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Abstract:
In this work, we study the topological aspects of the deletion of a subset from
a binary image in a square grid. We derive then criteria for the topological
validity of usual thinning algorithms based on a succession of deletions of pixels
(sequential or parallel). We also survey briefly the geometrical requirements of
the thinning process. Finally, we apply our results to the analysis of two existing
thinning algorithms, one sequential (Hilditch's) and one parallel (Rosenfeld's).



I. Introduction

In optical character recognition (OCR), a common practice is to reduce a digitized
representation of a character to a one pixel thick figure called the skeleton, which retains
all its significant topological and geometrical features. The assumption underlying this
process is that the skeleton, by containing a smaller amount of data than the original
character while retaining its basic properties, is easier to analyze and thus to recognize
than a thicker figure. Indeed, practice proves that it is easier to extract geometrical and
topological features from images built with digital curves than with images of arbitrary

width.

One can find in the literature a large number of algorithms producing skeletons
from arbitrary figures. Most of them use the method of thinning: successive layers of
pixels are deleted from the figure until it becomes one pixel thick. In general the pixels
are deleted according to certain criteria based on the configuration of white and black
pixels in their 8-neighbourhood. These algorithms divide themselves into two classes:
those in which at each pass the deletion criterion is applied to all pixels at the same
time and pixels which satisfy it are deleted together (parallel algorithms), and those in
which the criterion is applied successively to all pixels and the deletion of a pixel occurs
before that criterion is applied to another pixel (sequential algorithms).

We do not intend to survey here the various thinning algorithms available in
the literature. The most representative ones are compared in [8]. Our aim is rather
to describe the principles which underly all these algorithms. As said above, the
features which must be retained in the skeletonization process are of a topological or
geometrical nature. We will show that the topological requirements can be stated in
very rigorous terms, while geometrical requirements are more vague and admit different
mathematical formulations. We have thus concentrated our analysis on the topological
aspects of thinning, while touching briefly on the geometrical ones. Our results include
a characterization of the conditions to be fulfilled by the deletion criterion of a thinning
algorithm in order to be topologically valid.

Our report is organized as follows:

In Section 2 we analyze the topological properties of the set K of pixels to be
deleted from a figure F* in order to get a skeleton. This leads to the concept of k-
deletability and strong k-deletability (k = 4 or 8), with the latter being more suitable
than the former.

In Section 3 we show that a strongly k-deletable subset K of a figure F° can be
deleted by a succession of deletions of individual pixels p;, ..., ps, where each p; is
k-deletable from F'\{p; | j < i}. A consequence of this result is that any topologically
valid skeleton can be obtained by some thinning process.

In Section 4 we recall well-known results characterizing the deletability of a pixel,
while in Section 5 we give the condition for the strong deletability of a group of deletable
pixels. These results allow us to verify the topological validity of any thinning algorithm,
sequential or parallel.

In Section 6 we give a brief description of the geometrical conditions that can be
combined with the topological ones in order to obtain a performing algorithm. Finally
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we analyze in Section 7 two algorithms chosen from the literature, one sequential
and one parallel, and show how they satisfy in practice the requirements established
theoretically.

Our study should allow a better understanding of the thinning process and give
mathematical tools for the verification of the validity of any thinning algorithm.

II. Deletability and Strong Deletability

Let G be a rectangular or quadruled grid with frame F'G. Let F' be a figure
on G with background B = G\F. We make the Restricted Frame Assumption (RFA)
which states that the frame F'G is entirely included either in B or in F', [4]. Given two
arbitrary subsets S and T of G, let C(k,T') denote the set of k-connected components
of 7" with

ck(T) =| C(ka T) I’ (1)

and C(%, T, S) denote the set of k-connected components of 7" which are k-adjacent or
k-connected to S with

Ce(T, S)=| C(k,T,S)]|. (2)

Let K designate an arbitrary subset of figure F'. Hereafter, we shall contemplate
deletion of K from F, thereby obtaining a new figure F¥ = F\K, with background
B' = B|J K. Recall that if k-connectedness is used for F' and F', k’-connectedness
must be used for B and B/, with ks =4 or 8, and ¥’ = 12 — k.

One of the purposes of this paper is to examine the behavior of thinning al-
gorithms from a topological viewpoint. It is evident that deletion of some subset K
from F' may change the topology of F'. Therefore, our first step will be to determine
the conditions to be imposed on K in order that the topological structure of F' be
preserved.

The topological structure of F' is characterized by the set of k-connected com-
ponents of F', the set of k’-connected components of B, their adjacency and surrounding
relations, and the relation of F'G to F* and B, [4,5].

Invariance of the numbers of connected components of the figure and the back-
ground is, clearly, the first necessary condition to be satisfied by the deletion of K from
F'. So, we must have

Cr(F) = Ci(F'), (3)
and
Ow(B) = Cu(B'). ()

In general, conditions (3) and (4) are not sufficient to guarantee the invariance of
the topological structure of F* under deletion of K. Figure 1 displays three examples
where K satisfies (3) and (4), and F' and F” are not topologically equivalent: Connected
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components of the figure are split or erased, while connected components of the back-
ground are merged or created. Moreover, the geometrical structure of the figure is dis-
torted by the absence of correspondence between connected components of ¥ and F’. In
fact, one expects from the thinning process that it maintains a natural correspondence
between the connected components of F' and B on the one hand, and those of ¥/ and
B' on the other hand.

We note that F C F' and we define a map

e: Clk, F') = C(k, F), (5)
with X'p = X iff X’ C X. Similarly, as B C B’, we have a map
B:C(K,B)— C(K,B), (8)

with YA=Y'iffY C Y’

Now, four common sense requirements translate readily into an equal number of
formal conditions.

» A connected component of the figure cannot be split. Formally, an element of C(%, F')
contains at most one element of C(k, F'), i.e.,

@ is injective. (T.a)

» A connected component of the figure cannot be erased. Formally, an element of
C(k, F") contains at least one element of C(k, F'), i.e.,

© is surjective. (7.5)

» Two or more connected components of the background cannot be merged into a single
one. Formally, an element of C(%’, B’) contains at most one element of C(k’, B), i.e.,

B is injective. (8.a)

» A connected component of the background cannot be created. Formally, an element
of C(k’', B') contains at least one element of C(%’, B), i.e.,

g is surjective. (8.0)

It is clear that any two of (3), (7,a) and (7, b) imply the third, and similarly for
(4), (8,a) and (8, b).

The following lemma, translates these four conditions in terms of K.

Lemma 1: Consider the following four conditions

VAEC(kK), Ci(F,A)<L1. (9.0)
VAEC(kK), Ck(F',A)>o0. (9.)
VZeCk,K), Cw(B Z)<1. (10.5)
VZeCK,K), Cw(B,Z)>o0. (10.5)

Then, (i) (7.a) & (9.a), (ii) (7.0) & (9.)), (iii) (8.a) & (10.a), and (iv) (8.5) & (10.b).
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Proof. We need only prove (i) and (ii). For (iii) and (iv) we have only to interchange F°
and B, F' and B, k and k’, ¢ and $ in the following proof.

(i) If (9.a) does not hold, then Cr(F', A) > 2 for some A € C(k,K). Let X,Y €
C(k,F',A), X 5 Y. Then, X |JA[JY is k-connected and it belongs to some W €
C(k,F). As X,Y C W, (7.a) does not hold.

If (7.a) does not hold, then there is some W € C(k, F') containing at least two
distinct X,Y € C(k,F'). As F = F'|J K, W is a union of elements of C(k,F') and
elements of C(k,K). Consider a k-path P in W joining X to Y. It goes successively
through elements of C(k, F’) and C(k,K) in alternance. As X 3 Y, there is some
A € C(k,K) and some Xy, X; € C(k,F’) such that X, £ X; and P goes successively
through X, A and X;. Then, Xo, X; € C(k, F’, A) and so, (9.a4) does not hold.

(ii) If (9.b) does not hold, then Ci(F’, A) = 0 for some A € C(k,K). As FF =
K |JF', and Cx(K, A) = 0 (by definition), A € C(k, F') and so (7.b) does not hold since
A contains no element of C(k, F').

If (7.5) does not hold, then there is some W € C(k, F') such that W contains no

element of C(k,F'). As F=F'|JK, W C K and so W € C(k,K) and C(F',W) =0
(since W € C(k, F)). Thus, (9.5) does not hold. i

We may conclude from the above that to guarantee the invariance of the topologi-
cal structure of ' and B, K must be subjected to the following conditions

o is bijective, (7.c)
B is bijective; (8.¢)

which, by Lemma 1 are equivalent to
VAEC(k,K), Ck(F',A)=1, (9.¢)

and
VZeCK,K), Cw(B,Z)=1, (10.¢)
respectively.

We shall presently show that if K is 4-connected, the conditions (3) and (4) which
expressed the invariance of the numbers of connected components of the figure and the
background suffice to imply (9.¢) and (10.¢), hence, (7.c) and (8.c¢) also. To this end we
need the following lemma.

Lemma 2: Let S and T be two disjoint subsets of G. Suppose that S is k-connected.
Then
Ce(T) = Cx(T|J S) + Cx(T, S)— 1. (11)

In particular, C(T') = Cx(T |} ) if and only if

Ce(T, ) = 1. (12)



Proof. Let m = Cx(T,S) and n = Ci(T) — Ck(T, S), (m,n > 0). Let Ty, ..., Ty be
the elements of C(k, T, S), and 7”4, ...T’s be those of C(k, T)\C(k, T, S,). Then, the
elements of C(k,T | S) are

MU, - UT)US: Ty T,

Thus we have:

Ck(T) — m+n:
CJ;(TUS): n-l— 1,

Cx(T,8) = m.

Then, (11) follows with (12) as an immediate consequence. I

Next, let us apply Lemma 2 to K.
In the first place, if K is k-connected, we set S = K, and T = F’. From (12)
we find that
Ci(F) = Ci(F) (3)
if and only if
Ci(Fl,K)=1. (13)

In the second place, if K is &#'-connected, we set § = K, and T' = B. From (12) we
find that

Cr(B) = Cr(B") (4)
if and only if
Cp(B,K) = 1. (14)

Now, K is 4-connected if and only if it is both k- and k’-connected. We get thus the
following result:

Lemma 3: If K is 4-connected, then (3) and (4) are equivalent to (13) and (14)
respectively.

We have characterized a condition for a one to one correspondence between the
connected components of F' and F’, and those of B and B’. One of our goals in the
next section will be to demonstrate that this correspondence preserves the neighborhood
relations between these connected components.

We need also consider the relation of figure F° to the frame F'G of G, In order
to be consistent with the assumption that F' satisfies the RFA, we shall also assume
that F' satisfies the RFA. Moreover, we shall require that the deletion of KX from F
does not change the colour of F'G. In other words, we impose one of the following two

conditions:
If FG C B, then FG C B'.
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If FG C F, then FG C F'.
Clearly, this holds if and only if

KNFG=0. (15)

Let us now summarize our results thus far. We have established two different
sets of conditions which allow the deletion of K from F'. One set is stronger than the
other, but if K is 4-connected, then they are equivalent. This leads us to make the
following definitions.

Definition 1: Given K C F, F' = F\K, and B' = B|J K. We shall say that K is
k-deletable from F' if and only if Cx(F) = Cx(F'), Cxt(B) = Cp(B’), and K (1 FG =
.

Definition 2: Given K C F, F' = F\K, and B' = B|J K. We shall say that K is
strongly k-deletable from F if and only if ¢ and § are both bijective (or, equivalently,
VA€ECKkK), Ce(F',A)=1,andV Z € C(K',K), Cx(B,Z) =1) and K [ FG = @.

Figure 2 displays examples of sets K which are either strongly 8-deletable but
not 4-deletable, (2.a), or strongly 4-deletable but not 8-deletable, (2.b). In simple
configurations, such as that in (2.c), the connected components of K are both strongly
4-deletable and strongly 8-deletable. This observation prompts us to make the following

definition:

Definition 3: Given K C F, F/ = F\K, and B = B|JK. We shall say that
K is (strongly) (4,8)-deletable from F if it is both (strongly) 4-deletable from F, and
(strongly) 8-deletable from F.

We have shown that if K is strongly k-deletable from F', then it is k-deletable
from F'; but the converse is not true, except if K is 4-connected. In the next section
we will show that if K is strongly k-deletable, the deletion of K from F' can be realized
by a succession of deletions of k-deletable pels from F'. This is, indeed, what happens
in most actual thinning algorithms.

Oi. A Characterization of Strong Deletability

In this Section, our goal is to show that if K is strongly k-deletable from F' then
K contains strongly k-deletable pels, and the deletion of K from F can be realized by
a succession of deletions of these pels. This property is, in fact, a characterization of
strongly k-deletable subsets. To achieve this goal we decompose K into smaller and
smaller strongly deletable subsets. In the first place we characterize deletable subsets
of K. Next, the analysis focuses on 8-connected, and 4-connected components of K.
Eventually, we exhibit the characterization of deletability at the pel level.

Let us first remark that the following result is obvious:
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Lemma 4: Let K C F\FG, K' C K, and K" = K\K'. Then any two of the following
statements imply the third:

(i) K' is k-deletable from F.
(ii) K" is k-deletable from F\K’.
(iii) K is k-deletable from F'.

The corresponding result in terms of strong deletability is the following:

Lemma 5: Let K, K’, and K" be the three subsets of K which satisfy the hypothesis
and the three statements of Lemma 4. Then, the following two statements are equiv-

alent:
(i) K is strongly k-deletable from F.
(ii) K' is strongly k-deletable from F' and K" is strongly k-deletable from F.

Proof. We have the following six maps:
¢x : C(k,F\K)— C(k,F),
oxn : C(k, F\K)— C(k,F\K"),
bxr 1 C(k, F\K') = C(k, F),
Bx : C(K,B)— C(k',BUK), (16)
Bxn : C(K',BUK')— C(¥,B|JK),
Bkt : C(K,B)— C(K',B|JK'),

corresponding to (5) and (6). It is clear that
ox = Pxv - Pk,

and
Bx = Bk - Brn. (17)

As the three statements of Lemma 4 hold, we have:
Ck(F) = Ck(F\K') = Cx(F\K),

and
Cit(B) = Cw(B|J K') = Cu(B ) K). (18)

By (16), (17), and (18) it is clear that ¢x is bijective if and only if both ¢x# and g
are bijective, and likewise in terms of 3. Now, statement (i) means that ¢x and fx
are bijective, while statement (ii) means that ¢x, fxr, ¢xn, and Pgn are bijective,
Therefore these two statements are equivalent. il

Our next step will be to show that if K is strongly k-deletable, every 8-connected
component of K is strongly k-deletable.

.



Proposition 6: If K is strongly k-deletable from F', then for every X € C(8,K), X is
strongly k-deletable from F..

Proof. For any A € C(k,X), and Z € C(k', X) we have A € C(k,K), and Z € C(k',K)
by virtue of the 8-connectedness of X. We also have

Cx(F\K, A) =1, (19)
and
Cw(B,Z) =1, (20)
for K is strongly k-deletable. As A € C(k,X), A is not k-adjacent to K\X, hence
Cr(K\X,A) =0. (21)

Now, F\X = (F\K)|J(K\X). Thus A can be k-connected to F'\X only through
F\K. This fact together with (19) and (21) imply that

Cu(F\X,A) = 1. (22)
Then, by (20) and (22), X is strongly k-deletable from F. il

Now, it follows from Lemma 5 that the deletion of K from F' can be realized by
successive deletions of its 8-connected components. Moreover, it is readily verified that
Lemma 5 and Proposition 6 remain true if we substitute “strong (4,8)-deletability” for
“strong k-deletability”.

In parallel with Proposition 6, we will presently exhibit the characterization of
4-connected components which are (strongly) k-deletable. In our discussion, we will
have to make a distinction between 4-, 8-, and (4,8)-deletability.

Proposition 7: Let X C F\FG, and suppose that X is 8-connected. If X is strongly
k-deletable from F, then there exists some Y € C(4,X) such that Y is (strongly) k-
deletable from F'.

If X is strongly (4,8)-deletable from F', then every Y € C(4,X) is (strongly) 4-deletable
from F, and one of them is (strongly) (4,8)-deletable from F.

(Note: For such a set ¥, deletability is equivalent to strong deletability by Lemma 2.)

Proof. We distinguish three cases, namely, k = 4, k = 8, and (4,8)-deletability.

(a) k=4. As Cs(B,X) = 1, there exists some ¥ € C(4,X) such that Y is
8-adjacent to B. We will show that any such Y is strongly 4-deletable from F'. Clearly,
as Cg(B,X) =1, Cs(B,Y)# 0,and Y C X, we have

Cs(B, Y) = 1. (23)

By definition of the strong 4-deletability of X, we have C4(F\X,Y) = 1. AsY €
C(4,X), Y is not 4-adjacent to X\Y. Now, F\Y (AM\X)JX\Y). Thus, Y can be
4-connected to F'\Y only through F\X and this implies

Cuo(F\Y,Y) =1 (24)
By (23) and (24), Y is (strongly) 4-deletable from F.
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(b) £ = 8. By definition of the strong 8-deletability, we have Cs(F\X, X) = 1,

and
Cy(B,Z)=1 (25)

for every Z € C(4,X). As Cs(F\X, X) = 1, and X is 8-connected, every Z € C(4, X) is
8-connected to F\X in F'. In other words there exists an 8-path through F' connecting
Z to F\X. Let d denote the restriction of the distance ds to F', (see [?]). Choose Y €
C(4, X)) such that d(Y, F\X) > d(Z, F\X) for any other Z € C(4, X). (We may assume
that C4(X) > 1.) Then, the 8-connected component of F\X which is 8-adjacent to X
must be 8-connected to some Z % Y. Therefore,

Ce(F\X,X\Y) = Cs(F\X,X) = 1. (26)
Now, combining (26) with Lemma 2, we obtain:

Cs(F\X) = Cs(F)+ Ce(F\X,X) — 1 = Cs(F),

Cs(F\X) = Cs(F\Y) + Cs(F\X, X\Y)— 1 = Cs(F\Y).

By Lemma 3 again, we get
Cs(F\Y,Y)=Cs(F\Y)—Cs(F)+1=1. (27)
By (25) and (27), Y is (strongly) 8-deletable from F.

(¢) (4, 8). X is strongly (4,8)-deletable from F'. Thus, it is strongly 8-deletable
and so (25) holds for every Z € C(4,X). But X is also (strongly) 4-deletable, and we
may apply the result of (a): For every Z € C(4,X), as Z is 8-adjacent to B (by (25)),
Z is strongly 4-deletable from F'. Next, as X is strongly 8-deletable from F', we may
apply the result of (b): There is some Y € C(4,X) such that Y is (strongly) 8-deletable
from F. Thus, Y is (strongly) (4,8)-deletable from F. This completes the proof of
Proposition 7. §

One consequence of Lemma 5 and Proposition 7 is that the deletion of K from
F' can be realized by a succession of deletions of its 4-connected components.

Our last step in this section brings us down at the pel level. We shall make use
hereafter of the following notation: Given two sets S C G and T' C G. Suppose that
S, and T are k-adjacent. Let 0;x(S, T') designate the “k-border of S with respect to T,
viz., 0x(S,T) = {p € S | dr(p,T) = 1}. If T = G\ S, then we use the notation 5(.5)
instead of 6z (S, T).

Proposition 8: Let Y C F\FG. Suppose that Y is 4-connected. Let z stand for 4,
8, or (4,8). If Y is z-deletable from F, then there exists a pixel p € Y such that p is
z-deletable from F'.



Proof. We assume | Y |> 1, otherwise the result is obvious. We define two integers k1,
and k2 as follows:

(i) If z =k, then ky = k', and ks = k.
(ii) If z = (4,8), then k; = ko = 4.

As Y is z-deletable from F', we have Cy,(B,Y) = Ci,(F\Y,Y) = 1. It follows
thus that &, (Y, B) and 8,(Y, F\Y) are non-void. Moreover, there always exist pels
p € 6k, (Y,B), and g € 8k, (Y, F\Y) such that p # g for otherwise we would have

I 64(Y) [ < | 5k1(YyB) U §k2(YsF\Y) |= 1,

which is impossible, After this preamble, we examine two cases:

(a) z=1k. AsY is k-deletable, Cxr(B,Y) = 1. In addition, Cx(F\Y,Y) = 1.
As g € (Y, F\Y), the unique k-connected component of F\Y which is k-adjacent to
Y is k-adjacent to g, and so to Y — p, where Y — p denotes the set Y with p deleted.
Thus,

Ce(F\Y,Y —p) = G\ Y ) =1, (29)

We next apply Lemma 3 three times, in combination with (29), and we get:

Co(F\Y) = Cp(F) + Cu(F\Y,Y) — 1 = Ci(F);

Ci(F\Y) = Ck(F — p) + Cx(F\Y,Y — p) — 1 = Cy(F — p);

Ci(F — p,p) = Ch(F — p) — Cu(F) +1=1. (30)
Thus, p is k-deletable from F'.

(b) &= (4,8). Then the argument of (a) can be applied fork = 4 and k = 8,
since we have p € 64(Y,B) and ¢ € &:(Y,F\Y). 1

Proposition 8 brings to an end this part of our analysis. By iterative applications
of Lemma 5, and Propositions 6, 7, and 8, we obtain our fundamental result which
characterizes strong deletability:

Theorem 9: Let K C F\FG. Let t =| K | (we assume t > 1). Let © = 4, 8 or (4,8).
Then the following two statements are equivalent:

(i) K is strongly z-deletable from F..

(ii) We can label the elements of K, p1, ..., pt, in such a way that each p;, 1 <
i < t, is z-deletable from F\{p, | j < i}.

Moreover, in (ii), we can choose the p;’s in such a way that for k = 4 or 8, every
k-connected component of K is of the form {p, | 1 < s < j} for some i, j such that
1<i<j<t.
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Now we remark that most thinning algorithms proceed by successive deletions of
individual pels, and our Theorem states that any strongly deletable part of the figure
can be deleted in such a way. Aside from the topological considerations put forth in
Section II, this provides additional justification for our choice of strong deletability
conditions.

An interresting consequence of the Theorem is the preservation of the adjacency
tree [4] of a figure by the deletion of a strongly deletable set. Indeed, it is easily seen
that if a k-deletable pel p is deleted from figure F', then F' and F' — p have the same
adjacency tree. As the argument can be repeated iteratively, it follows that F and F\K
have the same adjacency tree.

Henceforth, we shall consider that the topological condition for the deletion of
K from F' in the thinning process is the strong deletability of K with 2 = & if one
considers k-connectedness on the figure, and z = (4, 8) if one considers both 4- and
8-connectedness on the figure.

IV. Deletability condition for a pixel

In this section, we will survey well-known results [6,9,10] expressing the deletability
condition for a single pixel, namely a criterion expressed in terms of connected com-
ponents of the intersection of 7' and B with the 8-neighbourhood of that pizel [6], and a
numerical expression for this criterion [9,10].

We will explain these results in detail, and we will give a very simple proof of
Rosenfeld’s deletability criterion [6]. In fact, we will prove a more general result.

The analysis of the 8-neighbourhood of a pixel will require some additional
notations. Let p be a pixel in G\F'G, and let T' be any subset of G. Let & = 4
or 8. We recall from [4] that Nk(p) is the k-neighbourhood of p. We will then write:

NCx(T,p) = Ck(T [ Na(p), p), (31)

ie., the set of k-connected components of the restriction of 7' to Ng(p) which are k-
connected to p. Note that for £ = 8, we have:

NCs(T,p) = Cs(T [ Ns(p))- (32)

In Figure 3 we give a few examples of the values taken by NC4(T, p) and NCs(T,p)
for several configurations.

Let us return to our figure F. Let p € F\F'G and suppose that we wish to delete
p from F. We must check whether p is k-deletable from F. We will show that the
answer depends upon the two numbers

ch(F’p)

and

NCw(B, p).
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A first look at them shows us three possibilities:
(@) B[)Nw(p) =93, NCxi(B,p) = 0and NCk(F,p) = 1.
) F[Nilp) =9, NCw(B,p) =1 and NCi(F, p) = Q.

(¢) B Nir(p) # @ # F [ Ni(p) and every X € C(k, F [] Ns(p), p) neighbours
some Y € C(&', B[] Ns(p), p) and v1ce-versa.

In Figure 4 we illustrate cases (a) and (b) for both & = 4 and k = 8.

Let us now define two more numbers; in fact, we will show that they are equal.
These numbers will be used in the deletability criterion for the pixel p:

CNk F,p) 1s the number of X € C(k,F () Ns(p),p) neighbouring some

Y € C(k BnNs , ) (33)
CNg'(B,p) is the number of ¥ € C(&,B[) Ns(p),p) neighbouring some
X € C(k,FnNB(P)aP)- (34)

Then the three cases (a), (b) and (c) considered above give the following:

— In (@) and (b) we have

CNi(F,p) = CNw(B,p) = 0. (35)

— In (c) we have
CNk(F,p)": NCk(F,p) >0
and

CNw(B,p) = NCw(B, p). (36)

As we announced it, we have the following result:
Lemma 10. CNi(F,p) = CNy(B,p).

Proof. By (35), we may assume that we are in case (c¢). Now when we scan Ns(z) cir-
cularly, then we encounter alternately the elements of C(k, F* [} Nz(p), p) and C(¥’, B[ Ns(p), p)-
(We encounter also elements of C(k,Fn Ne(p))\C(k, F (] Na(p), p) when k = 4, or of

C(k', B Ns(p))\C(%', B ) Ns(p), p) when k& = 8, but they do not separate distinct ele-
ments of C(&, F' [ Ns(p), p) a.nd C (k',B ) Ns(p), p) respectively.)

Thus the relation of neighbourhood between C(k, F' [ Ns(p), p) and C(¥', B [ Ns(p), »)
forms a cycele, and so the result holds. §l

We are now in position to state Rosenfeld’s deletability criterion for a pixel p.
We will first prove a more general result:
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Proposition 11.  Assume that F' satisfies the RFA and that p € F\FG. Let F! =
F\{p} and B = B ] {p}. Then:

Cy(F') — Ci(F) + Cw(B) — Cwr(B') = CNi(F, p) — 1. (37)
Moreover, one of the following holds:

() CNk(F,p) =0 and (a) holds,
Cx(F') = C(F), and
Ck!(B’) = Ckr(B) —I" 1.

(1¥) CNg(F,p) = 0 and (b) holds,
Ck(F!) = Ck(F) — 1, and
Ckr(B’) — Ckl(B).

(i) CNg(F,p) >0,
Ck(F’) > Cg(F), and
Cit(B') < Cr1(B).

Proof. In case (a), the deletion of p from F' creates a new hole in F'. Thus (i) holds
then. In case (b), p is an isolated pixel of F' and so (i7) holds then. In case (c), as p is
k-adjacent to pixels of F' and k’-adjacent to pixels of B, the deletion of z from F' can
only split k-connected components of F or merge k’-connected components of B. Thus
(#6¢) holds in this case.

There remains us only to prove (37). Given a figure F* with background B*,
such that F'* satisfies the FA, the number

Cy(F*)—Cw(B*)+1

is the Euler number or genus of F™*, and we write it g, x)(F™) (see [4]).

We may suppose that F' satisfies the Frame Assumtion (FA), which states that
the frame F'G is entirely included in B [4]; otherwise we extend the grid G by a layer of
white pixels on each side of F'G, and so the two sides of equation (37) remain unchanged,
while the new figure satisfies the FA.

Then the left-hand side of (37) is equal to:

90k k) (F') — 9(ie, ey (F).

But in [4], the formulas (95) and (96) give the genus of a figure satisfying the FA
in terms of the number of occurrences of certain types of configurations of black and
white pixels among all 2 X 2-squares in G. Now the only 2 X 2-squares in G which
form distinct configurations of black and white pixels in F* and F' are those containing
p. Thus g,k (F') — g% (F) depends only upon the squares containing p, in other
words upon Ng(p).

We have thus shown that the left-hand side of (37) depends only upon Ns(p).
Thus we may assume that F* C Ng(p) and so we have:

CNg(F,p) = NCk(F,p) = Cx(F [ Ns(p), p) = Ci(F, p) = Cx(F’, p)
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and Cgt(B) = Cy(B') = 1. Thus (37) becomes equivalent to
Ck(Fd) — Ck(F) = Ck(F”p) - 1:

which is none other than (11) with 7= F’ and S = {p}.
Thus (37) holds in this case, and so it holds in general. [

Now we state Rosenfeld’s deletability criterion for the pizel p. In [6] he proved
that: p is k-deletable from F' if and only if

CNe(F,p) = 1. (38)
It is easily seen that it is a consequence of (37).

Thinning algorithms consider the neighbourhoods of the pixels and delete these
pixels when their 8-neighbourhood belongs to a certain set of configurations (satisfying
the condition (38) of course). These configurations can be concisely described if the 8
pixels of the 8-neighbourhood Ng(p) of a pixel p are numbered. The general use is to
number them from 0 to 7 (or sometimes from 1 to 8) in circular order. We will assume
this, and we will also suppose that the 4-neighbours of that pixel have even numbers.
The situation is illustrated in Figure 5.

With this numbering of the 8-neighbours of a pixel p, it is possible to write the
numbers CN4(F', p) and CNs(F', p) as an algebraic expression involving the values taken
by the pixels numbered in this way.

Indeed take any pixel p € F\F'G; we define then the 8 numbers f,(i) (where
=0, ..7) by

fp(z') =1 if the 8neighbour of p numbered ¢ belongs to F'.
=0 otherwise. (39)

Now the two numbers CIN,(F,p) and CNs(F,p) can be expressed with the
numbers of the form (39) thanks to the formulas of [9,10], which are called (Yokoi’s) 4-
and 8-connectivity numbers. We state them here:

Proposition 12 [9,10].

3
ONuF,2) = Y (15(20) — 13(24)- £5(21 D 1) 15(25 © 2)) (10)
j=0
and
ONs(F Z(fp 5~ 56 HE o0 HE 69), (41)
j=0

where D is the modulo 8 sum and T = 1 — z for every z € {0,1}.
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Proof. Every X € C(4,F (] Ns(p), p) which neighbours some Y € C(8, B [ Ns(p), p) is
characterized by the last pixel y € X [] Na(p) in the circular order determined by the
numbering of the pixels of Ng(p). If y is numbered ¢, then that number i is characterized
by the following 3 properties:

(a) ¢iseven (ie, y € Ns(p)).

() f(i) =1 (ie, y € F).

(¢) foliP1)=00r fp(¢: P 2) =0 (i.e., y is the last one in the circular order).

Now (a) means that ¢ = 27 and (b) and (c) together are equivalent to the
statement:

Fo() = fo(i)- (D) L(iD2) = /() A= fo(i @ 1)- (i B 2)) =1 (42

As the right-hand side of (40) is the number of numbers i = 27 satisfying (42),
equation (40) must hold.

Finally we remark that CNg(F', p) = CN4(B, p) and so (41) follows from (40) by
interverting F' and B and so by replacing every f,(7) by fu(¢). i

We can now sum up: a pixel p € F\FG is k-deletable from F if and only if
it satisfies Rosenfeld’s criterion (38), which can be expressed with the help of Yokoi's
connectivity numbers defined by (39), (40) and (41). This condition is the basis for the
topological part of the deletion criterion in a sequential thinning algorithm.

However this condition does not allow us to check whether a subset K of F'
consisting of k-deletable pixzels is itself k-deletable, a situation which arises in the
deletion stages of a parallel thinning algorithm. We will study this problem in the
next section and show that we can decide upon the k-deletability of X by looking at
some small configurations of pixels, namely pairs, triples and quadruples of pairwise
8-adjacent pixels of K together with their 8-neighbourhood.

V. Parallel deletion and minimal non-deletable subsets

In Section III we showed that a strongly deletable subset of a figure can be deleted
from it by a succession of deletions of individual pels. In Section IV we expressed
the criterion for the deletability of a single pel in terms of the configuration of black
and white pels in its 8-neighbourhood. With this criterion it is possible to check the
topological validity of a sequential thinning algorithm.

But there is another class of thinning algorithms: parallel algorithms, in which
at every deletion stage a criterion is applied to the pels of the figure, and all pels which
satisfy it are deleted together. Such a criterion must contain as necessary condition
the deletability of the pel, but this is not sufficient, because a figure can contain a
non-deletable subset whose pels are all deletable individually. In fact, the necessary
and sufficient condition for the topological validity of a parallel thinning algorithm is
the following:
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Given a figure F' and a (parallel) deletion criterion X, let K be a subset of F'
whose pixels satisfy X ; then K is deletable from F'. (43)

Note that in this case, K is strongly deletable.

In this section we will determine when a deletion condition (of a parallel thinning
algorithm) satisfies the criterion (43). It will then be possible to check the topological
validity of every possible thinning algorithm. Finally, in Section VI, we will show how
topological conditions can be combined with geometrical ones to give valid thinning
algorithms.

Note: by “deletability”, one means in fact z-deletability (z = 4, 8 or (4, 8)).

We will attack our problem by the “minimal counterexample” approach. Then
we will get “forbidden configurations” for parallel thinning algorithms.

Let U be a subset of F\F'G such that U does not satisfy (43), but every proper
subset of U does. Then U is characterized by the following 3 properties:

(H U #£ 2.
(7¢) U is not z-deletable from F'.
(f7¢) Every proper subset V of U is z-deletable from F* (and is in fact strongly

z-deletable by Section III).

Such a set U is a minimal non-z-deletable subset of F'. In brief, we call it an
(z, F')-set. For example, a pel which is not z-deletable from F' is an (z, F')-set; it is a
trivial (z, F)-set. We will say say that an (z, F')-set is non-trivial if it contains more
than one pel.

It is clear that in a parallel thinning algorithm, condition (43) is satisfied if and
only if the set, K of pixels satisfying the deletion criterion cannot contain a (z, F')-set.

Such a subset of F* which does not contain a (z, F')-set is called a perfectly z-
deletable subset of F'. It has an interresting property in view of Theorem 9, which
characterized strongly z-deletable sets:

Let K be a subset of size t of F', where t > 1. Then K is perfectly z-deletable
from F' if and only if for every labelling pi, ..., p: of the elements of K, each p; (1 <
i < t)is z-deletable from F\{p; | 7 < i}. (44)

This contrasts with strong deletability, where we know only that there is at least
one labelling of the elements of K having that property.

The following result characterizes non-trivial (z, F')-sets:
Theorem 13: Let U be a non-trivial (z, F'}-set. Then one of the following holds:

(1) U is a pair of 8-ad jacent pels.

(¢2) = = 8 and U is an isolated triangle (in other words, U is a triple of
pairwise 8-adjacent pels and U € C(8,F')).

(#i7) z = 8 and U is an isolated square (in other words U is a quadruple of
pairwise 8-ad jacent pels and U € C(8, F)).

The cases (é¢) and (i¢7) are illustrated in Figure 6.
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Proof. Let p and ¢ be two arbitrary distinct elements of U. Write U, = U\{p}, U,
= U\{g}, Upg = U\{p,q}, Fp = F\Up, Fy = F\U,, and Fpq = F\Up,.

As Uypq and U, are both z-deletable from F' and {p} = U,\Up,, p is z-deletable
from Fpq (by Lemma 4). As U, is z-deletable from F, U is not and {p} = U\Up, p is
not deletable from F, (again by Lemma 4). It follows then by Rosenfeld’s deletability
criterion that Ng(p) [ F» 7% Ns(p)[) Fpe- But Fpy = Fp |J {4}, and so we deduce that

g € Ns(p).

As p and ¢ were arbitrarily chosen, the pels of U are all pairwise 8-adjacent, and
so either (¢) holds, U is a triangle or U is a square. We have only to show that in the

last two cases (¢7) and (7¢7) respectively:

(a) U is a triangle: Write U = {p1, p2,ps}. We can write Ns(U) = {q1,..., 12}
We illustrate U and Ng(U) in Figure 7 (up to a rotation).

Suppose first that g, € F. We know that ps is z-deletable from F'\{p,}, but not
from F'\{p1, p2}. In Figure 8 we show Ng(ps) in F\{p2} and in F\{p1,p2}. But it is
then easily seen that Yokoi’s connectivity numbers (see formulas (40) and (41)) are the
same in both cases, which is a contradiction. Thus ¢4 € B.

Now suppose that z 7 8. In Figure 9 we show Ng(p2) in F' and F\{p1,ps}.
As ps is 4-deletable from F, it is easily seen from Figure 9(a) that we must have: gs,
g9, qio0, q11, q12 € F. But it follows then from Figure 9(b) that pa is (4, 8)-deletable
from F\{p1, ps}, in other words that U is (4, 8)-deletable from F', a contradiction. Thus
r = 8.

In Figure 10 we show Ng(p:1) and Ns(ps) in F\{p2}. As both p; and ps are
8-deletable from F'\ {p2}, Rosenfeld’s criterion implies that:

(1°) 11, 912, 91, 92, g3 € B (see Figure 10(a)).
(2°) g5, g6, 97, gs, g0 € B (see Figure 10(b)).

Thus ¢ € B for ¢ 3£ 10. In Figure 11 we show Ng(pz) in F. The 8-deletability
of pa from F' implies that g1o € B. Thus (¢7) holds in this case.

(b) U is a square: We display U and its 8-neighbourhood in Figure 12.

Suppose first that = £ 8. Then p; is 4-deletable from F' and also from F'\{ps}.
But in Figure 13 we show Ng(p1) in F'\{pa} and in F', and it is easily seen that in Figure
13(a) and (b), Yokoi’s 4-connectivity number is not the same, which is a contradiction.
Thus z = 8.

In Figure 14 we show Nz(p1) in F'\{p2, p4}. As p1 is 4-deletable from F\{p2, ps},
Rosenfeld's criterion implies that ¢11, ¢12, ¢1, g2, ¢s € B. A similar argument applied
to pa, ps and ps shows that ¢; € B for every i. Thus (i73) holds in this case. il

This result allows us to describe in a rigorous way the requirements to be fulfilled
by the deletion criterion of a parallel algorithm. Indeed, it must satisfy (43). Thus
the algorithm is topologically valid if and only if the set of pels satisfying that deletion
criterion contains no (z, F')-set as a subset. With Theorem 13, this condition is expressed
as follows:
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(©) A pel p satisfying the deletion criterion is a z-deletable pel of F.

(¢¢) If p and q are two 8-adjacent pels satisfying the deletion criterion, then
p is z~deletable from F\{q}.

(¢35) If k = 8 and U is an isolated triangle of F, then at least one pel of U
does not satisfy the deletion criterion.

(fv) Same as in (iti), but with “square” instead of “triangle”.

As we explained in the preceding section, a deletion criterion is in general ex-
pressed in terms of the configuration of white and black pels in the 8-neighbourhood of
the pel which is examined, and these 8 pels are numbered as in Figure 5. Let us write
§ for the set of all configurations for which the deletion criterion is positive. Then the
conditions (¢) to (iv) above become the following:

(7) Every C € § has its connectivity number (40) or/and (41) equal to 1.

(¢¢) Consider the 4 grid portions of Figure 15. For any configuration D of
black and white pels on anyone of them, with p and g being both black, we
write C for the portion of D in Ns(p), C' for the one in Ng(g), and C" for
the configuration formed from C by changing q from black into white; if C,
C’' € §, then C” has connectivity number (40) or/and (41) equal to 1. (We
give an example in Figure 16).

(¢6i—iv) If k = 8, then the five sets To, T1, T2, Ts and Ty of configurations
shown in Figure 17 contain each one configuration which is not in §.

Let us sum up: With the results of this section and the preceding one, we know the
requirements for the topological validity of a thinning algorithm, sequential or parallel,
whose deletion criterion is based on the configuration of white and black pels in the
8-neighbourhood of a pel of the figure: In a parallel algorithm, we require that all pixels
satisfying the deletion criterion are deletable and do not form together minimal non-
deletable sets. In sequential algorithms, we require that each pixel satisfying the deletion
criterion is deletable from the portion of the figure which remains at the moment where
that criterion is applied to that pixel. However, the result of a sequential thinning
relies in general heavily on the scanning order of the figure, something which can create
geometric distortions in the resulting skeleton, because a pixel which might be deleted
in some scanning order might not in another one. As we will see in Section 7 which
analyses two concrete examples, Hilditch’s sequential thinning algorithm has a stronger
topological requirement, which means in fact that the set of pixels which are deleted
in a thinning stage form a perfectly deletable set as in parallel algorithms. Thus one
can consider that the absence of minimal non-deletable subsets is also useful for the
deletion criterion of a sequential thinning algorithm.

We have left out of consideration the geometrical requirements of a thinning
algorithm. In the next section, we will explain briefly how geometrical conditions can
be combined with topological ones to give algorithms which produce a good skeleton.
Then in Section 7, we will see how our theory applies to two examples of thinning
algorithms, one parallel and one sequential.
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VL. Topological and geometrical conditions in thinning algorithms

Up to now we have made a detailed study of the topological requirements of a
thinning algorithm, but we have left aside the geometrical ones. The reader might then
wonder if there can be such a detailed analysis for these geometrical conditions.

Unfortunately, geometrical features are more intuitive and vaguely defined than
topological ones. For example, it is difficult to explain in precise mathematical terms
the geometrical similarity between the two figures shown in Figure 18, the second one
being a thinned version of the first one.

In fact, the geometrical conditions used in most thinning algorithms are of a
heuristic nature, and their validity is tested experimentally rather than mathematically.

The standard organisation of a thinning algorithm is in a succession of deletion
stages, and in each one of them, a deletion criterion based on the 3 X 3-window is
applied to all border pixels, sequentially or in parallel (according to the algorithm).
The algorithm ends when no further pixel is deleted in a deletion stage.

The deletion criterion must combine the topological conditions that we have
studied so far with some geometrical conditions to be defined.

We propose here two types of geometrical conditions for thinning algorthms.
The first one, “no deletion of end-pixel”, is used in most algorithms and is easy to
implement, but it does not correspond to a very precise mathematical concept. The
second one, “preservation of the distance-skeleton”, was proposed in [2] and found
independently by the author; its implementation is more time-consuming, but it relies
on a precise mathematical formulation. Any study of geometrical requirements of
thinning algorithms must take into account this trade-off between mathematical rigor
and computational speed.

Let us now consider the first type of geometrical requirement. Suppose that at
the beginning of a deletion stage we have a partially thinned figure 7', and let p € T.
The condition can be formulated as follows:

If p is an end-pixel of T, then p cannot be removed from T during that deletion
stage.

Our problem is precisely to define that vague notion of “end-pixel”. For example,
the two bottom pixels of Figure 18.b are end-pixels. In Figure 19 we give other examples
of end-pixels in 8connected skeletons. Roughly speaking, one can say that an end-pixel
is a pixel at the extremity of a one-pixel thick portion of the figure.

Let us be more precise. A one-pixel thick set having extremities is what we call
a simple open k-path; it is a k-path (p1, ... ,pn) such that for 1 < i < 7 < n, ps is
k-adjacent to p; if and only if j = ¢ 4 1; its extremities are p; and p,. Let us now
say that p is a k-end-pixel of 7' if and only if there is a simple open k-path P such that
Ng(p) ﬂ T = Ns(p)[) P; in other words, the relation of p with 7" is the same as with
a simple open k-path. Then it is easily seen that:

(¢) p is a 4-end-pixel if and only if T [ Ns(p) contains only one 4-connected
component X which is 4-ad jacent to p, and | X |=1 or 2. (45)
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(¢9) p is an 8-end-pixel if and only if | T[] Ns(p) |= 1. (46)
Note that a k-end-pixel of T is k-deletable from it.

One can now take the following “no deletion of end-pixel” condition in a deletion
stage. If the pixel p is to be deleted from T' during that deletion stage, then it must
satisfy the following:

— For k = 4: The 4-connected components of T (| Ns(p) which are 4-ad jacent
to p contain together at least 3 pixels. (47)

— For k = 8: T Ns(p) contains at least 2 pixels. (48)

Most algorithms take & = 8 because the resulting skeleton contains fewer pixels
than with & = 4. It is interesting to note that in many cases (for example in the
algorithms of Hilditch [3] and Rosenfeld [7] studied in the next section, which assume
k = 8), it is precisely this condition which is chosen, namely that | T' [ Ns(p) |> 2.

Of course, the definition of end-pixels that we have given here is only a particular
one. The concept is vague enough to admit other definitions.

Now we can consider the second type of geometrical requirement (from [2]). The
idea is the following. Before applying the thinning algorithm to the figure, one computes
its discrete distance-skeleton for the 4-distance or the 8-distance. Then one applies to
that figure a thinning algorithm whose geometrical condition is simply:

If p is a pixel of the discrete distance skeleton of T, then p cannot be removed
from T during that deletion stage.

This method is more rigorous than the one involving “end-pixels”, but also
more time-consuming, because the thinning process becomes a sequence of two distinct
processes. This is a clear example of the trade-off between rigor and computational
speed which appears in the study of geometrical requirements of thinning algorithms.

In most thinning algorithms, the geometrical condition used in the deletion
criterion is of one of the two types described above. Of course the two can be combined,
even partially. For example one can require the preservation of some significant parts of
the distance-skeleton (for example those whose distance to the background is relatively
large) together with end-pixels. In Hilditch’s algorithm the possibility is given to reserve
in advance a set of pixels of the figure which may not be deleted during any stage of
the thinning process.

Now that we have described the standard geometrical prerequisites of most
thinning algorithms, we have still some geometrical problems to consider.

We said at the end of the previous section that in sequential algorithms, the
scanning order can slant the thinning process in a corresponding direction, because
some pixels which are deleted in a particular scanning order are not in another one.
We hinted at a possible solution by requiring that the pixels which are deleted during
a deletion stage form a perfectly deletable set, as in Hilditch’s algorithm. Another
possibility is to apply successively all permutations of the group of symmetries of the
square to the scanning order and then to use every distinct permuted version of the
scanning order in turn during the successive deletion stages.
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A similar problem arises in parallel algorithms due to the lack of symmetry of
the set § of deletable configurations on a 3 X 3-window. Indeed, the need to prevent
the deletion of non-deletable pairs of 8-adjacent deletable pixels implies that we must
introduce some dissymmetry in §. For example we show a two pixel-thick horizontal
portion of a figure in Figure 20.a. Clearly every pixel of it is deletable, but every pair
of vertically adjacent pixels is not. Now a symmetrical deletion criterion would either
delete all these pixels or none. We must thus choose and so either delete the bottom
row or the top one (Figure 20.b). But then, as shows Figure 21, such a choice leads to
a shift of the skeleton towards one side of the figure.

A classical solution is to apply successively all permutations of the group of
symmetries of the square to the set § and then to use every permuted version of § in
turn during the successive deletion stages.

Let us be more precise. Suppose that among the 8 symmetries of the square,
there are exactly n ones which preserve §. Then n divides 8 and the action of the 8
symmetries of the square upon § produce m permuted versions §1 = §, ..., S» of §,
where m = 8/n. Then every deletion stage divides itself into m deletion substages,
where for every r = 1, ..., m, the r* deletion substage is simply a deletion stage in
which the deletion criterion uses the configuration §,.

Rosenfeld [T] popularized a particular version of this method (with m = 4)
by the successive deletion of “north”, “west”, “south” and “east” pixels. A north
pixel is a black pixel 4-adjacent to a white pixel just above it. West, south and east
pixels are determined similarly (see Figure 22). Then one chooses a set § of deletable
configurations such that:

(1) Every configuration in § has a north pixel in its center.

(¢) § is preserved by the left-right symmetry (but not by any non-identity
symmetry).

Then m = 4 and the distinct sets §, (r = 2, 3, 4) are obtained by successive
quarter-turn rotations of §, and consist then in west, south and east pixels respectively.
Then the thinning process becomes an alternance of deletions of north, then east, south
and west pixels satisfying certain properties.

As will be seen in the next section with the analysis of Rosenfeld’s algorithm,
this method can lead to very simple deletion criteria.

There are other algorithms in which m = 2, but even then it is sometimes
sufficient to use § only without dividing each deletion stage into 2 substages.

The geometrical aspects of the process of thinning that we have exposed in
this section are, with the topological criteria outlined in the preceding sections, quite
sufficient for the understanding of most thinning algorithms found in the litterature. In
the next section we will study two particular thinning algorithms [3,7], and show how
they verify in practice our theoretical requirements.

A survey of the properties of various thinning algorithms can be found in [8].
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VII. Two examples

As an illustration of our characterization of the requirements of the thinning
process, we will describe here two thinning algorithms chosen from the litterature. The
first one is due to Hilditch [3] and is sequential, while the second one is parallel and was
found by Rosenfeld [7]. We will analyse them and show that they satisfy the respective
topological deletability conditions that we gave in Sections 4 and 5 for sequential and
parallel algorithms, and also the geometrical requirement forbidding the deletion of
end-pixels (see Section 6).

Hilditch’s algorithm [3]

This algorithms assumes the 8-adjacency for the figure (and the 4-adjacency for
the background). It produces thus an 8-connected skeleton (see [8]). Let us describe
here the deletion criterion applied during each deletion stage.

We start with the original figure F'. The algorithm allows us to reserve a subset
U of F' whose pixzels cannot be deleted during any deletion stage. For example we
can choose for U a significant portion of the discrete distance skeleton (see Section 6).
Suppose that at the beginning of a deletion stage we have a partially thinned figure 7.
We scan successively the pixels of 7, but as we will see, only those in the 4-border of
T can be candidates for deletion. Suppose that we are on pixel p and that since the
beginning of that deletion stage we have obtained a subset D of T' consisting of pixels to
be deleted during this deletion stage. Then the pixel p is to be deleted from T, in other
words p must be added to D if and only if it satisfies all the following 6 conditions:

(1°) p lies in the 4-border of T, i.e., p is 4-adjacent to a pixel of G\T.
(2°) p does not belong to U.

(3°) p has at least two 8-neighbours in T.

(4°) p has at least one 8-neighbour in T\D.

(5°) p is 8-deletable from T'. (This can be seen from Ng(p) () T).

(6°) For every pixel ¢ € D[ Ns(p), p is 8-deletable from T\{g}. (This can be
seen from Ns(p) (1 (T\{g}) )

As Hilditch noted, condition (6°) can be simplified as follows:

— First, one can assume that the scan of the image is done along some predefined
order, for example from the top row to the bottom row and from left to right on each
row; then only 4 among the eight 8-neighbours of p can belong to D, namely the pixels
numbered 6, 7, 0 and 1 in Figure 5.

— Second, conditions (3°) and (5°) ensure that if one of the neighbours of p at a
corner of Ng(p) (in other words with an odd number in Figure 5) belongs to D, then it is
not isolated in Ng(p) ﬂ T, and so its deletion from 7" does not alter the 8-connectivity
number of p. Thus condition (6°) must only be tested with g € Ny(p).

Thus by combining these two simplifications, it follows that condition (6°) must
be tested only for two pixels in Ng(p).
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We will now study the properties of this algorithm. In particular, we will show
why this algorithm is topologically valid; note that from Section 4 it is clear that for
this purpose we have only to show that if p satisfies the conditions (1°) to (6°), then p
is 8-deletable from T\D.

Suppose that during the deletion stage, the set D is successively built with the
pixels p1, ..., pn; in other words each p; satisfies the conditions (1°) to (6°) with the set
D; = {p; | 7 < i} in the place of D. Let D = {p1, ...,pa}. Condition (5°) implies
that each p; € D is 8-deletable from T. We claim now that each pair {p;, p; } (i # j) is
also 8-deletable from 7'. Indeed, if p; and p,; are not 8-adjacent, then this follows from
Rosenfeld’s criterion for deletability (see Section 4), while if they are 8-adjacent, this
follows from condition (6°) applied to DPmaz(i.g)-

Now we can show that D contains no minimal non-8-deletable subset. Indeed,
by Theorem 13 and by what we have said in the preceding paragraph, we have only to
show that D does not contain a triangle or square X forming an 8-connected component
of T. Now if p; is the element of X having the largest index i, then X C Dy |J {p:}
and condition (4°) implies that T\ D; intersects Ns(p:). Thus X is 8-adjacent to T\ X
and so X is not an 8connected component of 7'

Thus D is perfectly 8-deletable from 7', a situation which is analogous to the one
in parallel algorithms, where one obtains a set D of pixels to be deleted, and D or any
of its subsets is deletable.

This property of Hilditch’s algorithm limits the dependence of the result of a
deletion stage on the order in which the pixels are scanned; this dependence constitutes
one of the main defects of most sequential algorithms, because a pixel which might be
deleted in some scanning order might not in another order. It is therefore an important
quality in the appraisal of this algorithm.

Now that we have analyzed the deletability properties of Hilditch's algorithm,
justifying its topological validity, we will consider its efficiency, particularly in regards
of the preservation of geometrical features.

It is clear that conditions (1°), (4°), (5°) and (6°) deal with the preservation
of connectivity, and we used them in our analysis of the topological validity of the
algorithm. Now condition (3°) is the classical condition used to prevent the deletion of
end-pixels in the case where the 8-adjacency is chosen for the figure (see (..) in Section
6).

Moreover, condition (2°), which is optional, allows for the preservation of a set
chosen in advance, for example a portion of the discrete distance skeleton. Thus the
algorithm garantees the preservation of geometrical features. As was noted in [8], the
result of the algorithm is a perfect 8-curve, in other words at the end of the thinning
process, no further pixels must be deleted. (In several algorithms, the resulting skeleton
contains 4-connected portions, which can be further thinned into 8-connected portions;
for example one finds often an unnecessary pixel 4-adjacent to two 8-adjacent pixels,
see Figure 23).

Hilditch’s algorithm could be adapted to the 4-adjacency instead of the 8-adjacency.
Then the whole of our argument on topological requirements would still be valid if we
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replaced 8 by 4, but condition (8°) would have to be changed, because the geometrical
condition preventing the deletion of end-pixels takes another form in the 4-connected
case. One can for example (see (47) in Section 6) suggest the following condition instead of

(3°):
(83%) The 4-connected components of Ns(p) (| T which are 4-ad jacent to p contain
together at least 3 pixels.

Rosenfeld's algorithm [7]

Rosenfeld’s paper [7] deals with the characterization of a particular type of
parallel thinning algorithms, those based on a decomposition of the deletion stage into 4
deletion stages of north, west, south and east pixels respectively (see Section 6). While
our characterization of parrallel thinning algorithms deals only with their topological
requirements, Rosenfeld’s characterization of that particular case considers not only
topological conditions, but also geometrical ones. It gives a very simple general form
for such a type of parrallel algorithms.

As Hilditch’s algorithm, Rosenfeld’s general form of parrallel algorithms assumes
the 8-adjacency on the figure. We will deal with the 4-connected case later.

Consider a parallel deletion stage applied to north pixels in a figure 7', which
deletes all north pixels of 7' whose 8-neighbourhood in T' form certain configurations.
We require two things:

(1°) That this deletion does not alter the topological structure of T'. (Topological
requirement).

(2°) That if T is a simple 8-path , then no pixel of T is deleted. (Geometrical
requirement).

(Note: A simple k-path is a simple closed k-path in the sense of [4,8] or a simple
open k-path in the sense of Section 6; in other words, it is an 8-path (pi, ..., pn) such
that p; € Ng(p;) if and only if | i — j |= 1 or {7, 7} = {1, n} if that path is closed)

Rosenfeld showed that (1°) and (2°) are equivalent to the following: For every
pixel p satisfying the deletion condition of that deletion stage,

(a) p is 8-deletable, and
(b) p has at least two 8-neighbours in T.

With Theorem 13, Rosenfeld’s result is easy to prove. We first show that
conditions (a) and (b) are necessary. It is obvious that condition (a) is necessary for
(1°). Now condition () is necessary for (2°). Indeed, suppose that a pixel having only
one 8-neighbour in 7' along some direction can be deleted. Take thus a simple path
having one end-pixel whose sole neighbour in that path stands in that direction; then
that pixel can be removed from that path, and (2°) is contradicted.(This argument is
illustrated in Figure 24).

Now we will prove that (a) and (b) are sufficient. It is clear that (b) garantees (2°).
Now we must prove (1°). For this purpose, we must only prove that with (a) and (b), the
set of north pixels which are deleted does not contain a minimal non-8-deletable subset.
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We know by Theorem 13 that such a set must be a pair of 8-adjacent 8-deletable north
pixels or a triangle or a square. But it is easily seen that in a triangle or a square,
at least one pixel is not a north pixel, and so it cannot belong to the set of deleted
pixels. Thus it must be a pair {p, ¢} of 8-adjacent 8-deletable pixels. Up to a symmetry,
the configuration formed by Ns(p) | Ns(g) is one of the two configurations shown in
Figure 25. We have only to show that in each of the two configurations, p has the same
8 connectivity number (4/) in 7' as in T'\{q}.

Consider first the case where p and ¢ are 4-adjacent (Figure 25.a). Let z and y
be the respective values (0 or 1) taken by the two respective south neighbours of p and
g. By (b), p has an 8-neighbour r £ ¢ in T". By (a), r and ¢ are in the same 8-connected
component of T'[] Ng(p). It follows then that we must have z =1 or y = 1, in other
words -y = 0. The portion of the 8-connectivity number of p in which the value v(g)
(0 or 1) of g intervenes is:

T—Z-7-v(q)+v(g)—v(g)-0-0=F—0-v(q)+ v(g) — v(g) 1 =T,
and so the connectivity number of p is independent of the value v(g) of ¢.

Consider now the case where p and g are diagonally adjacent (Figure 25.b). Let
z be the value (0 or 1) taken by the south neighbour of p. Here () and (a) imply that
2z = 1. The portion of the 8-connectivity number of p in which v(g) intervenes is:

7—7F-9(g)-0=0—0-9(g)-1=0,

and so the connectivity number of p is again independent of the value v(g) of g.

Thus, as p is 8-deletable from 7', it is also 8-deletable from T'\{¢}, and so {p, ¢}
cannot be a minimal non-8-deletable subset of T'. Thus (1°) must hold. il

The reader will note that the deletion criterion (a, b) is a very simple one, and
this makes Rosenfeld’s algorithm attractive.

If one chooses the 4-adjacency for the figure, then condition () becomes:

(¢') The 4-connected components of Ns(p) () T which are 4-adjacent to p contain
together at least 3 pixels.

This change is the same as from condition (3°) to (3*) in Hilditch’s algorithm.
Then our proof of the equivalence between the two sets of 2 conditions remains the
same, with the following changes:

— In Figure 25.a, we must have z = y = 1, and the portion of the 4-connectivity
number of p in which v(g) intervenes becomes:

g—z-y-v(g)+v(g)—v(g)-0-0=1—1v(g) +v(g) —0=1,

which is independent of v(g).

— In Figure 25.b, z can take any value, and the portion of the 4-connectivity
number of p in which v(g) intervenes becomes:

z2—z-v(g) 0=2—0=2z,
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which is again independent of v(g).

VIII. Conclusion

In this report, we have studied in detail the topological aspects of the thinning
process, and touched briefly upon its geometrical aspects. As shows our analysis of
two examples of thinning algorithms in Section 7, namely Hildtch’s [3] and Rosenfeld’s
[7], our results allow us to verify the validity of the various algorithms existing in the
literature and to understand their features.

We recall that, starting with topological requirements of thinning, we arrived in
Section 2 at the concepts of k-deletable and strongly k-deletable subsets of a figure
F'. We explained why the portion of F' which is deleted during the thinning process
should be strongly k-deletable from it. In Section 3 we showed that a subset K of F is
strongly k-deletable from it if and only if it can be deleted by a succession of deletion
of k-deletable pixels. In particular, it follows that the deletion of a strongly k-deletable
subset does not change the topological structure of the figure. A major consequence of
this result is that the classical method used for thinning, the succession of deletions of
individual pixels, is theoretically justified.

The deletability condition for a single pixel and its numerical expression is well-
known, we recall it in Section 4. This criterion allows us to check the topological
validity of sequential thinning algorithms. On the other hand, the topological validity
of parallel algorithms require a stronger criterion, namely that the pizels which are
deleted during one pass form a deletable set whose subsets are all deletable. This type
of sets is characterized in Section 5. Thus we are able to state whether a given thinning
algorithm, sequential or parallel, preserves the topological structure of the figure or not.

We can thus conclude that with our results, the topological features of the usual
form of thinning algorithms, that is a succession of deletion stages consisting each in
a parallel or sequential combination of deletions of individual pixels, are completely
known.

We think that an important challenge for further researches on the subject of
thinning would be to characterize in a rigorous manner the geometrical requirements of
that process and their relations with the topological ones, a problem which was briefly
considered in Section 6. In particular, one can ask if these requirements can be expressed
in another form than “no end-pixel deletion” or “no deletion of a pixel of the discrete
distance-skeleton”.

Acknowledgement: The author wishes to thank P. A. Devijver for his suggestions
and criticism of the manuscript.

— 96 —



[1]

[3]
[4]

[5]
l6]

[7l
[8]
[9]

[10]

References

H. BLUM: “A transformation for extracting new descriptors of shape”,Symp.
on models for the perception of speech and visual form, MIT Press, Cambridge,
Mass., pp. 362-380, 1967.

E.R. DAVIES, A.P.N. PLUMMER: “Thinning algorithms: a critique and
new methodology”, Pattern Recognition, Vol. 14, pp. 53-63, 1981.

C.J. HILDITCH: “Linear skeletons from square cupboards”, Machine Intel-
ligence, Vol. 4, B. Meltzer &D. Michie eds, pp. 403-420, 1969.

C. RONSE: “Digital processing of binary images on a square grid, I: Elementary
topology and geometry”, Report R454, PRLB, June 1981.

C. RONSE: “Addendum to R456”, Report R456, PRLB, September 1981.

A. ROSENFELD: “Connectivity in digital pictures”, J. ACM, Vol. 17, N°
1, pp. 146-160, January 1970.

A. ROSENFELD: “A characterization of parallel thinning algorithms”,
Information and Control 29, pp. 286-291, 1975.

H. TAMURA: “A comparison of line thinning algorithms from digital geometry
viewpoint”, Proceedings 6th 1.J.C.P.R., pp.715-719, 1978.

S. YOKOI, J. TORIWAKI, T. FUKUMURA: “Topological properties in
digitized binary pictures”, Systems, Computers, Controls, Vol. 4, N° 6,
pp. 32-39,1973.

S. YOKOI, J. TORIWAKI, T. FUKUMURA: “An analysis of topologi-
cal properties of digitized binary pictures using local features”, Computer
Graphics and Image Processing, Vol. 4, pp.63-73, 1975.

_ o7 —



a)

b)

g}

P QE (k=4)
F-

S (k=4 or 8)

FIG. 1



8 -deletable but
not &4- deletable,

L - deletable but
not 8 -deletable.

both 4- and 8- deletable

FIG. 2



p it TP
¥ 17
NC,(T,p) = 2 NC, (T,p) =1
NCg (T,p)=1 NCg (T,p)=2
T e B B )
F 17y p | T
.
NC,(T,p)=2 NC,(T,p) =1
NGy (T,p) =2 NGy (T,p)=1

FI1G. 3



case (a):

case (b):

1

UH7 % 7] %
A, A W
/Af/,"//ﬂ 24 .
Y% * ) %
k=4 k=8
* ¥
7// 7/
X 2
* *
k = 4 k = 8

in F

in B

don't care (in F or B)

FIG. &4



FIG. 6

Two (8,F) sets.



q,19, |93
Qi2| P1194 (G5
Q11| P2 [P3]96
Q4|99 [9s | 99
FIG. 7
11119 01 (9
0 |P3|9 0 | P39
Q995 19, Qg (959
EN ) FN D, P}
FIG.8
q12 1 0 chz 0 0
(@) |qQy[P2] 1 (b) {Gyy|P2| O
Q10| 99| 9s Q10| 99 | 98
P F\ {p,,P;}

FIG. 9



9:192(93 .
(a) 4,21 Py 0
Q{0 |1
FX iDal
& FIG. 10
01110
0|P2] 1
Qo 0| O
FIG.12
q,{92(9;
(a) {Qy| P11
Qnul 110

FIG. 13

Qs

Qe

Qg

Qs

95

F\ {p,}

(b)

FIG. 11

g,

d,

.

P

Q4

Ps

Q10

Qg

q,

s,

Py

Q4




q,[q,[a,
FIG. 14 Gz P4 O
Q[ 0|1
FN\{p,,p.}
p p
q q q
q
FIG. 15
) Wiaha Wiz oz
D C % o
inC inC -deletable

FIG. 16 Example with x=4



.

T N

Fla. 17




(3)

: |
]
el |
[ Hg ]
X :
LR
[ |
| )
l e
I - i
| e -
| | | I
! I : I
| ! "
r | e I
| | 1 |

FIG. 18

B : end-pixel
FIG. 19

af FIG. 20




FIG. 21

* % ¥ ¥ % ¥ % %
* ) % A % % ) %
¥ % % ¥ ¥ % % *
north west south
pixel pixel pixel
* Q. 22

\‘unnecessary pixel

FIG. 23

X

X X X

N
*\*
X

east
pixel




N\

X can be deleted

010
qQ P
y | X

(a)

—

FIG. 24

FIG. 25

(b)




