
/// \\\
chei T T A (’ 777777‘>Chex
w, DIV24 } w;DIV2/4 '
LLL A B |
<string > <string >
W2D|V2 < ~< > Wy DIV2

/"—"'""'-...‘\ ",/"-"—"--..\
che (/ Sy] -~ =
% e ;\% 777777) chex

he
w, DIV2 -/} w;01v274
27, B 22
W, W, W3
NIL

<concatenated string>

Figure 5.11. Procedure mergechain in restricted surrounding.

The procedure extendchain handles the cases A.2° and D.2° of Table 5.2:
A chain is extended; one of its extremities is replaced by a new extremity. More
precisely, let wo, w1 € maz4, such that (woMOD4, w1 MOD4) = (2,0) or (3,1)
and chez|wo] % —1. In plain words, wo and w; are edge-elements on the same
side of their respective runs, and wo was a chain extremity. Let w2 denote the
opposite extremity of the chain containing we. If that chain is extended by w,
on the side of wo, then wo is no more a chain extremity, while w; becomes one.
Moreover, the value of chez[wz] becomes |w, /2] instead of [wo/2]. Finally, the
string attached to wo must be concatenated with the one attached to wi. This

procedure is illustrated in Figure 5.9 in the case of restricted surrounding.

84 5. THE DETECTION OF CONNECTED COMPONENTS

P .

o ~ -~

s ~

y ~
<string 2> //<string 15 <string 0> ,’Estrin93>\\

\{ T e N \\{

w2 w] Wo Wa

U

<string 0+2 > <string 1+3>

/,NIL =~ ‘\/

A S

w, W, W, w,

~

Figure 5.12. Concatenation of strings with mergechain in full surrounding.

The procedure newchain handles the cases D.1° and D.3° of Table 5.2:
Given two newly considered edge-elements wo and w; satisfying the condition
(woMOD4, w;MOD4) == (0, 1), they form together a new chain. Operations per-
formed by newchain are rather straightforward except, perhaps, for the assign-
ments of maximality numbers in full surrounding. Therefore, these are illustrated
by Figure 5.10.

The procedure mergechain merges two distinct chains which become con-
nected into a single chain. This may occurs with cases A.1° and A.3° of Table 5.2,
and leads, inevitably, to changes in the array chez. Moreover, strings attached
to former chain extremities must be concatenated with the strings attached to
the remaining chain extremities. Note that the procedure uses as parameters the
two disappearing chain extremities wo and wi, where (woMOD4, w;MOD4) =
(0,1) or (2,3). The procedure mergechain is illustrated in Figure 5.11 in the case
of restricted surrounding. Its effects on the arrays becs and encs in full surround-
ing are shown in Figure 5.12.

5.4.THR CONSTRUCTION OF CYCLES AND EDGE-STRINGS

,”<string> \
I

b S <cq string, c;>
Y w,DIV2 4 =

A __Aq
i 1

Y Wy DIV2Z 4

(a) Wo < Wy

<string 1> & <string 0>

>
— X .
-~
’ N E f
4 AN
f \

w,DIV2 { W DIV2

Wi Wo

!

<Cy,Cq.stringl, string0>

NIL beho
I I enho

W‘ D[V2 A \fWoDIVZ

Wi Wo

(b) Wo > W,

Figure 5.18. Procedure closechain in restricted surrounding.

86 5. THE DETECTION OF CONNECTED COMPONENTS

<~ .
BT R <string?,¢g,string’, ¢,>
\

/
<string?> ff<string‘> L

T~ = /7‘%\ /

Vs | (A

Wy w, w4 Wo W, Wge &

(a) wo<wy, smlwyl=0.

/,-4-\5 <¢y,string, ¢, >
NIL ,’<string>\\
h \ —> NIL
\\. \\| //'1 ,V\\
Vo4 } })
Wo oo Wi Wo wi
(b) wo<wi, smiwgel=1
> C
R N <c ,string® ¢y, string',string?>
string'> ,4<string°>\‘ <string?>
A 71 = 1 i
wi S Wy wye W, wy Wyl
(€) wi<w.

Figure 5.14. Procedure closechain in full surrounding.

The procedure closechain closes a chain into a cycle in the cases A.1° or
A.3° of Table 5.2. Let the chain have beginning w; and end wo with (woMODA4,
wi1MOD4) = (0, 1) or (2, 3). Then, the chain is closed into a cycle ¢ with c.access =
z for a given pointer z. The procedure closechain is illustrated in restricted and full
surrounding in Figures 5.13 and 5.14 respectively.

Next, let us see where these procedures can be called inside allocate(u).

5.4. THE CONSTRUCTION OF CYCLES AND EDGE-STRINGS 87

Recall first that the implementation of restricted and full adjacency in Section
5.2.4 induced some changes in the procedures newobject and conbelow only.
Here again, it is in these two procedures only, and in the body of allocate(u)
that the calls will be made. Thus, the eight procedures endof, thisrowob jty0,
thisrowobjty1, blockenlarge, continuationenlarge, newhinge, newblock, newcon-
tinuation remain unchanged. As in Section 5.2.4, we will have to refer to the
detailed code as it appears in Appendices C and D.

(¢) In conbelow, to the compound statement following “IF consu = 0 THEN”
we add the following calls:

IF chezx[4 X u] =2 X u
THEN closechain(4 X u,4 X v 1, 2) (5.27)
ELSE mergechain(4 X u,4 X u + 1) '

In other words, when consu[f, u] = 0, we close the chain ending in led|s, u]
if red[i,u] is the beginning of that chain, otherwise, we merge the two
distinct chains containing these two edge-elements.

(¢7) In newob ject, we make several calls:

{(a) To the compound statement following “IF conpr = 0 THER” we add
the call:

newchain(4 X u,4 X v+ 1) (5.28)

In other words, if conpr(i, u| = 0 then, readily, run|s, u] is the topmost
run of a new object and led[t, u| and red|[i, u] make up a new chain.

(6) In the “IF z = 0 THENR” part, we add to the compound statement
following the “ELSE” of the condition “IF u > 0 AND lefpr < pnp” the
call:

extendchain(4 X lefpr + 2,4 X u) (5.29)

In other words, if consu[i, u] > 0 and nripri, u—1] < lefpr|i, u], then
led[1, u] extends the chain ending in led[i — 1, lefpr[i, u]].

(¢) In what follows “IF z == conpr — 1 THEN” we have the condition

IF (xrec.objty=1) OR ((xrec.objty=0) AND (xrec.rri=u))

88 5. THE DETECTION OF CONNECTED COMPONENTS

which means that run[s, u| and run[i,u 4 1] are not adjacent to
a common run above them. In the compound statement following
the “THEN" of that condition, we add the call:

extendchain(4 X nripr — 1,4 X u+ 1) (5.30)

In other words, if for v = nripr(i, u] — 1, v = nrisu[i, v]| — 1, then
red[i, u] extends the chain beginning in red[{ — 1, v].

(d) In the compound statement following the “ELSE” of the condition “IF
z = 0" we make the assignment

v =4 X (lefpr(i,u] + z)+ 2

and the call
IF chez[v] == v DIV 2 — 2
THEN closechain(v,v — 3, 5)

(5.31)
ELSE mergechain(v,v — 3)

where v DIV 2 denotes [v/2]. Recall that s is of type link, and points
to the object containing runfi — 1, lefpr(i, u] + z]. The call closes the
chain containing led[i — 1, lefpr[i, u] + =] and red[t — 1,lefpr(i, u] +
z— 1] if they are on the same chain, otherwise it merges the two chains
containing them.

(e) To the condition of (c), we add an “ELSE" statement containing only
the call

newchain{(4 X v 44,4 X u-1) (5.32)

In other words, if run|s, u] and run|s, u-1] are both adjacent to run[i—
1, nripr(i, u] — 1], then we create a new chain consisting of red[s, »] and
led[¢, u 4 1] in accordance with our discussion at the beginning of this
section.

(75%) In the body of allocate, we add to the two compound statements containing
respectively the calls of blockenlarge and continuationenlarge the two calls:

extendchain(4 X lefpr + 2,4 X u)

5.5.COMMENTS 89

and
extendchain(4 X lefpr 43,4 X u+ 1). (5.33)

Indeed, when a block or block-continuation is increased by one run, we
must extend the chains on both sides. This completes the list of modifications
required in the three procedures conbelow, newobject and allocate.

Among the six new procedures introduced in this section, namely, con-
catenate, enclose, extendchain, newchain, mergechain, and closechain, the last
one is playing the prominent role. Indeed, it is in it that we construct the cycles
and we can insert the output command. Specifically, at the end of the compound
statement following the “IF wo < w; THER"—which corresponds to the case where
the newly constructed cycle is the outer cycle of a connected component of F—we
can call the output procedure (see next chapter) which does the following:

» In full surrounding, it takes that connected component out of the main memory,
and transfers it to the output buffer. If, in addition, sm|wo] = 1, then it also
transfers the string enclosed by that cycle to the output buffer.

» In restricted surrounding, it transfers that connected component and the as-
sociated simplified edge-string from the main memory to the output buffer.

The output procedures are discussed at some lenght in the following chap-
ter.

§5.5 Comments

As in previous chapters, we wish to conclude with some considerations
of the time- and space-complexities associated with the various extensions of
procedure allocate that were presented above.

As far as time is concerned, we explained in Chapter 4 that, by calling
procedure allocate at the end of the scan of each run, the processing was in real-
time at the run level, and the time involved was proportional to the size of the run
under consideration. The additions described in this chapter essentially consist
in the processing described by Eqs. (5.8)—(5.13) and (5.27)-(5.83). It should be
evident that these additions do not impair in any way the real-time property of
the process.

a0 5. THE DETECTION OF CONNECTED COMPONENTS

The memory requirements have been increased in two ways. On the first
hand, we have added the arrays chez, becs(ho), encs(ho), and sm whose size is
linear in maznbr (as was the case for precrow and thisrow in Chapter 4). This
space requirement is, at worst, linear in IV,

On the other hand, we have slightly expanded the objrec records and we
have created the cyrec records corresponding to the connected components of F°
and their holes. Clearly, objrec and cyrec records are used to accumulate the
information which we have chosen to make available at the output. The number
of such records existing at any time in working memory depends very much on
the kind of picture being processed. In any event, dynamic memory management
permits to keep that number to a minimum,

REFERENCES

(1] O.P. Buneman, “A grammar for the topological analysis of plane figures,”
in Machine Intelligence 5, B. Meltzer and D. Michie Eds, Edinburgh
University Press, 1969, pp. 383-393.

[2] R. Cederberg, On the Coding, Processing, and Display of Binary Ima-
ges, Ph.D. Dissertation No. 57, Link6ping Univ., Dept. Electr. Engrg.,
Linkoping, Sweden, 1980.

[3] B. Kruse, “A fast algorithm for segmentation of connected components
in binary images,” Proc. first Scandinavian Conf. Image Analysis,
Lund, Sweden: Studentlitteratur, 1980, pp. 57-63.

(4] C. Ronse, Digital Processing of Binary Images on a Square Grid,
Philips Res. Rept. [R.454], June 1981.

[5] A. Rosenfeld, “Adjacency in digital pictures,” In formation and Control,
vol. 26, pp. 24-33, 1974.

