Philips Research Laboratory Brussels
Av. E, Van Becelaere 2, Box 8
B-1170 Brussels, Belgium

Report R.482

BLOOD VESSEL DETECTION
THROUGH RIDGE SKELETONIZATION

Christian Ronse

December 1084

Abstract: This report describes the work done in PRLB towards blood vessel detection
and enhancement in digital subtraction angiography.

We work with digitized X-ray images and we assume that the blood vessel patterns
correspond to ridges in the grey level of these images. We describe 3 algorithms for the
detection and enhancement of ridges:

— The first one builds the skeleton of the ridges of the image,
— The second one filters noisy portions of that skeleton.

— The third one builds an enhanced representation of the ridges of the original image
by subtracting the background grey level from the ridge grey level in the neighbor-
hood of the skeleton.

Technical details, including computer programs, will be dealt with in a Technical
Note.

I. Introduction

In recent years the field of blood vessel diagnostic has seen the development of a
method called Digital Subtraction Angiography (in brief, DSA) which produces enhanced
images of blood vessels. It consists in taking two X-ray images of the portion of the
patient body under analysis, where the second exposure is preceded by the injection of
a contrast-enhancing medium in the blood system; then a subtraction of the two images
should yield an image representing the blood vessels.

This method involves two problems: the need of a high dosage of the contrast-
enhancing product and the patient motion between the two exposures (which leads to
errors in the blood vessel detection).

A new direction for DSA is to make only one X-ray exposure (the post-injection
one), and to compute from it the pre-injection mask with the use of pattern recognition
methods. When the contrast is high enough, this is possible by a digital enhancement
of blood vessel-shaped patterns. Although several methods exist for this purpose, the
CT team at PFH has developed a new one called pseudomask, which is a nonlinear
processing of the median-filter type. Early work on this field has been reported in [2]
(see particularly the Section 2.2 in it); the present state of the technique can be found
in [1], where the efficiency of the pseudomask is compared to that of other methods.

Let us describe it briefly. We assume that the grey level of blood vessels is higher
than that of the background. Given an input image I, one computes from it a background
mask I’ by replacing in it the grey level of each pixel p by a low rank (for example the
minimum) grey level in a given window W (p) around that pixel. A simple choice for
W (p) is described in [1]. For every pixel p, I'(p) represents then an approximation of the
background grey level in the vicinity of p. Applying a smoothing operator to I' one gets
the pseudomask image I'". Then the blood vessel features of I, forming ridges in it, will
be erased from I"; thus one gets an image of the blood vessels by taking I — I" (where
the — represents the pixelwise grey level subtraction between the two images).

This method is very easy, but it can have some defects. For example, the pseu-
domask subtraction I — I" produces noisy ridges at places where there is a ramp in the
grey level in 7. The simplest solution to this defect is to require that for a pixel p, the
low rank grey level I'(p) must be attained on both sides of p inside the window W (p).

Some other refinements of this method have been envisaged:
(1) One can restrict the pseudomask to blood vessel locations.

(2) The width and orientation of the window W (p) can be made adaptive in function
of an approximation of the actual width and orientation of the vessel at p.

(3) Different variants of the pseudomask can be applied in succession.

We have made some work on the refinements (1) and (2), and the purpose of this

1

report is to describe our methods and results. A brief summary of our work can also be
found in Section III of [1]. Basically, we have designed and tested three algorithms (ridge
skeletonization, skeleton filtering, skeleton-controlled pseudomask). Let us explain here
how they can be related to (1) and (2):

In order to implement (1), one must produce a set of pixels corresponding to the
location of blood vessels. This set is called the skeleton. Now (2) requires that one as-
sociates to each skeleton pixel p a width and an orientation for the window W (p). They
will be called the local width and the local orientation of the pixel p. The determina-
tion of these features is the purpose of the first algorithm that we have designed and
implemented. Assuming that the grey level of blood vessels is higher than that of the
background, blood vessels will form ridge patterns in the image. Our algorithm pro-
duces the skeleton of the ridges in the image and associates to each skeleton pixel a local
approximative width (2, 4, 8, ...) and a local approximative orientation (N, NW, ...).

As the skeleton is produced by local methods, it contains portions which are too
short in comparison to their width. We have thus designed and tested a second algorithm,
which filters the skeleton in order to eliminate such noisy portions.

Finally a third algorithm implements a variant of the pseudomask to the original
image, restricting it to the pixels of the the filtered skeleton and using the associated local
width and orientation in order to determine the size and orientation of the pseudomask

windows.

To these three algorithms correspond the Chapters II, III and IV of this report.
Let us describe them with more details:

Ridge skeletonization

According to whether blood vessels have higher or lower grey levels than the back-
ground, they correspond to ridge or valley patterns respectively. We will assume that
their grey levels are higher, and so restrict ourselves to ridges. The skeleton of such a
pattern consists in a union of digital lines locating all center points of these ridges. To
each skeleton pixel one associates a local width and orientation. We will give only a
very rough estimation of these two parameters: the local width will be approximated by
a power of 2 and the local orientation by one of the 4 basic orientations modulo 180°
forming with the horizontal an angle multiple of 45°, as shown in Figure 1.

There are three reasons for such a rough approximation. First, this skeleton and
these two local parameters will be used mainly for the control of the pseudomask operator,
and so they do not need to be precise: the details will be obtained by the pseudomask.
Second, in many cases it is difficult to locate a detected feature accurately, and the edges
of a ridge-shaped pattern may be fuzzy. Third, this approximation simplifies the ridge
detection algorithm and the control of the pseudomask.

The skeleton and the associated local widths and orientations will be found by

2

\l
1 2 3

Figure 1. The 4 basic orientations modulo 180°.

convolving the input image with various windows corresponding to all orientations and
sizes, and then using the resulting values to select, through a succession of eliminations
of candidate skeleton pixels by local criteria, the appropriate skeleton pixels and their
local width and orientation.

Skeleton filtering

Having found the skeleton of the ridges by local methods, there still remains the
problem that certain pixels, while satisfying local properties of ridge points, actually do
not fit in globally recognizable ridge-shaped patterns. Indeed, local criteria are unsuffi-
cient for the definition of such a pattern.

We have made some steps toward more global methods with a skeleton filtering
algorithm which combines a local and regional analysis for the selection of skeleton pixels
corresponding to actual ridge points.

Skeleton-controlled pseudomask

When the filtered skeleton is at hand, together with the local widths and orien-
tations, one can perform on the original image a pseudomask operation restricted to
the neighborhood of the filtered skeleton. One obtains thus a pseudomask image to be
subtracted from the original one in order to obtain the blood vessels. This pseudomask
image is built iteratively; one associates to every skeleton pixel p a window W (p) forming
a line segment centered on it, whose length is equal to twice the local width on p and
whose orientation is perpendicular to the local orientation on p; then he changes the
grey level values of the pixels of W (p) in the pseudomask image according to certain
rules. At places where the skeleton ends or where there is a change in the local width or
orientation, discontinuities appear in the set of pseudomask windows W (p), and so one
must associate pseudomask windows of decreasing size to some pixels neighboring the
skeleton in order to ensure a smooth transition in the pseudomask image.

The contrast in the resulting subtraction image showing blood vessels can be en-

3

hanced by maximizing the dynamic range, either linearly or rather proportionally to the
square root (in order to improve low grey levels).

Efficiency of the algorithms

Let us discuss briefly the efficiency, quality and speed of our algorithms. Exper-
iments show that most image features which do not correspond to blood vessels are
eliminated from the pseudomask subtraction image. In particular, the defect mentioned
for the uncontrolled pseudomask, i.e., that grey level ramps in the input produce ridges
in the output, does not appear here. Moreover, the noise level in the resulting images is
relatively low. Image features which do not correspond to blood vessels but nevertheless
appear in the output of the pseudomask subtraction image, form generally fuzzy elon-
gated shapes, which can clearly be dismissed by the human observer. Such features can
be eliminated only if we take into consideration other properties of blood vessels patterns
than merely their ridge shape.

One should however note that the first two algorithms (the skeleton construction
and the skeleton filtering) start with a candidate skeleton consisting of all image pixels,
and operate by successive eliminations of pixels which seemingly do not correspond to
ridge locations. Thus it should come as no wonder that such a method, working by the
application of a succession of restrictions on the set of possible skeleton pixels, without
any possibility of recovering skeleton parts in function of the global context, can in certain
cases eliminate some real blood vessel portions. Indeed, it happens that at some places,
a part of a blood vessel does not satisfy with enough strenght the local properties of a
ridge pattern, while it still can be recognized by the human observer thanks to the global
context. This is for example the case with a portion of a vessel which becomes fuzzy
or at the crossing of two or more vessels, which our skeleton construction and filtering
algorithms tend to reject as “too noisy”.

Thus some improvement to our work can be made in the direction of the restoration
of missing blood vessel portions in function of the global context. For example, one can
relax some of the restrictions imposed on candidate skeleton pixels in our skeletonization
algorithm. In their present form, our algorithms are more suitable for situations where
low noise is more important than complete recovery of small blood vessel portions, but
one might modify them in order to meet other requirements (see [1] for a more detailed
discussion on the use of distinct variants of the pseudomask according to distinct pur-

poses).

Our algorithms have been implemented in PASCAL on a VAX 11/780 computer
running under VMS and tested on 256 x 256 images having 256 grey levels. Due to
memory limitation, we have implemented the three algorithms separately (leading to
a duplication of some of the calculations, for example the averaging of grey levels on
windows of increasing size). We chose as widths the values 2 for k = 1,2,3,4. It

4

takes then approximatively 10 minutes to process an image, the largest part of this time
being taken by the skeletonization algorithm. (It is however possible to have a faster
implementation with a more sophisticated handling of data; however this is not our goal:
our programs should only illustrate our methods, and we believe that the underlying
ideas would be hidden by the introduction of more complicated data structures).

The first two algorithms (skeleton construction and filtering) are absolutely parallel.
This is not completely true for the third one, because a pixel ¢ can belong to several
pseudomask windows W (p), but only the lowest resulting grey level on ¢ is selected. In
particular the result of the pseudomask is independent of the scan order on the image.

It is thus possible to devise a fast hardware implementation for our three algo-
rithms, using parallelism on a wide scale. However this would require a very large
memory, of size proportional to: (the number of pixels) x (the logarithm of the number
of grey levels) X (the number of width levels).

Organization

The following three chapters of this report are devoted to each of the three algo-
rithms (skeletonization, skeleton filtering, skeleton-controlled pseudomask). We have left
out all technical details in order to keep our work concise. They will be dealt with in a
technical note which will be referred to by [TN] in the text. The PASCAL programs will
be reproduced and explained in it.

Last but not least, we show some sample data in the Appendix.

II. Ridge detection by windowing

We recall our two assumptions made in the introduction, that the grey level in-
creases from dark to light, and that blood vessels are lighter than the background. Thus
they correspond to ridges in the image. (They would correspond to valleys if they were
darker than the background, but this situation would be equivalent to the former one up

to a grey level reversal).

We will thus consider the detection of ridges in the input image. This will be done
by convolving that image with windows of various sizes and orientations, representing an
approximation of the local shape of ridges having certain local widths and orientations.
The resulting convolution images represent the likelihood functions of the match of the
input image with ridge templates corresponding to these sizes and orientations. The
selection of the skeleton pixels and their actual local width and orientation will be done
by local comparisons between the values of these likelihood functions. More precisely,
we will subject all possible candidate skeleton pixels and their possible local widths and
orientations to four tests which will reject pixels outside the skeleton or wrong local

orientations or sizes.

II.1. Some local features of blood vessel patterns

Let us define the concept of a ridge with some precision. We recall that an edge is
a line separating two relatively homogeneous regions having significantly different grey
levels or textures. A ridge is a thin and elongated portion of an image enclosed by two
regions having significantly lower grey levels. It is delineated by its edges with the two
regions.

To an edge point we can associate two local orientations (modulo 360°): the tangent
orientation (the one of the tangent on this point leaving the higher grey level on the left)
and the gradient orientation (the one along which the grey level increases). We illustrate
them on Figure 2. Clearly the gradient orientation forms a square angle counterclockwise
with the tangent orientation.

i t.o.

Figure 2. The tangent orientation (t.0.) and gradient orientation (g.o.).

For a ridge, the skeleton is the set of points equidistant from both edges. To each

6

skeleton point we can associate a local width and two local orientations modulo 180°:
the stream orientation and gradient orientation. The stream orientation is equal to the
average modulo 180° of the gradient orientations of the two edges, while the gradient
orientation of the ridge is equal to the average modulo 180° of the tangent orientations
of the two edges. We illustrate these two concepts in Figure 3.

t.o.

Figure 3. The local stream orientation and gradient orientation.

Of course, these features can be defined with precision only in a real-plane image
having sharp edges. In the case of digital images, one can only have approximations.
Moreover, the Euclidean distance is not suited for square grids, and we have to choose
between two types of distances, the 4- or 8-distance, for the evaluation of the local width.

However these facts do not constitute a real problem, because we need only very
rough approximations of the skeleton and of the associated local widths and orientations,
since the precise details can be recovered by the skeleton-controlled pseudomask.

II.2. Windows, their sizes and orientations

Assuming that the grid has M rows, numbered 0,..., M — 1 from top to bottom,
and N columns, numbered 0,..., N —1 from left to right, the pixel at intersection of row

i and column j will be labelled (i, j).

We will sample the orientations (modulo 360°) into the 8 fundamental directions
corresponding to the 8 neighbours of a pixel in the square grid. We label them with
geographical abbreviations: N, NW, etc. (see Figure 4).

A usual method in feature extraction is to match a simple template with the input
picture, in other words to convolve that picture with a window and to search for “good”
values in the convolved picture. For example, Sobel’s edge-detection operator uses 8 an-
tisymmetric windows corresponding to the 8 fundamental directions; we show in Figure 6
the two windows corresponding to the gradient orientations N and NW respectively.

As explained in [3] in the case of edge detection, a large feature needs a large
window in order to be detected. This is especially true for ridges: a skeleton pixel will

7

NW N NE

A

W = > E
Y

SW S SE

Figure 4. The 8 fundamental directions.

-1 1-2 | -1 1400 e

Figure 5. Sobel’s N and NW windows.

not be detected unless the window centered on it is larger than the local width and so
overlaps both edges.

Thus, given a basic window, one replaces in it every pixel by an averaging subwin-
dow, and multiplies the weight of every pixel in an averaging subwindow by the weight
of the corresponding pixel in the original window. We show in Figure 6 what Sobel’s
N-window becomes with a homogeneous subwindow.

More formally, suppose that we have the basic xy X z;-window X associating to
the pixel (i,7) (where 0 < i < 29 and 0 < j < 2;) the value X(4, j), and an averaging
Yo X y1-subwindow V¥ with values Y (u,v) (where 0 < u < yo and 0 < v < y;); then we
build the compound window X ® Y as a & - yo X @1 - y1-window defined by:

X®Y(iyo + u,jyn +v) =X(i,7) - Y(u,v)

1
for 0<i<a, 0<j<2,0fu<y and 0< v <y. (1)

We illustrate this operation in Figure 7. Note that in the averaging window Y one often

has ﬁ":_ol 31:_01 V(u,v) = 1. In this case one says that the averaging window Y is
normalized.

In [3] the averaging subwindows have size 2%, We will also take the size 2%, but

8

EESs aF R
AR TE S 2R RE
RS 1
% % 2 2 -1; [
0|l 0Lt B0 0
DO reiI®e Q|0
REEE - Y 3R
& | &8 = IR | &
BT = a2 gRERED
b | &1 3 08 L | &
Figure 6.
Xo00 | X071 Yoo | Yot XooYoo| X00Yo1| ¥01Yoo| X01Yo1
X10 | X114 Y10 Y11 X00Y10 | X00 Y11 | X01 Y10| X01Y11
X ¥ X10Y00|*10 Yo1|X11 Yoo | X11 Yo
X10 Y10 %10 Y11 | %11 Y10 | X11 Y11
X®Y
Figure 7.

we will restrict the range of k& between two integers kmin and kmaz, where 1 < kmin <
kmaz < 5. In our programs, we have taken kmin = 1 and kmazx = 4.

Given the input image I and a window Y, write I A Y for the convolution of I by
Y. It is well-defined only up to a translation, because it depends upon the positioning
of the window around each pixel. Generally one centers the window around that pixel;
this is possible if ¥ has odd size. Indeed, if ¥ is (2m + 1) X (2n + 1), then we get:
2m 2n
(IAY)(i,5) =D D I(i—-m+u,j—n+v)-Y(u0).
u_ﬂs v=0 . (2)
= E z Ii+r,j+s8) - Y(r+m,s+n).
Ff==m s=—n
When the window has even size (and this happens with windows built from (1)
with averaging subwindows of size 2%, k > 1), one can decenter the window by 1/2 pixel

9

in both directions in order to superpose the window pixels on the image pixels. This is
done in [3], and if ¥ is 2m X 2n we obtain the following instead of (2):

(TAY)(i,5) = i Z_: Ii—m+u,j—n+v) Y(uv).
#=0 v=0 (3)

m—1 n-—1

= Z Z Ii+rj+8)-Y(r+m,s+n).
fr=—ms=—n

However we will not proceed in this way, but we will keep our windows absolutely
centered. Thus in the even size case each pixel of the window will intersect several pixels
of the image; but then the convolution will be computed in a similar way as in the case of
functions defined on the real plane: the weight of a window pixel accounts as a coefficient
of the grey level of an image pixel proportionally to the area of their intersection. We
show the working of centered windowing on Figure 8.

MR IR A +— 4+ —+ -+
| " : |
F— TR R A " O (e S i
| ® | | —o—i I ° °
L—d +++++4++ P R s
image | : [
pixel ==t L B A
2X2-window 2Xx3-window 3x3-window

Figure 8. Centered windowing.

Although centered windowing seems computationally more complex than uncen-
tered one, it won't be in practice because all our windows will be computed iteratively
starting from small windows, and it is always easy to replace a small even-sized win-
dow by an odd-sized window giving the same result in centered windowing, as shown in
Figure 9.

Now let us give the two types of averaging subwindows that we will use. Normally
the sum of the weights of all pixels of such a window must be 1, and so these weights have
fractional values. However computations are generally easier with integers, and so we will
give unnormalized averaging subwindows together with a normalizing coefficient (equal
to the sum of all pixel weights in the subwindow); then the result of the convolution with
the unnormalized window must be divided by that coefficient.

We consider first the (unnormalized) homogeneous averaging 2% x 2% -subwindows
Hj, (with k& > 0), where all pixels have the same weight pw (pixel weight). We take then
the normalizing coefficient hey, (homogeneous window goefﬁcient) which is defined by:

hey = 4% - puw. (4)

10

F—+ -+ -+
[: : | 1 o
L | &4 ++++++ +
(a) — | —— | =» | 21 &K1 2
b | & +++++ T+ +
| t ’ | 1 2 1
+ -+ -+-+
+ -+ -+ -+
I } } I 1 ? 1
L | & ++++++ +
(b) [: } | 010 @
-L -4 +++++ 1+
| : | | g 12 |4
$ =4 =4 =+

Figure 9. Equivalence of windows for centered windowing.

From Figure 9.a, where we show the transformation of H; in a suitable 3 X 3-window, it
is clear that we must take:

heo = pw = 4. (5)
It is easily seen that Hy is equivalent to a (2% + 1) x (2 + 1)-window with respective
weights 1 at corners, 2 along the edges and 4 in the interior. As noted in [3] (but
for uncentered windowing), the convolution of the input image I by Hj, can be easily
computed by iteration on k, because for k£ > 2 we have:

1 1
(IAH)(,5) =)D (I AHeoa)i+ (-1)% - 2572, + (-1)° - 2572). (6)

a=0 b=0

The coefficients hey can also be computed iteratively, since we have for k& > 1:

hck =4- hck_l. (7)

Although the homogeneous subwindows Hj, are the easiest ones to compute, it is
preferrable to have unhomogeneous averaging subwindows in which pixels near the center
have the highest weights and those near the border have comparatively very low weights.
Indeed, when one builds large windows with averaging subwindows by (1), he should have
a relatively smooth transition of the weights between the subwindows corresponding to
the pixels of the basic window having different weights, or between the window and its
surrounding. Further arguments against homogeneous subwindows can be found in [TN],
for example in the discussion of “non-maxima suppression”.

Now these subwindows should be easy to compute using some form of iteration.
We have chosen as solution the pyramidal averaging 2* x 2* subwindows Py (k > 1), to
which we associate the normalizing coefficient pcy.

11

The window Pj is built by adding centered copies of Hy,...,Hi_; to Hx. Thus

we have:
k

(I AP, 5) = D (I A HL)(i,4), (8)

4=0
and so by (4)
4+l —q

k k
per = Ehcu = (Z 4'“) W= pu. (9)
4=0 ©=0

Clearly I A P, and pe; can be computed iteratively, using I A Pr_y, I A Hy, and pep—y
(using (4,7,9)):
IANP, =IAP._y+1AH;, (10)

and
per = pex—1+ heg =4 - peg—y + pw. (11)

Now that the averaging subwindows are at hand, let us give the basic windows for
ridge detection. Their number is 8, since each one of them corresponds to one of the
fundamental directions (see Figure 4). We show the N and NW windows in Figure 10;
the other six ones can be found by rotating them by 90°, 180° and 270° respectively.
The justification for our choice of windows can be found in [TN].

w] =3 P} § =2)
1 |-8 |1 s P41
S &8 I8 B
N window NW window

Figure 10.

These windows detect one side of a ridge of width 1. When two windows corre-
sponding to two opposite orientations (modulo 360°) give “good” positive results in the
convolution, then we have a ridge whose gradient orientation (modulo 180°) corresponds

to that pair of orientations.

They correspond to the level 0 and they will be labelled V¥, V¥, etc. (where
V stands for vessel). Then for k& > 1 we can build the corresponding level k& windows
VN, VW etc., using the pyramidal averaging subwindows: V¥ = V¥ @ P, VW =

VY ® Py, cte.

These windows must be normalized, because the convolution with the image should

give the ridge height at each point. The 8 windows V)Y, VNW ete. have the same
normalizing coefficient (see [TN]), which is
veg = 4, (12)

12

and for VIV, VW etc., we have the normalizing coefficient

Ve, = Ve * Pe. (13)

Given an image pixel (i, j), the likelihood of a horizontal ridge passing through it
will be measured by (I AV{V)(i,) and (I AV)(i,j) when they are both positive. If
at least one of them is less than or equal to 0, then there is no such ridge through that
pixel. This suggests the definition of the 4 likelihood functions:

Lp(4,4) = ((IAVk)) (T AVE) (G,)),
L4(i,d) = 50 ((AVE™) (), (T AVER) o))
(14)
12(i,3) = 50 (T AV)0), (T AVE) i),
L (i, 4) = ((IAVFW)H (1 AVEE)(0,9)),

where f is a “conditional averaging function” which satisfies the following requirements:

(¢) f(a,b) =0whena<O0orb<0.

(i7)
(i) f(a,b) = f(b,a).
) f(xa, Ab) = Af(a,b). for any X > 0.

We choose f(a,b) = min(a,b) for a > 0 < b and f(a,b) = 0 otherwise. Another
valid choice would be f(a,b) = v/a-b for a > 0 < b and f(a,b) = 0 otherwise, but it
would be computationally more complex. For more details see [TN].

f is continuous.

(iv

The superseripts 0, 1, 2 and 3 in (16) correspond to the 4 gradient orientations
modulo 180°: N-5, NW-SE, W-E and SW-NE respectively, and the corresponding stream
orientations are then consistent with the notation of Figure 1.

In fact, the likelihood functions will be somewhat more complicated, because we
will need further checks involving auxiliary windows.

Indeed, consider a ridge of width level & passing through some pixel ¢, and such
that the flow orientation on ¢ is turning relatively sharply from NE-SW to NW-SE. Then
a horizontal ridge for the level k will be detected on some pixels situated to the W of ¢.
We illustrate this situation in Figure 11.

Similarly, a large ridge can be detected on pixels neighboring the center of a circular
ridge.

This defect arises from the fact that the windows VkN, VkNW, etc., do not check
whether the ridge passes through the central subwindow. This will be done by 8 auxiliary
windows ALY, ANW etc.. We show the windows AY and AYY in Figure 12 (the other

13

| |
. o o s il

Figure 11. A horizontal ridge is detected on p.

i
G 1=1 | @ 0 -3 0
d
g 14 0 “ 1 0
0| €10 T
N window NW window

Figure 12.

6 ones for the level O are derived from them by rotation). From these 8 windows we
derive for each level k¥ > 1 the auxilliary windows AY, ANW etc., by replacing pixels by
pyramidal subwindows Py (see (3)).

Then the likelihood function Lg(é, j) takes the following form:
Lg(z,j) = Eg((f A VkN)(z,j), (I A V,f)(a,]), (I/\AkN)(E,j), (I A Af)[z,j)), (15)

where . .
gla,b,c,d) = {mm(ﬂa b) ifa, b, c and d are all > 0; (16)

o otherwise.

Similar forms of L}, L? and L} can be defined instead of those in (14).

With this further check introduced in the likelihood functions L, the defect de-
scribed above in Figure 11 is greatly reduced, although not completely suppressed. This
will be done by the further checks described in the next section, in particular the “com-
parison with the average noise” (see Subsection I.3.1).

We can now define the best match function B; and the local stream orientation

Oy by:

Bi(i;5) = maz{Lili,J) | #="0,+s: 3} (1)
Ok(i,7) =uw €{0,1,2,3} if Ly(s,7) = Bx(i,)

If L¥(i,§) = Br(i,§) = L(i, j) for u # v {a very unlikely occurrence), then the ridge of
level & on (7, j) must be eliminated. This is done by labelling the triple (k, 7,) as “bad”.

14

The reader will perhaps have noted that for a bounded input image I (which is
always the case in practice), it is impossible to compute the convolution of I by a window
on a point (¢, j) which is close to the border. The solution is to extend I to a larger
picture i by enclosing it in a frame of width 3 - 2¥™%2~1, Then the subwindows H; and
P, can be convolved with [on all pixels whose distance to the border of [is at least
2%=1 and the convolution with the windows of type V} and Az can thus be computed
on all pixels of I. The grey level of the new pixels of I surrounding I will be set to the
maximum grey level value, so that no spurious ridge will be detected because of these
pixels. (If we had been looking for valleys, we would have thus set the grey level to the

minimum value).

Now that we have computed for each level & = kmin,... kmaz and each pixel
(¢,4) of I the best likelihood By(i,j) and the local stream orientation Og(i,f), some
selection must be made on the triples (k,¢,j) in order to find the skeleton pixels and
their corresponding level. We have seen that (%, 7, j) is eliminated when Og(%, j) is not
uniquely defined. In the next section we will give 4 more tests for the elimination of
triples (k,1,7).

I1.3. TFour local tests for skeleton pixels

From the computations of the previous section we obtain for every level & and
nearly every pixel (¢, j) a best likelihood By(3, 7) and a local stream orientation O (i, f).
We need thus to make some selection among them. We will subject the triples (k, i, j)
to 4 local tests. Two of them (non-maxima suppression, level selection) come from [3],
a third one (comparison with the average noise) is linked to the method of [4], while the
last one (multiple ridge suppression) is to our knowledge original. For every level k&, these
4 tests operate on all pixels in parallel and independently. However the last one depends
on the result of the 4 tests for the previous levels &' < k.

All triples (k,1,) which fail any of these 4 tests will be labelled “bad”, and the
remaining ones will be labelled “good”. In two of the tests (comparison with the average
noise and multiple ridge suppression), we will make a further subdivision of “good”
triples into “fair” and “best”. The reason for this new subdivision is that in the skeleton
filtering algorithm “fair” triples will be eliminated if there are not enough “best” triples
in their neighborhood.

Let us now describe these 4 tests.

I1.3.1. Comparison with the average noise

In [4] the edge likelihood in a given orientation on a given pixel is estimated by
thresholding ¢ [o, - ok, where o2 is the grey level variance in a window W surrounding
the pixel, while ¢% and 0% are the variances in the two halves Wy and Wx of W on each
side of the supposed edge. As explained in [TN], with some further assumptions this is

15

equivalent to thresholding A% /o?, where h is the edge step, i.e. the difference in average
grey levels between Wiy, and Wx. We will apply a similar thresholding to ridges.

Here h will be the best likelihood Bj(7, j). Indeed, a ridge portion matching per-
fectly a pair of opposite windows, with constant grey levels g inside and g — h outside,
will give Bi(i,j) = h

For the variance ¢?, we will give a weighted average between the variances of the 9
subwindows inside a 3 - 2* x 3- 2*-window. We recall that for a distribution Xi,..., X,
with associated probabilities py,...,p,, one defines the mean p and the variance ¢? as:

;t==:E:pL3k;
i

0 =Y pi(Xi—p)? = (ZP:‘X?) =g
i i

In fact, when ¢? is estimated from a small number of samples, one must correct it by

(18)

some factor, getting thus the unbiased variance o2:

(Z;‘Pi)z (19)

2 _ VYV 9 '
Z,-P?

e o, wherev =

Note that ¥ = n when the probabilities p; are equal.

Given a 2F x 2F-subwindow, the respective weights of its pixels correspond to
the probabilities p;; for the sake of simplicity, we will take the homogeneous averaging

window Hy.

Let us compute the variance on the centered window Hy, around a pixel (¢, j). From
the image T (or rather [), we construct the grey level squares image J, where for each

pixel (i, j) we have:
7(i,d) = 13,3 (20)
As with I (see (6)), the convolution J A Hy can be computed iteratively. Setting
IANHg)i, §)=hi
(TAH)G) 1)
and (J A Hg)(i,j) = h,

the variance of the window Hy, is by (18):

L R
hex \he) (22)
= hcgi - (hj - hz’gjhck) .

Now the factor v of (19) is equal to the number 4% = hey, [hey of pixels of Hy, and so we

have:

v hck
= 23
v—1 he, —hey’ (23)

16

and so by (19) and (22):

v, hj—hi®[he

2 _ _ 9
=777 hey. — heg (24)

In practice the computation of h#%, whose value may attain
(4Fmeatl % maximum grey leve1)2 : (25)

may easily cause an integer overflow. One can thus replace in (24) the term hi®/hcy
by (hifrthe;)?, where rthey = (/her = 28! by (4,5). In practice, one computes the
coefficient rithey, iteratively (see (7)).

When we have computed o2 on each of the 9 subwindows around a pixel (7, j),

we make a weighted average of them, with weight proportional to those shown in the
window SA (“sigma averaging”) of Figure 13.

%)
e 1613
Y%A

Figure 13. The variance averaging window SA.

To SA corrresponds the normalizing coefficient
sac = 16. (26)
The averaged variance for level % on (i, j) will be written Xy (i,)%. It represents in some
way the average noise around pixel (i, f).

The test consists then in thresholding By (i,)/Zx (i, 7)%. From our experiments
it appears that the threshold should be set between 0.4 and 0.5. We make thus the

following decision:
— If By(#,5)/Zk(d,5)? < 2/5, then (k,4,j) is “bad”.
— I 2/5 < Bi(i, §)/Ek(i, §)? < 1/2, then (k, i, j) is “fair”.
— If 1/2 < Bi(i,§)/Zk(i, 7)?, then (k,¢,7) is “Dest”.
In the first case the triple (k,4,) must be eliminated as a skeleton pixel. The

distinction between the second and third cases will intervene in the skeleton filtering
algorithm of the next chapter.

With this test the defect described in Figure 11, which was reduced by the auxilliary
windows AJ,..., is completely eliminated.

17

I1.3.2. Non-maxima suppression

Given a ridge of width corresponding to the level k, the image representing the
likelihoods By(i, j) of all pixels (7, j) will be a blurred representation of its skeleton.

Indeed, given a pixel (7, 7) in the skeleton, the function By (u, v) will be positive for
all pixels (u, v) within a certain range (proportionnal to 2F) along the gradient orientation
on (7, 7). As the pixel (4, j) corresponds to a best match with the ridge-detecting windows,
By (#,7) should be a local maximum of the function By, along the gradient orientation on
(¢,4) (which is perpendicular to Og(%, j)).

This suggests Rosenfeld’s method of “non-maxima suppression” [3] for deblurring
the skeleton. For every pixel (¢, 7) such that Bi(7, j) > 0, let Nx(i, f) be the set of all
pixels (u,v) such that the 8-distance between (i,7) and (u,v) is not larger than g - 2F
(where p is some fixed constant) and the line joining (u, v) to (7, f) (when (u,v) # (i, §))
is parallel to the gradient orientation of (¢, f) (which, according to Figure 1, corresponds
to the number Ok (4,) + 2 modulo 4). If Bi(7,j) is not the maximum of all B (u, v) for
(u,v) € Ni(i, j), then the triple (¢,) is “bad” and must be eliminated.

As in [3], we will choose g = 1/2. We can give two arguments in favor of this

choice:

(i) Assuming that the local maximum of By, along the gradient orientation lies on the
center of the ridge, a pixel at distance 2°~! = p - 2F from it along the gradient
orientation lies generally outside that ridge and so should be eliminated by the
other checks.

(#7) One could have two parallel ridges of width level k whose skeletons lie at a distance
of approximately 2¥ one from another. Thus by taking p = 1, pixels of one skeleton
could be eliminated by a comparison with those of the other one.

A further argument for our choice of g can be found in [TN].

Two problems can arise in the selection of skeleton pixels by non-maxima suppres-

sion.

(1°) One can obtain a skeleton which is not well-centered with respect to the correspond-
ing ridge. This happens if the two ridge sides have distinct heights or steepnesses,
etc.. This is not really harmful because, as we said earlier, we seek only a rough
estimation of the skeleton, while precise details will be obtained by the pseudomask.

(2°) The maximum of By, can be attained on several members of the set Vi (7, j) of pixels
to be compared to (7,). In particular the function By could form a local plateau
along the gradient orientation. In other words the skeleton could be unsufficiently
deblurred and several pixels would be equal candidates as skeleton pixels. This is
a real problem occurring for example with perfect symmetrical ridges having sharp
edges. A possible remedy is to consider that in a sequence of maxima along the

18

gradient orientation, only the middle one (or the two middle ones if there is an
even number of them) may be retained as candidate skeleton pixels. Thus for a
pixel (7,) such that By(3,j) is indeed the maximum of all By (u,v) for (u,v) €
Ni(i,), the set Ni(i,7) — {4, j} is divided into its two halves N{ (i, j) and N1(i, j)
corresponding to its two sides with respect to (i,). We count the two numbers
my (i,) and mj(7, 7) of pixels (u,v) in Ng (¢,) and NL(i, j) respectively, for which
Bi(u,v) = Bi(i, §). If |m (i, 5) — mL(i,)| > 1, then (k,{,7) is labelled “bad” and
rejected.
With this refinement there remains at most two skeleton pixels corresponding to
a ridge location. This is however a rare occurrence, and anyway it does not represent a
major problem for further processing.

11.3.3. Level selection

Given a ridge skeleton pixel (7, j) with local width corresponding to the level &, a
ridge will be detected on (7, j) for other levels than k, especially those which are close
to k (one can expect that levels which are too distant from k& will be eliminated by the
other tests, for example the comparison with the average noise).

Now the selection of levels for which there is a ridge through a pixel (z',j) will be
done by comparing the values By(7, j) for & = kmin,...,kmaz. However our selection
of levels should not be too restrictive: if we keep only one “good” level k and eliminate
all others, then the triple (%,1,7) could still be eliminated by the 3 other tests, so that
(¢,4) would not be a skeleton pixel.

In fact we can restrict ourselves to the comparison of By(i,j) with By_y(2, j) (if
k > kmin) and Br4.1(i,J) (if & < kmaz). If any of these two is “better” than By (i, j) (in
a sense that we will define below), then (%, 7, j) is labelled “bad” and must be eliminated.

Let us now explain what is meant by “better”. Suppose that we have a ridge of
width « - 2% (where 1/2 < a < 1) centered on (i, /), and we want to know whether it
should correspond to level k or level k—1. As o increases from 1/2 to 1, B (¢, j) increases
also, while Bj.—y (i, f) decreases. Thus the quotient By (¢, j)/Bx—1(¢, j) can be considered
as a function of «, although this function will depend on the shape of the ridge and its
orientation. We can take a threshold # such that for & > 6 the ridge has width level
k, while for @ < 0 it has width level k — 1 (ideally one should take § = 1/2/2). To 6
corresponds a certain value A of By(i,j)/Br—1(¢, J); of course this value A depends on
circumstances, but we can take an approximation of its average, and the resulting error
will lead to a lowering or raising of the threshold 6. Our criterion is then the following:

— If Bi(i, §)/Br-1(i, §) > A, then (k, ¢, j) is “better” than (k—1,7, j) and so (k—1,1, §)
is rejected as “bad”.

— If Bi(i, §)/Bi-1(i,§) < A, then (k — 1,7, §) is “better” than (k,i,) and so (k,i, j)

19

is rejected as “bad”.

The fact that the value of the threshold # corresponding to A changes in function
of the orientation and shape of the ridge is not a real problem, because we seek only
an approximation of the width. In particular, one should not be strict on the possible
values of §. The main requirement is that when « increases from 1/2 to 1, the value of
By (i,7)/Br-1(i,j) passes from below X to above A.

In [3] the value A = 3/4 is chosen for edge detection. In [TN] we show that A = 1 is
an acceptable choice for ridge detection. Thus the triple (k,{,f) is eliminated as “bad”
if Br—y1(4,4) > Bl(i,) or if Bry(i,7) 2 Bilt, j)-

I1.3.4. The elimination of multiple ridges and related features

Given several neighboring ridges, they can be seen as a single larger ridge containing
smaller valleys. We illustrate this situation in Figure 14.

smaller valleys

l
l !

smaller ridges

~
larger ridge
Figure 14. g 5

Here our algorithm will detect both the smaller ridges and the larger one. However
it is clear that the latter must often be eliminated as a false ridge, while in other circum-
stances we can have a superposition of several smaller ridges and a genuine larger one, as
in Figure 15 for example. This problem, where several smaller features are assimilated
to a larger feature of the same type, is not restricted to ridges. For example a succession
of n edges in a stair can also be detected as a n times wider staircase-shaped edge.

While in Figure 14 the spurious larger ridge arises from smaller ones on both sides,
the algorithm can also give a false ridge arising from one or several smaller ridges on one
side of it only. Consider the situation shown in Figure 16, where we suppose that A is

very large in comparison to v.

A ridge R of width level k—1 is detected on p. It induces a ridge R* of width level
k on ¢. It is easy to check that R* gives a local maximum for Bj and has best level k;
it is thus preserved by “non-maxima suppression” and “level selection™; it is also likely
to be preserved by the “comparison with the average noise”. Thus the ridge R of level
k — 1 induces an erroneous detection of a ridge R* of level k on g¢.

20

smaller valleys

ridges

smaller

Y ‘
larger ridge
Figure 15.

b
»

o-—-——>» X

n—-—-

Figure 186.

The two examples given above (in Figures 14 and 16) have in common the fact
that a false ridge of a given level is detected on a pixel ¢ because of ridges of small levels
near ¢. The difference between the two is that in the first case these smaller ridges are

located on both sides of g along the gradient orientation, while in the second one they
are located on one side of ¢ only.

Our test deals with both situations. It is applied to every level & > Emin and
assumes that the result of the 4 tests are known for all levels smaller than k. This means
in particular that any implementation of our ridge detection algorithm must operate by
iteration on the levels, from kmin to kmaz.

Let k > kmin and consider a pixel (,). As in the case of “non-maxima sup-
pression” (see Subsection I1.3.2 above), we consider the two sets NQ(i,7) and NX(i,f)
consisting of all pixels at 8-distance between 1 and 2%~ of (i, j) along the gradient ori-
entation on either side of (i,7) respectively. For every pixel (u,v), let sli(u, v) be the
largest level k' < k such that (k',u,v) is a “good” triple; if (&', u,v) is “bad” for every
K <k, then we set sl;(u,v) = 0.

21

For a pixel (u,v) in N2(i,7) U NL(,j), the size (both in width and depth) of a
ridge of level smaller than % on (u,v) can be estimated as:

By (u,v) - o ik = sty (u, v) > 0

(27)
0 if sl (u,v) =0;

Thus the total amount of ridges of smaller levels in IV} (i, j) and N!({, j) can be estimated
by the respective sums sum0 and suml of all numbers of the form (27) corresponding
to their pixels. These two numbers must be compared to the number

cent = 2° - Bi(i,) (28)

corresponding to the size of the ridge of level k detected on (i, 7). We decide to reject the
triple (k, 1, f) as “bad” in the following two cases, which correspond to the two situations
described above (in Figures 14 and 16 respectively):

(a'] %cent < sumg + sum; AND sumg - sumy > 0.

(i) Zcent < sumo+sum; AND sumg - sum; = 0. (29)

When (k,¢,7) is “good”, we have —as in Subsection I1.3.1— a further subdivision
into “fair” and “best”: (k,{,7) is “fair” in the following two cases:
(iii) jcent < sumg + sumy < Leeni AND sumyq - sum; > 0.

(iv) %cent < sumgp + sum; < %cent AND sumg - sum; =0, (30)
On the other hand, (k,7,j) is “best” in the following two cases:

(v) sumo+sumy < jeent AND sumq - sumy > 0.

(vi) sumg +sumy < Scent AND sumg - sum; = 0. (31)

This subdivision into 6 cases has been deduced from our experiments. The com-
parison between the 3 numbers cent, sumy and sum, described above is sufficient to
eliminate most pixels locating spurious ridges corresponding to the situations shown in
Figures 14 and 16. The remaining ones will then be eliminated by the skeleton filtering
algorithm of Chapter III.

I1.3.5. Summing up

To each triple (k,¢,7) one associates a ridge likelihood estimation By(i,j) and
a local orientation O(i, j) (when O(7, j) is not uniquely determined, then the triple
(k,,7) is rejected as “bad”). One subjects then that triple to the following 4 tests.

(1°) Given the weighted average variance X (i, /)2, one must have By (i,)2 /Z(i, 5)? >
2/5.

22

(2°) Given the two sets NJ (7,) and N/ (4, j) consisting of the two halves of the neigh-
borhood of radins 2=1 of (¢, j) along the gradient orientation O (i, j) + 2 modulo
4, these two sets satisfy the following two conditions:
— For every pixel (u,v) in N? (i, /) U NL(i,7), Bx(u,v) < By (i, 5).
— The number of pixels (u,v) such that By (u,v) = Bg(f, j) differs by at most
1in N2(i,j) and N}(¢, §).
(3°) If k > kmin, then Bg(i, j) > Br_i(¢,f); if k < kmaz, then By (i, j) > Br41(i, j).
(4°) If k > kmin, then the two statements of (29) are false.

If (k, ¢, j) fails any of these 4 tests, then it is labelled “bad” and must be eliminated
from the skeleton. The remaining triples are labelled “good”, and are subdivided into
the two subcategories “best” and “fair” according to whether or not they satisfy both
the following two conditions, which are related to the tests (1°) and (4°) respectively:

(¥) Be(i,5)*/2(i,5)® = 1/2.
(##) The two statements of (30) are false.

These two tests do a lot of filtering among all triples. For a pixel (i,) it may
happen that two distinet levels & and &' give “good” triples (k,¢,) and (K, 7, j); thus
(¢,7) can correspond to the location of two ridges of distinct widths. This is a legitimate
occurrence. However we can be more restrictive and select for every pixel (i,) the
highest level & such that (&, ¢, j) is “good”; if every level k gives a “bad” triple (k, i, J),
then the selected level for (i, 5) will be 0.

The ridge skeleton can then be described by giving for every pixel (i, j):

(a) The selected level k; for non-skeleton pixels we have k = 0, while for skeleton pixels
we have & > 0 and 2* approximates the local width.

(b) The local orientation O(i,) corresponding to the level k; if & = 0, it takes an
arbitrary value.

23

X : skeleton

II1. Skeleton filtering

With the ridge detection algorithm presented in the previous chapter, the skeleton
contains pixels which satisfy the local properties of ridges but do not correspond to blood
vessels; indeed, they are isolated pixels or they form short segments in the skeleton. As
they reproduce noisy features of the original image in the pseudomask, they must be
eliminated, and this may be done only by an analysis of the skeleton on a regional or a
global scale, where connected portions of the skeleton which are too short in comparison
to their width level are deleted.

Counting the length of each connected portion of the skeleton is a complex opera-
tion, and we have devised a computationally simpler algorithm which filters the skeleton
by a combination of local and regional tests.

Our experiments show that it eliminates most noisy portions of the skeleton. How-
ever it preserves certain portions of the skeleton which correspond to elongated ridge-
shaped parts of the image which nevertheless are not blood vessels. But they cannot
be eliminated simply by filtering the skeleton; for this purpose we need to analyse their
features such as the texture, the edge sharpness, etc..

We will first introduce a local connectivity feature of the skeleton, its set of junc-
tions.

II1.1. Junctions

A connected branch of the skeleton satisfies adjacency properties which depend
upon its orientation. When this orientation is close to the vertical or horizontal direction
(and so when the local stream orientation of its pixels is along that direction), the skeleton
is an 8-connected path. On the other hand, when this orientation is close to a diagonal
direction (in which case the local stream orientation of its pixels is along that direction),
the skeleton is a 4-connected path. We show this in Figure 17.

pixel

Figure 17.

Let us give an explanation for this fact. For a skeleton pixel (i,), let k be the
corresponding width level. We recall from Subsection I1.3.2 the set Ng (i, f) of all pixels

24

(u,v) at 8-distance at most 2°~! from (i, j) along the gradient orientation Oj(i, j) + 2
modulo 4. We set V' (4, j) = N (i, 7) if (,7) is a skeleton pixel of level k, and V (i, ;) =
{(i,7)} if (¢,§) is not a skeleton pixel. As V'(i,7) — {(i,7)} is the set of pixels to be
compared with (i, 7) in the “non-maxima suppression” test, its pixels should normally be
eliminated from the skeleton, and so V (i, §) represents an approximation of the portion

of the ridge corresponding to (7, f). Hence we get the connectivity patterns shown in
Figure 17.

The connecting criterion for two skeleton pixels can then be described as follows.
Let us say that a skeleton pixel is axial if its stream orientation is horizontal or vertical,
and is diagonal otherwise.

Given two skeleton pixels p = (4,7) and p' = (¢,j') having the same stream
orientation, we will say that they are well-connected if:

(¢) they are 8-adjacent; and
(¢¢) V(i,5) and V (¢, §') are adjacent but do not intersect.

Thus this means that p and p' are 4-adjacent if they are diagonal, and that they
are 8-adjacent not along their gradient orientation if they are axial. We show this in
Figure 18.

| [<
| | // o
*] I s .
I | | // //
: : : gF ik
| | | 7 a
| 2 ¥ 11 |
| | | | 74
] | | // //
L | | Vi i
: 1 I v //
| |
| |
| } ! * b
|
LN ¥
i g.o.

g.o.
Figure 18.

We consider also well-connectedness between two skeleton pixels p = (4, 7) and
p' = (', ') whose respective stream orientations form an angle of 45° (in other words
between an axial and a diagonal pixel). They will be well-connected if:

() they are 8-adjacent; and
(¢7) V(i,/)nV (&, 5') = {g}, where p # ¢ # p', but ¢ is 8-adjacent to both p and p'.

This means that p and p’ are 4-adjacent not along the gradient orientation of the

25

-2

7
e S
= |

){

g.o. g.o.

Figure 19.

one of them which is axial. We illustrate this in Figure 19.

We recapitulate in Figure 20 the possible configurations of well-connected skeleton

pixels, up to a symmetry of the square.

s

stream - | o - | & s | -

orientation

Figure 20.

Given a skeleton pixel (7, j), V (7, j) separates its neighborhood into two sides, and

another skeleton pixel well-connected to it belongs to either side. Now in a skeleton

branch, the pixels are well-connected to other ones on both sides, and the width level

should not change too abruptly. This induces the following definition:

A skeleton pixel p is a junction if and only if it is labelled “best” for the two tests of
Subsection I1.3.1 and I1.3.4, and there exist two other pixels ¢ and r well-connected
to it and lying on either side of it, such that the width levels of p, ¢ and r differ by
at most 1.

We will require that every neighborhood of a skeleton pixel, up to a certain width,

contains a sufficient number of junctions having some specified levels. Indeed, a skeleton

branch must be long enough and most of its pixels should be junctions (small breaks in

the skeleton may sometimes arise because of irregularities in the ridge shape).

II1.2.

Skeleton filtering by junction counting

Consider a portion of the skeleton containing a pixel p of width level &. It can have

26

connectivity breaks, but the distance between two successive connected parts should be
small in comparison to the width of their pixels, so that these breaks can be filled during
the ridge reconstruction in the psendomask. Secondly, these connected parts should be
long enough in comparison to this width. Finally the level of the pixels in this portion
should not vary too much: two skeleton pixels at small distance whose levels differ by at
least 2 must be considered as members of two distinct portions of the skeleton.

Thus, given this skeleton pixel p of level k, we expect that there is around it a set
of skeleton pixels which are junctions and whose width levels are either all equal to % or
k — 1, or all equal to k or k + 1. For every integer u such that kmin < u < kmaz, write
J[u + 1/2] for the set of junctions having width level u or u + 1. Readily, we will search
for a good configuration of pixels around p in J[k + 1/2] or in J[k — 1/2]. This can be
expressed as a number of necessary conditions on the number of elements of J[k — 1/2]
(or J[k +1/2]) in certain windows. We can temporarily restrict ourselves to J[k — 1/2].

In fact, these conditions correspond to the width levels from 0 to k. The level 0
condition is that p belongs to J[k — 1/2] (i.e., p is a junction) or one of its &-neighbors
not along the gradient orientation is in J[k — 1/2].

For 1 £ u < k, the level u condition will be expressed in terms of the number of
members of J[k — 1/2] inside 2% x 2¥-windows centered on certain pixels around p. We
can represent J[k —1/2| as a binary image assigning the value 1 to its elements and 0 to
other pixels. Then this number of elements of J[k — 1/2] inside these windows is given
by:

1

E(J[k_ 1/2] A Hy), (32)

where pw = 4 is the weight of a pixels in H, (see (5)).

The level u condition states that one can find at least 3-2%~! —1 junctions around
p inside two 2" x 2"-windows, one centered on p, and the other centered on some pixel ¢
at 8-distance 2* from p, not along a direction close to the gradient orientation of p. We
show this graphically in Figure 21.

RN

N —" (k=112

Figure 21.

27

The number 3-2“~' —1 corresponds to the minimum length of a branch in J[k—1/2]
within these two windows. The term —1 has been added in order not to be too restrictive
for u = 1, in which case a pixel of J[k — 1/2] neighboring p may overlap the window

horders.

Let us now describe how we can choose g. If one restricted oneself to the the
8 fundamental directions (more precisely, to the 6 ones which are not parallel to the
gradient orientation), then one could have portions of the skeleton passing between two
possible windows, say the ones along the NW and W directions, and any choice of ¢
along one of these two directions would miss a part of that portion. Thus the set of
possible choices for ¢ should give a set of overlapping windows, and we need to consider
a larger set of orientations than the 8 fundamental ones. The simplest extension is to
consider the 16 directions shown in Figure 22, which are determined by the 16 vectors
(c,d), where
—2<¢<2,
—-2<d<2, (33)

and maz(|c|,|d]) = 2.

Figure 22.

Now ¢ will be at 8-distance 2* from p along one of these directions, and so, given
p = (¢,7), it will take the form

(i+e-2"7Yj+d- 2", (34)

where ¢ and d satisfy (33). We will require that the direction of ¢ with respect to p is
not parallel to the gradient orientation of p or any of its two neighboring orientations in
Figure 22. We show this in Figure 23.

If we represent the gradient orientation of p by a vector (a,b) = (1,0), (1,1), (0,1)

28

o ° [X

) ¢) ° o

® o ¥ ®

e X X X o X X) ° °
X . forbidden place for q / . gradient

orientation of p
e . allowed place for q

Figure 23.

or (—1,1), this restriction on ¢ can be expressed as:
maz(|c — 2a|, |d — 2b]) > 1

(35)
and maz(|e + 2al,|d + 2b]) > 1.

Let us sum up the level u condition. Write Q(¢, j) for the set of possible choices
for ¢ = (¢, j') given the gradient orientation of p = (7, j). Then we will require that:

i ((J{k = 1/2] A Hu)(iyj) + maz(,-;,j,)eg(z-,j){(,][k = 1/2] A Hu)(l",j’)})

pw (36)

>3-2""1 -1
We recall the level 0 condition, that p or one of its 8-neighbors not along the gradient
orientation belongs to J[k — 1/2].

The level u = 0,...,k conditions using J|k —1/2] are rough approximations for the
requirement that p belongs to a “sufficiently connected” skeleton branch of level varying
between k and k — 1. For a branch of level varying between k and &k + 1, we can do
with J[k + 1/2] the same as we did above with J[k — 1/2]. We have thus two tests on a
skeleton pixel p of level %:

— The inferior test: p satisfies the level u condition on J[k—1/2] for every u = 0,...,k.

— The superior test: p satisfies the level u condition on J[k + 1/2| for every u =
0,....k.

29

Now our skeleton filtering criterion is the following: a skeleton pixel is eliminated
if and only if it fails both the inferior and the superior tests. Note that if p has width
level kmin, only the superior test is available, while if p has width level kmaz, only the

inferior test is available.

Qur filter is based on necessary requirements, not on sufficient ones. Thus it
sometimes fails to eliminate spurious disconnected portions of the skeleton. On the other
hand, it can sometimes eliminate large clusters of skeleton pixels labelled “average”,
which correspond to fuzzy portions of a genuine blood vessel. However our experiments
show that it gives satisfactory results on most skeleton parts. In fact, filtering errors
generally occur on blood vessel portions where the skeletonization led to a poor result.

30

IV. Skeleton-controlled pseudomask

Now that the filtered skeleton is at hand, we can use the local width and orientation
of each of its pixels in order to determine the size and orientation of the corresponding
windows for the pseudomask; within these windows we will compute an approximation
of the grey level of the background around the corresponding ridge locations. This will
lead to the pseudomask image, whose difference with the original image will display the
ridges.

Let us describe first the pseudomask windows that we will use. A window will be
associated to every skeleton pixel, but also to some other pixels at places where there
are discontinuities, turns or changes of width level in the skeleton.

We said in the previous chapter that the set V' (7,) of pixels at 8-distance at most
2F=1 from (i, j) along the gradient orientation (where k is the width level of (¢, j)) can be
seen as the ridge portion corresponding to a skeleton pixel (¢,7). Thus the pseudomask
window corresponding to a pixel (7, j) should contain V' (4,), but it should extend farther
in order to reach the background.

We will thus associate to the skeleton pixel (i,) the pseudomask window W (i, j)
consisting of all pixels at 8-distance at most 2* from (i, j) along the gradient orientation;
indeed, we may expect that the background to be at a distance larger than 2¢~! from
(¢,4), and our experiments show that extending this distance to 3-25—1 Jeads to improper

results.

Ideally, each W (i, j) should contain the ridge portion corresponding to (3, j), and so
the windows W (¢, j) should cover the whole of each ridge, while the transition between
them should be smooth. This means that we would have a succession of pixels for
which the corresponding windows would be 4-adjacent and parallel, with their respective
extremities touching each other. In other words, we would require that neighboring
skeleton pixels should be well-connected (in the sense of Chapter III) and have the same
local orientation and width level.

When this does not happen, one must “fill the gap” in this covering of the ridges
at pixels where one has breaks, turns, or changes of width in the skeleton. For a skeleton
pixel (7,7}, W(i,j) separates its neighborhood into two sides. If such a skeleton change
occurs inside one given side of the neighborhood of some pixel (7, j), then we complete
the set of windows in the following way:

Fort=1,...,2"—1 (where k is the level of (i, j)), let (¢, j;) be the pixel at distance
t from (i,) along the stream orientation on that side. To each (i, ;) we associate a
window W (i, ji) of width 2(2* —) (instead of 28+ for (4, 7)). If (i, f) is diagonal, these
windows are not 4-adjacent, and so we take a pixel (i}, j{) 4-adjacent to both (7, j) and
(i1, J1); then for § =2,...,2F — 1, let (i}, j/) be the pixel at distance ¢ — 1 from (i}, ji),
and we associate to (i}, j/) a window W (i}, j) of width 2(2* — t). We illustrate this for

31

k = 2 on Figure 24. The pixels (i¢,) (and (i, ;) in the diagonal case) will be considered

as having level &.

3|3
L ISES
3/2(1 L 5
e L))
|
[Ebes 10y b b 4 M
axial case diagonal case

Figure 24.

Now let us state more precisely the circumstances where we have to “fill the gap”
on a certain side of some pixel. Given a pixel (7, 7) of width level &, we look on each side
of its neighborhood for a skeleton pixel (i, j') such that:

(a) (', ') is 8-adjacent to (i, j) not along its gradient orientation if (i,) is axial, and
4-adjacent to (i,7) if (¢, j) is diagonal (see the definition of well-connected skeleton

pixels in the preceding chapter);
(6) (¢',4') has the same local stream orientation as (i,).
(¢) The level k' of (', ') is not smaller than k.

If there is no such (¢, ') on a given side of (i, j), then we “fill the gap” on this side
of (¢,) in the way described above. Note that in (c) we require only that &' > &, and
not k' = k. Indeed, if k' > k, we will have a gap to fill on the side of (¢, j') containing
(¢,4), but not on the side of (2, j).

Now that we have a set of windows covering the ridges of the image (at least those
described by the skeleton), let us describe what we do in each window for the construction

of the pseudomask image.

At the start, the pseudomask image I' is set equal to the original image I. Then
it is modified successively on each window W (i, j) described above. Given a skeleton
or “gap-filling” pixel (i, j) of width level &, we will modify the value of I' in W (i, j) in
function of the value of the level k average grey level pcgl(l' A Pp) inside it. We show in
Figure 25 two diagrams: the first one gives the grey levels I(i', ') of pixels in a window
W (i,), while the second one gives the level k averages pc, ' (I A P.)(i', j') on W (i, j).

On each side of (7,) in W (4, j), we search for the minimum of the level k average
pcgl(f A P;). We get thus two numbers b; and by. Let then b be the maximum of b;
and . On each side of (¢, j) in W (i, f), we look for the farthest pixel (i', j') such that

32

I e (0 KB

Wi j)
U R i

Figure 25.

pc;c'l(f A Pk)(s",j’) > b; we get thus two pixels (iy, s1) and (i3, j2). Then b will be the
value for I' inside the interval enclosed between (i1, 1) and (g, j2). In other words, for
every pixel (¢, j') lying between (iy, ji) and (2, jo) included, we replace I'(i’, j') by b
provided that b < I'(i', j'). We illustrate this process in Figure 26 with the image portion
of Figure 25.

albsicicilieal

i
|
<4 ° l—) < o

Figure 26.

When we have done this for all windows W (7, j) covering the ridge, we get the final
form of the pseudomask image I'. Now I — I' will show the ridge patterns around the

skeleton.

If we were looking for valleys instead of ridges, then we should intervert “maximum”
and “minimum”, “>” and “<”, “>” and “<” in the above discussion, and take I' — T
instead of I — I'.

Our skeleton-controlled pseudomask algorithm is not parallel in the usual sense
because the value of I’ on a given pixel may depend on several local processes, since that
pixel may belong to several windows. In fact, the value of I’ on a pixel is the minimum of
all values obtained on all windows containing it (for valleys, it would be the maximum).
It follows thus that the algorithm is independent of the order of the processing of windows
and so of the scan order of the image.

From our experiments it appears that the pseudomask based on the filtered skeleton
reproduces with a low noise the ridge-shaped patterns of the original image, or at least
those which were detected by the skeletonization process. Moreover the “gap-filling”
method allows a partial recovery of ridges at skeleton breaks.

33

The contrast in the difference image I — I’ can be enhanced by maximizing its
dynamic range. This can be done linearly for example. But if we want a higher enhance-
ment of lower grey level, then this can be done by a linear function of the square root of
the grey levels.

34

V. Conclusion

The skeleton found by the method of Chapter II gives generally a good approx-
imation of the location of ridges corresponding to blood vessel-shaped patterns and a
rough estimation of the local width and orientation, which are nonetheless sufficient for
the pseudomask image construction.

The three main problems encountered with our skeleton are the following ones:
(¢) It contains small noisy portions which are too short to correspond to a vessel.

(é¢) There are gaps in the skeleton, and sometimes portions of it corresponding to
narrow or fuzzy parts of blood vessels, or to crossings of several vessels, are missing.

(iti) The concept of ridge is unsufficient to characterize the shape of blood vessel images:
with our algorithm we get skeleton portions corresponding to elongated ridge-
shaped patterns which can nevertheless be dismissed by the human observer as too
fuzzy or too large to be blood vessels.

A satisfactory solution to (i) is given by our filtering algorithm of Chapter III.

Now (if) is a more serious problem, because it can lead to diagnostic errors in
the case of blood vessel enhancement: a small gap in the skeleton leads to a sthenosis
in the pseudomask subtraction image (see also the discussion on 3-D reconstruction in
[L]). Some correction to this defect has been made by the gap-filling procedure in the
pseudomask, but it is unsufficient in some cases. Thus a possible domain of research is the
improvement of our ridge-detection and skeletonization algorithm through the recovery
of missing small portions in the skeleton. It should be noted that missing portions can
be sometimes recovered if we make the local tests of Section I1.3 less severe, but this will
lead to the introduction of noisy pixels in the skeleton. A trade-off between low noise
and completeness of the skeleton should be sought for in each circumstance.

At the present stage, our skeletonization algorithm is more suited to situations
where low noise is more important than a complete recovery of the blood vessel system.

Problem (iif) is rather minor at the present stage, because it does not lead to
diagnostic errors.

The skeleton-controlled psendomask algorithm gives a neat reproduction of ridge-
shaped patterns of the image, thanks to the smoothing of discontinuities by the gap-
filling procedure, but gaps or missing portions in the skeleton lead to missing portions
or narrowings in the blood vessels shown in the pseudomask difference image.

35

References

[1] P.A. Devijver, C. Ronse, P. Haaker, E. Klotz, R. Koppe, R. Linde: Pseudo-
mask technique for digital subtraction angiography (DSA). Mustererkennung 1984,
DAGM 6th Symposium, Proceedings (1984).

[2] H.Mbller: Rekonstruktion aus Projektionen. PFH Laborbericht NR. 578 /84 (1984).

[3] A. Rosenfeld, M. Thurston: Edge and curve detection for visual scene analysis.
IEEE Trans. Computers, Vol. C-20, n° 5, 562-569 (1971).

[4] Y. Yakimovsky: Boundary and object detection in real world images. J. ACM,
Vol. 23, n° 4, 599-618 (1976).

[TN] C. RONSE: Blood vessel detection, technical details. PRLB Technical Note in

preparation.

36

Appendix. Some sample data
The 3 algorithms have been implemented in PASCAL on a VAX 11/780 computer
and tested on six digitized X-ray images; each one has size 256 x 256 and 256 grey levels.

Figures 28 to 33 show the result of the processing on the six input images. Each
figure contains four images, namely:
(a) A photograph of the original digitized X-ray image.
(b) A representation of the skeleton (by a raster scan plotter), together with the level

of skeleton pixels: to level 1, 2, 3, 4 pixels correspond dots, hollow octogons, full
octogons and squares respectively, as shown in Figure 27.

Figure 27.

(¢) A similar representation of the filtered skeleton together with the level of skeleton
pixels.

(d) A photograph of the pseudomask difference image built with the filtered skeleton.
The contrast has been enhanced by a square root function of the grey level (in
order to enhance low grey levels).

37

(a) Original image.

(b) Skeleton.

Figure 28.

38

(d) Pseudomask difference image.

Figure 28. (contd.)

39

(a) Original image.

..ﬂm................!-m............ i sesssenes s

:

(b) Skeleton.

Figure 29.

40

(d) Pseudomask difference image.

Figure 29. (contd.)

41

(a) Original image.

(b) Skeleton.

Figure 30.

42

(d) Pseudomask difference image.

Figure 30. (contd.)

43

Original image.

(a)

(b) Skeleton.

Figure 31.

44

4 ; i &
i " | _ i
3 . L\.-. %llﬁl-t.ll!l. ..-l_.ﬂﬂ]ﬂ[e
o s e
= p YO
e v E ¢
T .
v =
e - m vmu , \ 8 : lm...hl.n ;UOQI:”V
& - M— % »"w Lo
;- -3 b, -
w0 | .

(e) Filtered skeleton.

(d) Pseudomask difference image.

(contd.)

Figure 31.

45

(a)

Original image.

.._é.

(b) Skeleton.

Figure 32.

46

(d) Pseudomask difference image.

Figure 32. (contd.)

47

(b) Skeleton.

Figure 33.

48

(¢) Filtered skeleton.

(d) Pseudomask difference image.

(contd.)

Figure 33.

49

