Philips Research Laboratory Ave. Em. van Becelaere 2, Box 8 B-1170 Brussels, Belgium

 the need to regulating processing, in a number of applications, fastures (c.c. converted compensational decadage in a number of applications, fastures (c.c. order to yeal) manery congestion and partial a an order of persets a pf cases ord

In virtually every application, it is normally expected that the leferitor of any connected composed he accompanied by some consist description of that component. We sparsicat the premise that one should not overlook the amount of dimormation which is made publishe at the output: from match, meaning ion purposes, it is preferable to receive a minuse description of the domponent structure rather than, say, the sole chain-code of its borders.

Report R.469

REAL-TIME DETECTION OF CONNECTED COMPONENTS IN BINARY PICTURES

Christian Ronse and Pierre A. Devijver

February 1983

Abstract: Separation of objects from their background is a major problem in pattern recognition and scene analysis. It finds applications in many fields ranging from optical character recognition to biomedical engineering. It is often associated with other processes like thinning, vectorization, etc.

Besides the question of their mathematical validity, algorithms for extracting connected components in real-time are subjected to implementation constraints resulting from the actual state of technology, namely,

i

- ▶ the limited size of the memory: if we wanted to store, say, a whole A4 sheet of paper digitized at facsimile resolution in computer memory, we would need storage space for about 4×10^6 bits, which is frequently much too large with regards to the amount of meaningful information contained in it;
- the need for real-time processing: in a number of applications, features (e.g., connected components) should be extracted at the time they are encountered in order to avoid memory congestion and permit a smooth cooperation of cascaded processes.

In virtually every application, it is normally expected that the detection of any connected component be accompanied by some concise description of that component. We start from the premise that one should not overlook the amount of information which is made available at the output: For pattern recognition purposes, it is preferable to receive a minute description of the component structure rather than, say, the sole chain-code of its borders.

In this report, we outline an algorithm—up to the code level—which satisfies these requirements to a great extent.

In terms of memory requirements, we assume that the input image consists of an arbitrary number of rows of given length, and is read in a single raster scan. The program maintains essentially two types of memories: a working memory whose size is linear in the size of the rows, and an object memory containing i) partial descriptions of connected components under detection, and ii) surrounding relations between them.

The algorithm detects the completion of the scan of any connected component at the time the last pixel of that component is being read. Concomitantly, the description of that component is transferred to an output buffer in a time linear in the size of that component. Thus, the algorithm operates in *real-time* at the component level.

For what concerns component descriptions, the algorithm performs a decomposition of components in 2-dimensional structural elements called *blocks* and *hinges*. Geometrical information about components is encoded in the geometry of these elements as well as adjacency relations between them. Topological information is encoded in terms of surrounding relations between *outer-edges* of connected components of both the figure and the background.

The program offers a number of options, e.g., 4- or 8-connectivity. The

ii

two major options concern the level of detail of the geometrical and topological descriptions desired in the output. They are called *full* or *restricted adjacency*, and *full* or *restricted surrounding* respectively. They can be activated interactively and are fully orthogonal in the sense that any combination of both is feasible. Thanks to these options, our approach is quite versatile, and the algorithm can be readily adapted to the needs of a wide variety of possible applications.

The algorithm is presented in successive stages through the chapters of this report. Every attempt was made to keep the presentation self-contained. The theoretical background is recalled whenever needed, and the discussion is carried up to the darkest corners of the implementation. The complete program can be found in the appendices. The algorithm was implemented in *Pascal*, and was tested on the VAX 11/780 computer at the Philips Research Laboratory Brussels.

iii

case major operant concern die Jevel of detail of the geometatesh and topplogical deteriptions desired in the output. They are called /ull or restored an domay, and /ull or fracted airconduling tespectively. Thus can be addisered inferactively and are tally orthogonal in the same thoreany constitution of both is ferailfie. Therefore is there opticizes our approach is quite transities, and the algorithm and be readily latenticity of the areas of a wide variant, and the aldaw.

I to algorithm is prisented in a toolaive stages (income the "hopter of bids report. Every attempt was made to keep the presentation mit-container. The theorediat backguonted is recalled whenever meeted, and the discussion is conned to be dediced concern of the implementation. The complete program can be found in the inplementant of the algorithm was implemented in Pagori, and was tested on the left of the algorithm was implemented in the relation littles tested on the left. (17780 computer at the Phillips Hereired Enterster

H

Contents

Ŀ

Contraction of the second second

1	INTRODUCTION	1
1.1 1.2 1.3 1.4	The Problem and Possible Approaches Topological and Geometrical Information Program Options Summary of the Report	1 2 3 4
2	REAL-TIME SEQUENTIAL PROCESSING OF BINARY PICTURES	7
2.1	The Fundamental Constraints 2.1.1 Sequential processing 2.1.2 Limited memory	7 8 9
2.2	Some Definitions and Notation	11
3	HORIZONTAL BLACK RUNS AND THEIR PARAMETERS	13
$3.1 \\ 3.2 \\ 3.3$	Definitions and Some Properties of Runs The Parameters of a Run The Computation of Run Parameters	13 15 17

υ

4	DECOMPOSITION OF A FIGURE INTO BLOCKS AND			
	HINGES	21		
4.1	Blocks, Hinges, d-Blocks and Block-Continuations	21		
4.2		24		
4.3	· · · · · · · · · · · · · · · · · · ·	25		
4.4		28		
4.5		32		
	4.5.1 Data structure and basic processing steps	33		
	4.5.2 Creating and updating object records	36		
	4.5.3 Comments	39		
5	THE DETECTION OF CONNECTED COMPONENTS	S 41		
5.1	Preliminaries	41		
5.2		43		
	5.2.1 Notation and theoretical background	43		
	5.2.2 Full adjacency	47		
	5.2.3 Restricted adjacency	53		
	5.2.4 Implementation	54		
	5.2.5 Comments	56		
5.3		57		
	5.3.1 The neighborhood-tree of a figure	58		
	5.3.2 The vertex-string and the edge-string	61		
	5.3.3 Full surrounding and restricted surrounding	65		
	5.3.4 The representation of cycles and edge-strings	68		
5.4	4 The Construction of Cycles and Edge-Strings	70		
	5.4.1 Introduction	70		
	5.4.2 Relations between chains and cycles	71		
	5.4.3 Representation of chain extremities and their pro-	perties 75		
	5.4.4 Implementation	80		
5.5	5 Comments	89		
6	OUTPUT PROCEDURES AND SAMPLE OUTPUT	91		
6.1	1 Output Procedures	91		
6.2		95		

ļļ

vi

7 CONCLUDING COMMENTS	103					
7.1 A Guided Tour of the Program7.2 Some Possible Extensions	100					
Appendix A: Main Program and Initialization						
 A.1 Main Program A.1.1 Comments A.2 Initialization 	109 112					
Appendix B: The Processing of Rows	115					
 B.1 Procedure Process on Row B.2 Procedure Transition to the Next Row B.3 Procedure Window 	116					
Appendix C: Procedure Allocate	110					
C.1 Allocate C.2 Comments	113					
Appendix D: The Processing of Objects						
 D.1 Procedure Endof D.2 Procedure Conbelow D.3 Procedure Newobject D.4 Procedure Thisrowobjty0 D.5 Procedure Thisrowobjty1 D.6 Procedure Blockenlarge D.7 Procedure Continuationenlarge D.8 Procedure Newhinge D.9 Procedure Newblock 	123 124 125 128 129 129 129 130 130					

Π

Π

vii

D.10 Proce	dure Newcontinuation	130
Appendix E	: The Processing of Cycles	131
E.1 Proce	dure Concatenate1	131
E.2 Proce	dure Concatenate2	132
	dure Enclose1	133
	dure Enclose2	134
E.5 Proce	dure Extendchain	134
E.6 Proce	dure Newchain	135
E.7 Proce	dure Mergechain	136
	dure Closechain	136
Appendix F	: Output Procedures	139
F.1 Proce	dures Outcy	139
F.1.1	Procedure Outcy1	139
F.1.2	Procedure Outcy2	141
F.2 Proce	dures Outobj	143
F.2.1	Procedure Outobj1	143
F.2.2	Procedure Outobj2	145
F.3 Proce	dures Idobj	146
F.3.1	Procedure Idobj1	146
F.3.2	Procedure Idobj2	147
F.4 Proce	dure Outxy	147
F.5 Proce	dure Interncy	149

viii