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Abstract: We study various definitions of convexity on 2D digital images and examine
their relations with 4- and 8-connectedness. We give a new treatment of the analysis by
Rosenfeld and Kim of the chord property, digital straight lines, and the link between them.



I. Imtroduction

The convexity of two-dimensional digital images has been the subject of several papers.
An accurate description of the state of the art can be found in the works of Kim and Rosenfeld
[15-17,20,21,23,26,27].

The goal of this Report is to complement the work done on this field, mainly on two
aspects:

— An analysis of the relations between the various definitions of convexity and connect-
edness, including new proofs of some equivalence theorems.

— A new treatment of digital and cellular straight line segments, including a simpler
proof of their characterization theorems, and the definition of a new concept, the
“strong chord property”.

We have not included the analysis made mainly by Sklansky and Kim [15,23,20-31]
of the quantization relations between convex digital images and convex Euclidean images,
although they are related to digital and cellular straight line segments. We have also left
aside the various algorithms for testing convexity, building convex hulls or digital straight
line segments, etc. found in the literature.

Our work is organized as follows:

— In Chapter II we review some important combinatorial properties of convexity in the
n-dimensional real space: the theorems of Carathéodory, Helly and Santald.

— In Chapter III we review several definitions of convexity and convex hulls in two-
dimensional rectangular grid images and analyze their relations with 4- and 8-connect-
edness.

— In Chapter IV, we study the chord property and a specialization of it to the 4-connected
case, which we call the strong chord property. Using Santalé’s Theorem, we give a
simpler proof of the characterization by Rosenfeld and Kim of digital and cellular
straight line segments.

Throughout this Report, we adopt a geometrical point of view, which is in some way
original. Such a mathematical treatment of the topic improves the theoretical understanding
of digital geometry and should be useful for the generalization of results of 2-dimensional
digital geometry to the 3- or n-dimensional case.



II. Convexity in the n-dimensional real space

The study of convexity in digital ficures on a two-dimensional square grid is done with
the aim of finding digital equivalents of concepts and properties found in the Euclidean case.
Moreover, as we will see later on, some theorems on convexity in the two-dimensional real
plane can find applications in the study of digital convexity. It is thus worthwile to recall
some fundamental facts on convexity in the Euclidean plane. This is the purpose of this
Chapter. Moreover, we will generalize this analysis to the n-dimensional case, since this
generalization does not lead to a real complication.

Points in the real n-dimensional space R"™ can be considered as vectors w.r.t. some
origin. Given m points py,..., p;, and m real numbers Ay, ..., A, such that A;+---4+A,, =1,
the point

m m
Y Xpi=pi+ ) Ailpi - p1) (1)
i=1 1=2

is independent of the choice of the origin. When these m points do not belong to a common
proper Euclidean subspace of R™ (this requires that m > n), the vectors p; — p; (i > 2)
generate the vector space R", and so every point takes the form (1). If moreover m = n+1,
then the vectors p; — p; are linearly independent, and so the form (1) of a point is unique.

Given a nonvoid set P of points in R", we write [P] for the set of all points of the
form Aypy +-+ AupPm, where m > 0, X; > 0 and p; € P for each ¢, and A; +---+ A, = 1.
Readily, if P is infinite, then [P] is the union of all [Q], with Q being any finite nonvoid
subset of P.

When P is finite and P = {py, ..., pm }, We can write [p1, ..., pn] for [P]. It represents
the topologically closed polytope spanned by py,...,pm.

The operator [ ] has the following properties; for any nonvoids subsets P and @ of R*
we have:

(1°) P c [P].

(2°) [[P]] = [P]-

(3°) If-P C Q, then [P] C [Q].

(4°) [Pu@]=Ulp,q| for p€[P] and ¢ € [Q)].

One says that a set C is convex if and only if for every p,¢ € C, the closed segment
[p,q] is a subset of C. By iterating (4°), it is easily shown that this is equivalent to [C] = C.

The intersection of any number of convex sets is itself convex. One can thus define

the convex hull of a set P as the intersection of all convex sets containing it; it is in fact
equal to [P].

The following result is called Carathéodory’s Theorem for convex sets (see [33], page
35). For n = 2, it simply means that a convex polygon is the union of the triangles spanned
by its vertices.



Proposition 1. Let P be a subset of R" and let P(n + 1) be the set of all subsets
of size n+ 1 of P. Then [P] = Ugep (nen) Q-

Proof. Suppose false. Then there is some p € [P] such that p ¢ Ugep (nar)[@]- Now
p € [R] for a finite subset R of P, and so there is a minimal subset M of R such that p € [M].
Clearly |M| > n+ 1. We write M = {po,...pm} (m > n+1),and so p = " A;p;, where

"o A; =1 and each A; > 0. In fact, by the minimality of M, each A; > 0.

As m > n, the vectors p; — po,...,Pm — po are linearly dependent. There exist thus
B1,-- .5 tm € R, not all zero, such that ) 70, pi(pi — po) = 0. Setting po = — Y12 | ps, we
get Y oo tipi =0and Y10 p; = 0.

Choose k such that p, /A; is maximum; as Ar > 0 and Z?_’__O i =0, pr. > 0. We have:

n

m m m
p= Z Xipi = ) Xipi — M/ Z#ipi =Y wvips,
=0 £

=0 =] {=0
where
B Dy fori =0,...,m. (2)
Hi
Clearly Yt vi = Y oiwg Ai — A/ itk Y ki =1—0=1. By (2) and the fact that A\ and
. are both # 0, we have:
Aidg (uk m)
PR e . L 3
o \ M N )

As A; >0, Ay >0, pg > 0 and g /g > pi/X;, this means that v; > 0. Moreover v, = 0.
Thus p € [M — {pi}], which contradicts the minimality of M. @

Note that if the dimension of the space spanned by P is equal to some d < n, then
[P] = UQeP(d+1) @]

Another important result is Helly’s First Theorem (see [33], page 117, and [36], page
16):

Proposition 2. Let m > n + 2. Given m convex sets such that the intersection of
any n+ 1 among them is nonvoid, the intersection of these m sets is nonvoid.

Proof. Let Py,..., P, be these sets. We suppose first that m = n + 2. For { =
1,...,m, we can choose some p; € ﬂ#i P;, since this intersection is nonvoid by hypothesis.

The m —1 = n + 1 vectors p; — p1,...,Pm — p1 are linearly dependent. There exist
thus pi2,..., pm € R, not all zero, such that Y ;%, pi(pi — po) = 0. Setting py = — Y10, pi,
we get )10 pip; =0 and Yo p; = 0.

Let Ip be the set of all ¢ such that p; > 0, and I; the set of all j such that p; < 0.
Let 0 = 3, pi; then 6 > 0 and 2 jer, 5 = —0. Moreover we have:

Z %ipi = Z :g—jpi- (4)
i€l Jel
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As p; /0 > 0 for i € Iy, —p; /0 > 0 for j € I, and Y ier, Hif0 = ZJ‘Eh —p;/0 =0/0 =1,
(4) means that there is a point

pel{pilielh}n{{p;|Jje L} (5)
But for each i € Iy, p; € ﬂj;,_cl- P njerl P;. As njeﬁ P; is convex, we get:

[{p: |ie D} C [ P;. (6)
JEL
Similarly we have:
[{pslien}c [P (7)
i€lp
Combining (5), (6) and (7), we get p € iz, P;.

Suppose now that m > n -+ 2. We use induction on m. Assume that the result is true
form — 1. As m —1 > n+ 2, the intersection of any n + 2 among Py,..., P, is nonvoid.
Consider now the sets Py = Py N P,,..., P}, = Py N P,,. Then the intersection of any n + 1
among them is nonvoid (since it is an intersection of n + 2 among Pi,...,P,). Aplying
again the result form — 1, we get PyN---NP, =P} n---N P}, #0, and so the result holds
for m. B

For n = 2, Helly’s First Theorem has an interesting consequence, the Tranversal
Theorem of Santald (see [33], page 122, and [36], page 20), of which we give a slightly
modified formulation:

Proposition 3. Let m > 4 and consider m pairwise noncollinear parallel straight
line segments in the plane (they may be open, closed, half-open, or even reduced to a single
point). If for every 3 of them there is a straight line intersecting the 3 segments, then there
is a line intersecting all m segments.

Proof. We can choose the Y-axis parallel to the segments. If we write S;,..., 5,
for these segments, then for each ¢ = 1,...,m there is some z; € R and some convex interval
Y; C R (which can be closed, open, half-open, or reduced to a single point) such that

Si ={(zi,y) |y € Yi}.
A line L intersecting more than one segment is not parallel to the ¥-axis (since the segments
S; are pairwise not collinear). Thus it has an equation of the form

y=az+b,
and we write it L{a,b). Now we can associate to each S; the set
Ci = {(u,v) | miu+v €Y}

Clearly the convexity of ¥; implies that C; is a convex strip of the plane. We associate
to L(a,b) the point (a,b). Then L(a,b) intersects S; iff there is some y; € ¥; such that
Yi = ax; + b, in other words iff (a,b) € C;.

The result follows then by applying Helly’s First Theorem to the sets C;.
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III. Convexity and convex hulls on two-dimensional digital rect-
angular grid images

Ill.1. Definitions of digital convexity

We will examine several definitions of convexity and convex hulls, analyze their rela-
tions with 4- and 8-connectedness, and see under which conditions they are equivalent.

These definitions are related to their real plane counterparts. We will thus use some
of the properties of convex sets in the Euclidean plane stated in the previous section.

Let us introduce some notation. Let G be a rectangular grid in two dimensions. It
can be viewed as a subset of Z?, where Z is the set of rational integers, and so the pixels can
be represented with integer coordinates (i, 7). We choose the orientation of the coordinate
axes on Z?2 in such a way that the labelling of pixels is consistent with matrix notation: the
pixel (#,j) corresponds to the intersection of row i and column j, with rows counted from
top to bottom and columns counted from left to right. In other words, the X- and Y-axes
point downwards and rightwards respectively. The natural embedding of Z2 into R2 leads
to the identification of pixels of G' with integer-coordinated points of the plane.

The grid G corresponds also to a decomposition of the plane into square surfaces; thus
to every pixel p corresponds the closed square surface p, which is defined as follows:

p={zeR?|ds(z,p) <1/2}. (8)

Given S C @, one defines S as the union of all piorpeS.

For a subset P of G, we write (P) for the set of all pixels of G which belong to [P]; if
P is finite and P = {p1,...,pm}, then we can write {py,...,p,) for {P). By Proposition 1,

Py= U (pa.r) (9)

p,qlTEP

We illustrate this definition in Figure 1.

Figure 1.



We can now state several definitions of digital convexity. Let P C (.
First definition [24]. P is convex iff for every ¢, € P, {p,q) C P.

Second definition [15]. P is convex iff P = {P). By (9), this holds iff for every
P, € P, (pq,r) CP.

Third definition [15]. Assume that P is simply 8-connected. Then the border a(P)
of P is a simple closed curve. For every p,q € P, let P(P;p,q) be the plane area consisting

of all polygons whose boundary is a subset of [p,q) U d(P) and whose interior lies outside P
(see Figure 2). Then P is convex iff for every p,¢ € P, the area PN P(P;p,q) is empty.

q

o

o | o
P | o | o | o

Figure 2. P(P;p,q), non-convex case

Fourth definition [29,30]. P is convex iff it is the digitization of a convex image in
the real plane.

It is easy to see that when P is simply 8-connected, the second and third definitions
are equivalent (see [15], Lemma 10). This is because for »,q€P, P(P;p,q) C U,eplp e, 7]
Kim showed the non-trivial result that when P is simply 8-connected, the first and third
definitions are equivalent (see [15], Theorem 5). It is not hard to see that when P satisfies
to the first or the second definition, the assumption that P is simply 8-connected is a
consequence of the weaker assumption that P is 8-connected (see Section IIL.3). Thus, when
P is 8-connected the first two definitions of convexity are equivalent. We will give another
proof of this fact in Theorem 4.

The fourth definition depends upon the definition of the digitization of an image in
the real plane (see [15,23]). Generally, for a plane figure F, its digitization is the set of p € @
such that pNF # ), or rather the set of ¢ € G such that §° N I" # B, where g° is the interior
of 7. Kim [15] showed that the fourth definition implies the second one, and that the second
one implies the fourth one when no pixel of P meets the border of P on more than 2 sides
and P is 8-connected. When a pixel p of P meets the border of P in at least 3 sides, then
one can have a counter-example, as shown in Figure 3.

6



Figure 3.

It is clear that the first two definitions are the more practical. We make then the
following:

Definition 1. Let P C G. Then:
(/) P is line-convex (or briefly L-convex) iff for every p,q € P, {p,q) C P
(#i) P is triangle-convex (or briefly T-convex) iff for every p,q,r € P, {p,q,r) C P.
When P is not (line-, triangle-) convex, then we say that it is (line-, triangle-) concarve.
Note that P is T-convex iff P = (P).

As announced above, we have the following result, due essentially to Kim [15]:
Theorem 4. If P is 8-connected and L-convex, then P is T-convex.
For its proof we need the following:

Lemma 5. Let H(a,f,n) be the set of all pixels (i, j) € G such that ai + fj < n,
where o, § € {0,1,-1}, (a, 8) # (0,0} and n is any rational integer. (It is easy to see that
H{a, 8, n) is one half of the plane determined by a line along the horizontal, vertical or
diagonal directions). If C C G is 8-connected and L-convex, then C N H (a, B,n) is empty
or 8-connected and L-convex.

Proof. It is obvious that H(a, #,n) is L-convex. Thus C' N H(a, ,n) is L-convex.
Suppose that the result is false, that C N H(«, 3, n) is not 8-connected. Take two connected
components D and E of C' and d € D and e € E such that dy(d, ¢) (the 4-distance between
them) is minimum. We have two cases:

(a) d and e lie both on the border of H(a, 3,n). Now this border is a horizontal,
vertical or diagonal line of &, and so this means that (d,e) is 8connected. By convexity,
{d,e) C C,and as (d,e) C H(a, f,n),d is 8-connected to e in CNH(a, f,n), a contradiction.

(b) One of d and e, say d, does not lie on the border of H(a, #,n). Then all pixels
8-adjacent to d lie in H(a, #,n). There are 3 of them, p;, ps and ps, whose 4-distance to e
is less than dy(d, e) (see Figure 4). If one of them belongs to C, then it belongs to D and
so dy(d,e) is not minimum. Thus p;, ps,ps & C. We draw from p the half-lines Ly, Ly, Ls
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of G passing through p,,ps and ps respectively (see Figure 4 again). By the convexity of
O, they lie all 3 outside C. But then L; U L, U Ly disconnects 7, and d and e cannot be
8-connected in C, a contradiction. §

(%]
P2 ép,
L3
- —0 To 1p3 ed

Figure 4.

Proof of Theorem 4. Given a finite set S = {p;,...,pm } of pixels, we write R(S)
or R(py,...,pm) for the smallest rectangle with horizontal and vertical sides containing S.
If the coordinates of the elements of S have minima imin and jmin, and maxima imaz and
Jmaz, then R(S) is the intersection of H(~1,0,—imin), H(0, -1, —jmin), H(L,0,imaxz)
and H (0,1, jmaz). Thus by Lemma 5, if S C P, then R(S)NP is 8-connected and L-convex.
Suppose that the result is false. There is thus a triple {p;,ps,ps} C P such that

{p1, P2, ps) contains a pixel ¢ € G — P. Such a triple will be called a C-triple. A C-triple T
such that R(T') has minimum possible area is called a CC-triple.

Now the proof is divided into 4 steps:

Step 1. In a CC-triple T, two pixels are opposite corners of R(T). In other words
there is a pair 7" C T such that R(T) = R(T").
Suppose indeed that it is false. Then either T contains two adjacent corners of R(T') or

only one corner of R(T). The two cases are illustrated in Figures 5 {a) and (b) respectively.
In both we construct the pixel p as shown on the figure.

It is clear that p € P in (a) (by L-convexity). Suppose that in (b) p ¢ P. Then by
L-convexity, the two half-lines L and L' built by extending the lines joining p from the two
pixels # and y (see Figure 5 (b) again) contain no pixel in P. But then L U L' disconnects
G and X cannot be 8-connected to z.

Thus p € P in both cases. Now (T) = U, ,cr{p,¢,7) and so one of the triples {p,g,r}
is a C-triple, with R(p, ¢, r) smaller than R(T). Thus T is not a CC-triple, a contradiction.
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(a) (b)
Figure 5.

We take a CC-triple {z,y, 2}, where y and z are opposite corners of R = R(z,y, 2).
We can assume (by symmetry) that y is the top left corner, z the bottom right corner, that
z lies below the diagonal [y, z], and that the height & of R is not larger than its width w.
Let u and v be the two other corner pixels of R, lying respectively above and below [y, z].
The situation is illustrated in Figure 6.

Figure 6.

Step 2. Pn{y,zu) = {y,z}.

Suppose indeed that P N {y, z, ) contains another pixel #; then we have:

(#,4,2) C{z,y,t)U{z,z,t)

As {z,y,2} is a C-triple, one of {z,y,t} and {«,zt} is a C-triple, say {,y,t}. But then
either R(z,y, t) is smaller than R, which contradicts the minimality of R, or R = R(z,y,t)
and Step 1 implies that = and ¢ are opposite corners of R, in other words z = v and ¢ = u.
Thus P contains the 4 corner pixels of R, and L-convexity implies that R C P, which
contradicts the fact that {z,y, z} is a C-triple.
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Thus P N {y, z,u) = {y, z}. It follows that k 2 w and so h < w.

By Lemma 5, P N R is 8-connected, as we explained above. Thus P N {y,z,v) is
8-connected.

Step 3. Let ¢ be the left neighbor of z (see Figure 7). Then { € P and (y, z,)
contains a pixel of G — P,

h <

Figure 7.

As PN {y,zv) is 8-connected, one of the 8-neighbors of z belongs to it. As h < w,
this can only be f. If z € (y, z, 1), then it is obvious that (y, z, f) contains a pixel of G — P.
If 2 ¢ (2,21), then (2,y,2) C (y,21) U {z,y,t) (see Figure 7 again). If {y,z,t) contains
no pixel of G — P, then {,y,{) is a C-triangle, and R(z,y,t) is smaller than R, which
contradicts the minimality of R. Thus (y, z,t) N (G — P) # 0.

Step 4. Final contradiction.

upper half

Figure 8.

Let p be the pixel in (y, 2,1} N (G — P) such that the distance between p and [y, z] is
maximum. If p is in the upper half of {y, z,) (see Figure 8), then we take the pixel ¢ such
that p is the middle of [y,q]. Asy € P and p ¢ P, ¢ ¢ P by convexity. But ¢ € {y, z,¢) (since
p is in the upper half of it) and ¢ lies at double distance from [y, z| than p, a contradiction.
Thus p is in the lower half of (y, z, ).
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Figure 9.

Now take a,b € G such that p is the middle of [b,{] and of [a, z] (see Figure 9).

As t,z € P and p ¢ P, L-convexity implies that a,b ¢ P. As { is the left neighbor of
z, a is the left neighbor of b (since abzt is a parallelogram). Now a lies at double distance
from [y, z] than p; thus a ¢ (y, z,{). As pis in the lower half of {y, z,t), @ and b lie below
the line yu. As p lies to the right of [y, f], b lies also to the right of it, and as a € (y, z, {), a
lies to the left of [y, t]. Thus |a,b] crosses [y, ], and it is clear that a € {y, z, v).

As we said above, P N (y, z,v) is 8-connected. There is thus a pixel ¢ € P n {y, z, v)
such that c lies on the horizontal line L passing through a and b. As d(t,2) =1, Ln|y, 2]
has width at most 1, and as b lies to the right of [y,],L N {y, z,v) contains no pixel to the
right of b. Thus ¢ lies to the left of a. The situation is illustrated in Figure 10.

Figure 10.

Hence a € {c,y,t), and so {c,y,t} is a C-triple and R(c,y,t) is smaller than R, a

contradiction. B

In the real plane, convex figures are connected. This is not the case with L- or T-
convexity. A L- or T-convex subset of &G can be 8-disconnected, or even 8-connected but
4-disconnected. However we have some relation between L-convexity and connectivity:

Proposition 6. Let P be a L-convex subset of G, and k = 4 or 8. Then any
k-connected component of P is L-convex (and even T-convex, by Theorem 4).

Proof. Let X be a k-connected component of X, let p,¢ € X and r € (p,q) — {p, ¢}.
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Let L be the vertical line passing through r. Then L disconnects 7, and as p and ¢ lie on
opposite sides of L, p and ¢ are not k-conunected in ¢ — L. As p and g are k-connected in
X, this means that there is a pixel f € X N L. As P is L-convex and r € P, (r‘, i C.P As
(t,r) is a 4-connected vertical run, ¢ and r lie in the same k-connected component, in other
words £ € X. Hence X is L-convex.

Taking into account Theorem 4 and Proposition 6, we can state the following:
Definition 2. Let P C G, and take k = 4 or 8. Then we say that P is k-convex iff
P is k-connected and L-convex.

Clearly, 4-convexity implies 8-convexity, which implies T-convexity, which implies L-
convexity.

IlI.2. Definitions of digital convex hull

The properties of L- and T-convexity are preserved by intersection; this leads thus to
the definition of the L- or T-convex hull of a set P of pixels as the intersection of all L- or
T-convex sets of pixels containing it.

The T-convex hull is the easiest to characterize. For P,Q C G we have trivially:

P C(P). (10)
If P C Q, then {P) C (Q). (11)

We can also show the following:

{({(P)) = (P). (12)

Indeed, {P) C ({P)) by (10). By the definition of (}, (P} C [P] and similarly {{P)) C
[(P}]. But then
(PN CUPNC PN (since {P) C [P]),
((P)) C[P] (since [[P]] = [P]).
Thus {(P)) C[P]NnG = (P}, and so (12) holds.
This means that (P) is T-convex, and so {P) is the T-convex hull of P.
The L-convex hull is more difficult to build. We define £(P) as follows:

LPy= | (v.a)- (13)

pEP

Then for m > 1 we can define L™ (P) iteratively as follows:

LPy=sLIF) Hoi=1

=L(L""HP)) ifm>1l. 14)
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Then the L-convex hull of P is the set

oo

(Pl=J £m(P). (15)

m=1

When P is finite, then there is some m such that L™+1(P) = L™(P) and so (P) =
ﬂm (P)

Clearly (P)r C (P). We have equality in some circumstances. For example:
Proposition 7. If P is 8connected, then (P} = {P) and {P) is 8-connected.

Proof. As P is 8-connected, there is an 8-connected component ¥ of (P)z such
that P C Y. By Proposition 6, ¥ is L-convex. By Theorem 4, Y is T-convex, and so
(PYCY C(P)r. As (P) C{P),{P)r ={(P) =Y, and so {P) is 8-connected. §

One should note also that when {P), is 8-connected, (P} = (P)z by Theorem 4.

One can wonder whether the intersection of all 8- (or 4-) convex sets of pixels containing
P would give another type of convex hull. This is not the case:

Proposition 8. Let P C G and k = 4 or 8. Then (P) is the intersection of all
k-convex sets containing P.

Proof. For any k-convex set X such that P C X, (P) C X. Let P* be the intersec-
tion of all such sets X. Then {P) C P*.

Figure 11.

Consider now a pixel p ¢ {P). As [P] is topologically closed, there is a point z € [P)|
for which the Euclidean distance d(p,z) is minimum. As p ¢ [P], p # 2. Let L be the
mediatrix of [p, z] (i.e., the line perpendicular to [p, z] and passing through the middle of it).
Then every y € [P] lies on the same side of L as . Suppose indeed that y lies on the same
side of L as p. Then the angle Zpxy is acute, and as d(p,y) > d(p, z), the angle Zpyz is not
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larger than Zpzy, and so it is also acute. Hence the line perpendicular to the line 2y drawn
from p intersects [¢, y| in a point z (see Figure 11). But then z € [P] (since z,y € [P]) and
d(p, z) < d(p,z) a contradiction.

Thus every pixel of P lies on the other side of I than p- Let H be the set of all pixels
of GG lying on the same side of L as P. Then H is k-convex and contains P. Thus P* C H.
Moreover p ¢ H and so p & P*. As p was chosen arbitrarily, P* C (P). Thus P* = (P). &

Note. There are other ways to prove the existence of a line I, separating p from P,
notably with the use of Helly’s First Theorem (Proposition 2).

ITI1.3. Other relations between digital convexity and connectedness

The previous two sections gave us already some relations between 4- and 8-connectivity
on the one hand, and L- and T-convexity on the other hand.

In Lemma 5, we mentioned the sets H(e, B, n) containing all pixels located on one
side of a line along the horizontal, vertical, or one of the two diagonal directions. These
directions can be called fundamental, and so we will call such set H(a,B,n) a fundamental
half-grid. Then Lemma 5 can be stated as follows:

Lemma 5. Let P be an 8-convex subset of G and H 2 fundamental hald-grid. Then
PN H is empty or 8convex.

Now the horizontal and vertical directions can be called axial, and they determine
the fundamental half-grids H(a, B, n) for which af = 0. Such a half-grid is called an axial
half-grid. The following result can be proved in essentially the same way as Lemma, 5:

Lemma 9. Let P be a 4-convex subset of G and H an axial half-grid. Then PN H
is empty or 4-convex.

It seems that one can prove a converse for these two results, namely that for H C G:

() H is an intersection of fundamental hali-planes iff for every 8-convex P C G, PN H
is empty or 8-convex.

(if) H is an intersection of axial half-planes iff for every 4-convex P C G, PN H is empty
or 4-convex.

Now L-convexity is related to simple k-connectedness (k = 4 or 8). We say that a
subset S of G is unbounded if it intersects the border of @ (when G is finite) or if it is
infinite (when G is infinite). Otherwise it is bounded.

For k = 4,8 and k' = 12 — k, one says that a subset X of @ is simply k-connected if
X is k-connected and G — X has no bounded k'-connected component. Note that for every
bounded subset ¥ of G, G — ¥ has exactly one unbounded %'-connected component.

The following result is trivial.

Lemma 10. Let P be an L-convex subset of G. Then every 4-connected component
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of G — P is unbounded. Moreover, if P is bounded, then G — P is 4-connected.

This is due to the fact that for every p € G — P, if L is the set of all pixels along the
horizontal line through p, then L N (G — P} is unbounded on at least one side of p.

Thus an 8-convex set P is simply &-connected.,
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IV. Digital convexity and straight line segments

In the Euclidean space, the relation between straight line segments and convexity is
evident. In the case of digital images, this relation exists also, but it is more complicated.
Many papers have studied digital straight line segments independently from convexity [4,5,8-
11,28,34,35).

Rosenfeld and Kim [16,17,20,21,26] have investigated the relations between digital
convexity and straight line segments, showing in particular that a simple k-connected path
(k = 4 or 8) is L-convex iff it is a quantization of a straight line segment of the plane (we will
give more details on the type of quantization corresponding to k = 4 and k = 8 respectively).

In this Chapter, we will recall the concept of the chord property introduced by Rosen-
feld [26] and introduce a particularization of it for the 4-connected case, the strong chord
property. We will also prove the main results obtained by Kim and Rosenfeld on the re-
lations between the chord property, k-convexity, and straight line segments. Some of our
our proofs will be simpler than the original ones, thanks to the use of Santalé’s Theorem
(Proposition 3).

IV.1. The chord property and the strong chord property

The chord property was defined in the context of a study of digital straight line
segments [26]; it can in fact be considered as another definition of digital convexity, as we
will see later. We could thus have introduced it in Section III.1, but we have preferred to
introduce it only here, because it is mainly used in relation with straight line segments.

Definition 3 [26]. Let S C G. Then we say that S has the chord property iff for every
pixels p,g € S and every point x € [p, ¢], there is some pixel r € § such that dg(z,r) < 1.

Kim [16] showed that when S is 8-connected, it is L-convex iff it has the chord property.
In fact, we will prove that S has the chord property iff S is 8-convex. This equivalence led us
to search for a specialization of the chord property which would be equivalent to 4-convexity.
We found the following:

Definition 4. Let S C (. Then we say that S has the strong chord property iff for
every two distinct pixels p,¢ € S and every point z € [p, ¢|, there exist two distinct pixels
r,s € S such that dy(r,s) = 1 and ds(z,r) + ds(z, s) < 2.

In this definition we require that p and ¢ are distinct in order to ensure that a set S
of size 1 will have the strong chord property. We will show that S has the strong chord
property iff it is 4-convex. This definition and this result are original.

From Definitions 3 and 4 it seems that in order to verify if a set satisfies the chord
property or the strong chord property, one must make an infinite number of verifications,
namely measuring for each z € [p, ¢] the distance ds(z,r) for pixels r € S in the vicinity of
x. This is not the case, we will show that one can restrict the verification to a finite number
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of points # lying in the intersection of [p, ¢| with certain lines drawn between the pixels of
the grid. Let us describe here these lines; they belong to two classes:

First, the axial grid lines, which consist in the horizontal and vertical grid lines }; and
V; respectively (where { is an integer), defined as follows:

i ={(z,y) e R? |z =i};

. (16)
Vi={(z,y) e R* |y =i}.

Second, the diagonal grid lines, which consist in the principal and secondary diagonal grid
lines P; and §; respectively (where { is an integer), defined as follows:

Pi={(z,y) €R? | z—y =i} (17)
{

Si={(z,y) eR? |z +y=1i}.

These lines are the lines along the fundamental directions (horizontal, vertical, principal and
secondary diagonal) drawn between the pixels of G. We will show that in order to verify
the chord property (resp. strong chord property) for a set S, we will only have to look at
the intersections of the segments [p, ¢| (p,q € §) with axial (resp. diagonal) grid lines.

We need first the following lemma. But let us introduce beforehand some further
notation. Given two distinct points z and y, we write |z, y| for the open line segment joining
them; in other words |z, y[= [z, y] — {=, ¥}

Lemma 11. Let SC G, k=4or8and k' =12—k. If S is k-convex, p,g € S, a
and b are two %'-adjacent pixels of G and |3, q| intersects |a, b| in a single point =, then a or-
beSs.

Proof. Let £ be the line drawn through @ and b and let M = £ N G. Then p and ¢
lie on opposite sides of M. As M is a k'-connected line, it is easily seen that the two sides
of M are not k-connected in G — M. But as S is k-connected and S intersects both sides
of M, SNM #§. Let z€ SNM. If z € [a,b], then z = a or b and the result holds. If
z ¢ |a,b], then [z, 2] contains a or b. Suppose that it is a. Then a € [z, z] C [p,g, 2| (since
z € |p, g]), and so Theorem 4 implies that a € S. i

We can now give a characterization of the chord property and the strong chord prop-
erty, which also indicates for which points z in each [p,q] (p,¢ € S) one must find some
r € S with dg(z,r) < 1.

Theorem 12. Let S C G. Then the following three statements are equivalent:

(/) S has the chord property.
(i¢) S is 8-convex.
(iit) For every two distinct p,q € S and every axial grid line £ such that |p,q[NL contains

exactly one point z, there exists some pixel r € SN L such that dg(z,r) < 1.

17



Proof. The result is trivial if |S| = 1, and so we can assume that |S| > 2.

(1°) (¢) implies (i7).
Let p,g € S and r € {p,q). As for any pixel s of G we have dg(r,s) > 1, we must have
r € 5. Thus S is L-convex. It remains to show that S is 8-connected. Suppose false. Then
S is the disjoint union of two sets U and V' such that no pixel of U is 8-adjacent to a pixel
of V. Take u € U, v € V, and define the two sets:

U* = {z € |u,v] | ds(2,U) < 1},
V*={z €[u,v]|ds(z,V) < 1}.

Then clearly U* # @ # V* and the chord property implies that [u,v] = U* UV*. Now U*
must have a limit point y. This means that for every ¢ > 0, there exist ¢ € U* and d € V*
such that dg(y,c) < ¢ and dg(y,d) < e. We can assume that y € U*. Then ds(y,U) < 1.
Let n = 1 —dg(y,U). There is some z € V* such that ds(y, z) < . Then dg(z,V) < 1 and
so we have

ds(U, V) <ds(U,y) +ds(y,2) +ds (2, V) <1—n+5+1=2,

which means that dg(U,V') = 1, in other words that U is 8-adjacent to V, a contradiction.
(2°) (i) implies (iif).

If |p,g[nL = {z}, then there are two 8-adjacent pixels a and b of £ such that z € [a,b]. If

z = a, then a € § by L-convexity, and obviously ds(z,a) < 1. The same holds for z = b. If

z €la,b|, then Lemma 11 implies that @ or b € 5, and clearly ds(z,a) < 1 and dg(z,b) < 1.
(8°) (#i¢) implies (i).

Let p,g € S and = € [p,g]. We must show that there is some r € S such that dg(z,r) < 1.

This is obviously true if # = p or ¢, since p,¢ € S and ds(p,p) = ds(g,¢) = 0. This is also

true by hypothesis if # €]p,¢[ and £n|p,¢g[= {z} for some axial grid line £. We can thus

assume that z €]p, ¢[ and that one of the following two statements is true:

(a) There is an axial grid line £ such that |p,¢|N£ contains 2, but also another point y.
(b) = ¢|p,¢[nL for any axial grid line L.

In case (a) it is clear that [p,¢] C L. There is some pixel r € [p, g| such that dg(z,r) <
1. Now there is another axial grid line £, perpendicular to £, intersecting it in r only. Then
(by hypothesis) there is some pixel ' € S such that ds(r,#') < 1, in other words r € S.

In case (b) there are four 8-adjacent pixels a,b,c,d € G forming a 2 X 2 square such
that z lies in the interior of [a,b,¢,d]. Then ds(z,y) < 1 for every point y € [a,b,c,d]. We
can assume that dg(x,p) > 1, otherwise we can choose r = p, and similarly ds(z,q) > 1.
Thus p and ¢ lie outside [a,b,¢,d] and so |p,¢| intersects one of the border segments of
[a,b,¢,d], say |a,b], in a single point y. Applying the hypothesis to y, given the axial grid
line £ containing [a,b], there is some r € LN S such that dg(y,r) < 1. This means that
r =a or b, but then then ds(z,r) < L
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Thus in each case there is some r € S such that ds(z,7) < 1, and so S has the chord
property. i

Theorem 13. Let S C . Then the following three statements are equivalent:
(¢) S has the strong chord property.
(ii) S is 4-convex.

(iif) For every two distinct p,qg € S and every diagonal grid line L such that |p,q[nL
contains exactly one point z, there exist some pixel r € SN L such that ds(z,r) < 1.

Proof. The result is trivial if [S| = L, and so we can assume that |S| > 2.

(1°) (¢) implies (i¢).
As the inequality dg(z, ) + ds(z, s) < 2 implies that ds(z,7) < 1 or ds(z, s) < 1, the strong
chord property implies the chord property. Thus S is 8-convex by Theorem 12. It remains
thus to prove that S is 4-connected. Suppose false. Then S is the disjoint union of two sets
sets U and V such that no pixel of U is 4-adjacent to a pixel of V. As S is 8-connected,
there exist u € U and v € V which are 8-adjacent. Let ¢ and d be the two pixels which
are 4-adjacent to both u and v (thus u, v, ¢ and d form a 2 X 2-square). Then ¢,d ¢ 5,
otherwise U would be 4-connected to V. Let z be the middle of [u,v]. By the strong
chord property, there exist r,s € S such that dy(r,s) = 1 and ds(z, 7) + ds(z,s) < 2. But
ds(z, u) = dg(z,v) = ds(z,¢) = ds(=,d) = 1/2, while ds(z,t) > 3/2 for t € G — {u,v,¢,d}.
Thus r,s € {u,v,c,d}, and as r is 4-adjacent to s, one of r and s is equal to ¢ or d, which
contradicts the fact that ¢,d ¢ S. Thus S is 4-connected, and so it is 4-convex.

(2°) (i) implies (#4¢).
The proof is the same as for the point (2°) in the proof of Theorem 12.

(8°) (#i7) implies (7).
For any u,v € S and two diagonally adjacent a,b € G, if [u, v] intersects [a,b], then a or
b € 5. Indeed, let y be a point in this intersection. If y = u, then u = a or b, and similarly
for v. If y €|u, v, then this follows from the hypothesis. Moreover, if y = a, then a € S.
Let us call this property the intersection argument.

Let p, ¢ be two distinct pixels of S; we must show that for every z € [p, g] there exist
two pixels r, s € S such that ds(z, r) +ds (2, s) < 2 and dy(r, s) = 1. This is obvious if p and
g are 4-adjacent, for we can take r = p and s = ¢ in this case. We can thus assume that ¢
is not 4-djacent to p.

Consider the decomposition of the plane in triangles by the grid lines. Then we have
the situation shown in Figure 12, where z € [b, ¢, y].

As z € [b,e,y] N [p, 4|, [p, ¢] must intersect at least two sides of [b, e, y], and so it must
intersect at least one of the two diagonals [b,d] and [a,e]. We can assume that it intersects
[b,d]. We have two cases:

(a) [p,q] intersects [a, €] too.
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Figure 12.

Then the intersection argument implies that S contains two pixels g € {a, e} and h € {b,d}.
Clearly g and h are 4-adjacent. Now if z ¢ [b, e], then = lies in the interior of [a,b,d, €] and
so dg(z,9) < 1 and dg(z,h) < 1. In this case the result holds with r = g and s = h.

We can thus assume that z € [b,e]. If b € S, then either z = e and the result holds
with r = e and s = b, or ds(=,b) < 1 and so the result holds with r = band s = g € {a,e}. A
similar argument holds if e € S. We can thus assume that b,e ¢ S. Now z € [b, ¢, z], and the
same argument as the one in the preceding paragraph implies that [p,¢| must intersect one
of the diagonals [b, f] and [e, €], say [b, f]. Again the intersection argument implies that b or
fe€S Asb¢ S, feS. Asd, f € S and [d, f] intersects [a, €] in e, e € S, a contradiction.

(6) [p,q| does not intersect [a,e].
As z € [a,e,c] and dy(z,y) > 2, [p,¢] must intersect two sides of [a, e, ¢|, and so it must
intersect [c,e]. The intersection argument implies that S contains two pixels g € {b,d} and
h € {c,e}. We have four cases:

— b,e € S. Then the result holds with r = b and s =e.

—b¢ Sandec S. Thend € S. The intersection argument applied to [p, g and [b, d]
implies that z # b. Thus the result holds with r = d and s = e.

—beSande¢ S. Then ¢ € S. Let o = d(x,[a,b]) and B = d(z,[b,¢]), where d is
the Euclidean distance. As z € [b,d, €],

a>p. (18)

As iz € [a,b,e] and z ¢ [a, ¢] (since [p,¢] does not intersect [a, €]),
a+f<l (19)

Now dg(z,b) = maz(a, ) and ds(z, c) = maz(a,1 + ). But then

ds (z,b) + ds(z, ¢) = maz(a, 8) + maz(a, 1+ 5),
=a +maz(a,1+4) (by (18)),
=a+1+4 (by (19)),
<2 (by (19)).
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Hence the result holds with » = b and s = e.

—b,e ¢ 5. Then ¢,d € S. We can apply the intersection argument with [d, c] and
la,€], and so a € S (since e ¢ S). But then we apply the intersection argument with [a, ¢|
and [b,d], and so b € S, a contradiction.

Thus we can find » and s with ds(z, r) + ds(=, 8) < 2 in each possible case, and so S
has the strong chord property. §i

Note that the statements (ii7) in Theorems 12 and 13 are very similar; in particular
for the strong chord property, this form (iZ¢) requires only a pixel r at 8-distance < 1 from
z, and not two 4-adjacent pixels r and s with ds(z,r) + ds(z,s) < 2, as in Definition 4.

The next two sections will exhibit the relations between the digitization of straight
line segments and the chord/strong chord property.

IV.2. Grid-intersect quantization of straight lines and the chord property

The grid-intersect quantization was introduced by Freeman [10] for the digitization of
curves. It associates 8-connected sets of pixels to connected sets of points in the plane.

Rosenfeld [26] studied the grid-intersect quantization of straight line segments, calling
them digital straight line segments. He showed that a simple 8-connected path having the
chord property is a digital straight line segment and conversely. Then Kim and Rosenfeld
[17,21] showed that for every set S of pixels having the chord property and for every two
pixels a,b € S, S contains a digital straight line segment D whose extremities are a and b.

We will give here a simplified proof of these two results, using the Tranversal Theorem
of Santalé (Proposition 3). But let us first recall the definition of a simple k-connected path
and of the grid-intersect quantization.

For k = 4 or 8, a simple k-connected path is a path {py,...,p,} such that for 0 < i <
J < n, the pixels p; and p; are k-adjacent if and only if j =4 + 1.

Given a continuous and orientable curve C in R?, its grid-intersect quantization is a
set Q(C) of pixels built as follows: whenever C intersects an axial grid line (}; or V;, see
(16)), the pixel on that grid line closest to this intersection is taken as a member of Q(C).
Thus the pixel {u,v) belongs to Q(C) if ¥, N C contains a point (u,y) with |y —v| < 1/2
or if V, N C contains a point (z,v) with |# —u| < 1/2. When C intersects an axial grid
line exactly in the middle of two 4-adjacent pixels p and ¢, one must choose one of them as
quantization pixel; the best is to choose the one which is locally to the left of C w.r.t. its

orientation.

When C is connected, its grid-intersect quantization Q(C) is 8-connected, because two
successive intersections of C with axial grid lines lie in the border of a square [a,b,c,d]
formed by pairwise 8-adjacent pixels a,b, ¢, d, and so the corresponding quantization points
are in {a, b, ¢,d}. Moreover, when following C along its orientation, these quantization points
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form an 8-connected path. We illustrate this in Figure 13, where the quantization pixels are
represented as black squares and numbered in their order of occurrence when following C.

I . *‘*j@ﬂ L
|

—0—-6-_— o———— 3 > o
2 13 10

3 9
zl / o - & )
i 5?\6* 7h S G o

Figure 13. Grid-intersect quantization of a curve

(i,j) |

(a) (b)

Figure 14.

Consider now a straight line £. We will study Q(£) and the sets Q(C), where C' is any
segment of L. As remarked by Rosenfeld [26], Q(£) is determined only by the intersections
L n V; with vertical grid lines when the orientation of £ is closer to the horizontal than
the vertical (i.e., when it forms with the horizontal an angle smaller than 45°). On the
other hand, it is determined only by the intersections £ N ¥; with horizontal grid lines when
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the orientation of £ is closer to the vertical than the horizontal (ie., when it forms with
the vertical an angle smaller than 45°). This can be understood from Figure 14. When
the orientation of £ is closer to the horizontal, if £ N X; induces the pixel (7, j) in Q(£),
then £ contains a point (7,y) with |y — j| < 1/2; but then £ N V; contains a point (z, j)
with |z — 7| < |y — j|, and so £ N V; induces (7,7) in Q(L) (see Figure 14 (a)). When the
orientation of £ is closer to the vertical, then a similar argument holds with Figure 14 (b).
Note that when £ is parallel to one of the two diagonal directions, then Q(L£) is determined
by the intersections £ N ¥; or £ N V; indifferently.

The same argument holds for Q(C) when C is a segment of £, except that at the
extremities of C' the intersection with one axial grid line may be missing (namely C' N V; in
Figure 14 (a) and C'n ¥; in Figure 14 (b)). But then we can extend C into a larger segment
C’ containing the missing intersections, and Q(C) = Q(C'). We can thus assume that ¢
is a closed segment whose extremities lie on horizontal or vertical grid lines according to
whether the orientation of C' is closer to the vertical or to the horizontal.

This property of the grid-intersect quantization of straight line segments will be useful
in the proof of the following two results characterizing digital straight line segments:

Proposition 14 [26]. Given a straight line segment C, Q(C) is a simple 8-connected
path having the chord property.

Proof. Wecan assume that the angle between the orientation of C' and the horizontal
is not larger than 45°, that C is oriented in such a way that its left side is above it, and
that the extremities of C' are two points (g, s) and (h, (), where s and ¢ are integers and
s < {. For every integer j such that s < j <, C intersects V; in a single point ¢; = (z;, )
(with g = z, and h = @), and this intersection induces in Q(C) a pixel p; = (i, j), where
2j —1/2<i; <z;j+1/2 Write A={weR|-1/2<w<1/2}and A\j =i; —2;. Then
A; € A. Note that for every A, X € A, [A = )| < L

Let us first show that for s < a < b < ¢, |ia —is| < b —a. Indeed, |A; — Xs] < 1
(since AqyAp € A), and |z, — 25| < b — a (since D forms an angle of at most 45° with the
horizontal). We get thus:

lia = io] = [(Aa = Xs) = (20 — )] < [(Aa = Ae)| +[(2a — 26)| <L+ b —a.
As both b —a and |i, — i4| are integers, |i, — i] < b — a.

Q(C) is 8-connected by the properties of the grid-intersect quantization stated above.
More precisely, for s < j < ¢, the preceding paragraph implies that |i;1; — ;| < 1. Thus
ds(pj, pj+1) = mae(|ij4r —1;],1) =1, and so p; is an 8-neighbor of p;y1. As ds(p;, pyr) >
J—j>1forj >j7+1, Q(C) = {ps,...,pt} is a simple 8-connected path.

Let us now show that Q(C) has the chord property. It is sufficient to prove the
statement (ii7) of Theorem 12. Consider a,b such that s < a < b < ¢, and let z be a point
in [pa,ps] N A, where A is an axial grid line. We must show that A contains a pixel r such
that ds(x,r) < 1. We have two cases:
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(@) A=V, for some j. Thena < j<b As A, A € A, p, and pp belong to the
strip consisting of all points which are either at most 1/2 above C or less than 1/2 below
it. As this strip is convex, z belongs to it, and so z = (z; + A, j), where A € A. Now
p; € Q(C)NV;, and as A, A; € A, ds(z,p;) = |A — Aj| < 1. Thus we can take r = p;.

(b) A = X; for some i, but « ¢ V; for any j. Then we have z = (i, j + 6), where
a<j<band0 <8 <1 Wecanassume that i, < ip. As|i, — i| < b—a (see above), [pa, ]
contains two points ' = ({ — ¢, j) and 2" = (i+¢, 7 +1), where 0 < ¢ = 0(ip —i,)/(b—a) <
6<land 0L = (1-0)(iy —ia)/(b—a) L1 -6 <1 Let r; = (i,j), 12 = (i — 1,J),
rg = ({,5+ 1) and ry = (i + 1,7 + 1). As every point of V; — {r;,rz} is at 8-distance at
least 1 from z', (a) implies that p; = r; or ry. The same argument with z" implies that
Pir1 = ra3 or ry. If p; = ry, then the result holds with r = r;, since r; € X;. If p;y, = 13,
then it holds too. If p; # r; and piy; # rs, then p; = ro, piy1 = ry, and so ds(pi,pi+1) = 2,
a contradiction.

Thus we can find the appropriate pixel r in each case, and therefore Q(C) has the
chord property.

Rosenfeld [26] showed the converse of this result, namely that a simple 8-connected
path having the chord property is the grid-intersect quantization of a straight line segment.
Rosenfeld’s proof was rather long and intricate (much more than that of Proposition 14).
This converse will be a consequence of the following result, due to Kim and Rosenfeld [17,21],
of which we give here a simple proof based on Santalé’s Theorem (Proposition 3):

Theorem 15 [17,21]. Let S be a set of pixels having the chord property and let
7,9 € S. Then there is a straight line segment C such that Q(C) C S and the simple
8-connected path Q(C) has p and g as its extremities.

Proof. Write p = (a,u) and ¢ = (b,v). By symmetry, we can assume that u < v
and |b — a| < v — u. If the equality holds, then p and g are along a diagonal, and then the
chord property implies that (p,q) C S. But then the result holds because {p,¢) = Q([p,q]).
Thus |b—a| < v — u.

Define T, = {p}, T, = {¢} and for u < j < v, T; = SN V; (in other words the set of
all pixels of S of the form (i, 7)). The chord property implies that for u < j < v there are
two integers m; and M; such that m; < M; and Ty is the set of all pixels (7, j) such that
m; < i < Mj. For every pixel r = (e, d), let

D(r)={(zd)|zeRand c—1/2 < z < c+1/2},
and for each Uy, let D; be the union of all D(r) for r € U;. Then

Dj={(z,j)| 7€ Rand m; —1/2 < 2 < M; +1/2}.

Let us show that D,,..., D, satisfy the hypothesis of Proposition 3. Clearly they are
parallel convex straight line segments. Consider the three segments D;, D and D,~, where
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u < j<j < j" < w Take two pixels r € D; and s € D;n; then [r,s] intersect Vs in a
point x. By the chord property, there is some pixel t € S such that ds(z,{) < 1. But then
t € Vs, in other words { € Tj» = SN V.. Let ¢’ be the middle of [z, {] and let € = dg(z,)/2.
Consider the straight line £ parallel to [r, 5| and passing through &’ (see Figure 15). Then £
intersects V; in a point ' such that ds(r, ') = €, and similarly it intersects V;» in a point s’
such that ds(s,s') =e. But as e < 1/2, v’ € D(r), #' € D(t) and ¢’ € D(s), in other words
L intersects D;, Dy and Djn.

Figure 165.

By Proposition 3, there is a straight line £ intersecting each D; (u £ j < v). In
other words, each T} contains a pixel p; such that £ intersects D(p;). We have of course
pu = p and p, = q. Let p' and ¢' be the two points of £ in D(p) and D(q) respectively.
We have p' = (@ + A,u) and ¢’ = (b + p,v), where 1/2 < A\, u < 1/2. Let C = [p',¢']. The
horizontal distance between p' and ¢' is v — u, while the vertical distance between them
isp+p—a-A <|p-a|+|g—A <(u-v-1)+1=u—v Thus C forms an angle
smaller than 45° with the horizontal, and so Q(C) is determined by the intersections C'nV;,
u < j < v. Now for z; = (2, 7) € C NV, the point z; induces the pixel ¢ = (7,j) € G iff
x; —1/2 <i < z;+1/2, in other words iff { — 1/2 < z; < i+ 1/2, that is z; € D(t). Now
this is possible only for t = p; (since the sets D(¢) are pairwise disjoint), and so @Q(C) is the
path p.,...,py, which lies in S. As p, € T, = {p}, p» = p, and similarly p, =¢. B

As we said above, Theorem 15 implies the converse of Proposition 14, and so we have
the following:
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Corollary 16. Let S C | then the following two statements are equivalent:
(£) S is a simple 8-connected path having the chord property.

(i¢) There is a straight line segment C such that S = Q(C).

Proof. (it) implies () by Proposition 14. Let us show that (¢) implies (if). Indeed, if
S is a simple 8-connected path having the chord property, we take p and ¢ as its extremities.
Then Theorem 15 implies that there is a straight line C such that p,g € Q(C) C S. As
Q(C) is 8-connected (by Proposition 14), this means that Q(C) = S. #

Following Rosenfeld [26], such a set S will be called a digital straight line segment.

It is easy to prove the converse of Theorem 15. We get thus the following:

Corollary 17. Let S C G; then the following two statements are equivalent:
(¢) S has the chord property.

(i¢) For every p,q € S, there is a straight line segment C such that Q(C) C S and the
simple 8-connected path Q(C) has p and ¢ as its extremities.

Proof. (i) implies (i¢) by Theorem 15. Let us show that (¢¢) implies (i). Take any
two p,g € S, and let C be the straight line segment such that p,g € Q(C) C S. Proposition
14 implies that Q(C) has the chord property, and so for every z € [p,q], there is some
r € C(Q) such that ds(z,7) < 1. But r € S, and as p and ¢ were arbitrarily chosen, S has
the chord property. B

IV.8. Square box quantization of straight lines and the strong chord property

The square box quantization is a digitization scheme used for surfaces. It associates
4-connected sets of pixels to sets of points whose interior is connected.

Kim [16] studied —in essentially the same way as Rosenfeld [26] did for the grid-
intersect quantization— the square box quantization of straight line segments. He called
such sets cellular straight line segments. He showed that a set of pixels is a cellular straight
line segment iff it is a simple 4-connected path having the chord property, and that for
every 4-connected set S of pixels having the chord property and every two pixels a,b € S,
S contains a cellular straight line segment D whose extremities are a and b.

In this section we will link these results to the strong chord property (which is equiv-
alent to 4-connectedness plus the chord property, see Theorems 12 and 13), and prove them
with the same methods as in the preceding section.

Let us recall first the definition of the square box quantization. To each pixel p one
associates the square box p consisting of all points of R? whose 8-distance to p is at most
1/2 (see (8)). The interior p° of p is the set of points whose 8-distance to p is less than
1/2. Given a continuous surface § in R?, its square box quantization is the set Q°($) of all
pixels p € G such that C intersects p°.
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For a continuons and orientable curve C, this definition of the square box quantization
is incomplete, because a portion of C may traverse the edge between p and g (where p and ¢
are two 8-adjacent pixels), without intersecting p° and 7°. In this case, we adopt the same
remedy as for the grid-intersect quantization, and we choose as member of Q°(§) the one
of p and ¢ which is locally to the left of C. Thus Q°(C) is the set of all pixels p € G such
that either:

() C intersects p°; or
(i7) C intersects p, but not p°, and p lies locally to the left of C w.r.t. its orientation.
When C is connected, Q°(C) is 4-connected. Moreover, when following C along its
orientation, the quantization points of @°(C) form a 4-connected path, because the successive
square boxes p traversed by C are 4-adjacent. We illustrate this property in Figure 16, with

quantization pixels marked as black squares and numbered in their order of occurrence when
following C.

Figure 16. Square box quantization of a curve

In the same way as the grid-intersect quantization of straight lines was related to
8-convexity (or equivalently the chord property), the square box quantization of straight
lines will be related to 4-convexity (or equivalently the strong chord property). In order to
exhibit this relation, we will need to introduce another quantization scheme similar to the
grid-intersect quantization, except that it is based on diagonal grid lines instead of axial
ones. We will call it the diagonal-intersect quantization. We will see that the square box
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quantization of a straight line is equal to its diagonal-intersect quantization. It will then be
possible to adapt Proposition 14 and Theorem 15 to the diagonal-intersect quantization.

The diagonal-intersect quantization Q*(C) of the curve C is a set of pixels built as
follows: whenever C intersects a diagonal grid line (7 or §;, see (17)) in a point z which is
not the middle of two diagonally adjacent pixels, the pixel p on that grid line closest to this
intersection is taken as a member of Q*(C). Note that ds(z, p) < 1/2 and d4(z,p) < 1, but
ds(z,q) > 1/2 and dy(x,q) > 1 for any other pixel q.

When C intersects a diagonal grid line in the middle z of two diagonally adjacent pixels,

© = (i +1/2,j + 1/2) for two integers { and j. Then the pixels in Q*(C) determined by z

will be chosen among the 4 pixels @ = (4,7}, b= (i, +1),c = (i+1,j) and d = (i + 1,5 +1).
We assume that z is not an isolated point of C. We have two cases:

(i) Only one of the four pixels a, b, ¢ and d lies locally to the left of ¢ w.r.t. z. This

happens when the local orientation of C on z is parallel to a diagonal orientation. Then
this unique pixel is taken as member of @*(C). We illustrate this in Figure 17 (a).

Figure 17.

(i) Two adjacent pixels among the four a, b, ¢ and d lies locally to the left of C w.r.t. z.
We can assume that these pixels are ¢ and b. Now the local orientation of € on z is not
parallel to a diagonal orientation, and so the neighborhood of z in € must intersect
the interior of [z,a,c] or the interior of [z,b,d] (and both if z is not an endpoint of
C). Then we take a € Q*(C) if this neighborhood intersects the interior of [z,qa, c| and
b € Q*(C) if it intersects the interior of [z,b,d]. We illustrate this in Figure 17 (b).

Now if £ is a straight line, then @Q*(£) = Q°(£). Indeed, consider a pixel p € £,, N §,;
then:

— L intersects p° iff it intersects P, or §, at 8-distance less than 1/2 from z (see
Figure 18 (a)).

— L intersects p, but not p°, and leaves p to the left iff it intersects P,, or §, at

8-distance 1/2 from p, leaving p on the left, in such a way that this induces p in Q*(£) (see
Figures 18 (b) and 18 (c)).
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(a) (b)

Figure 18.

The same holds for a straight line segment C, except that in some cases we have to
extend its extremities; in other words there is another segment C' containing C, such that
Q*(C) =Q*(C') =Q°(C").

Now we can proceed as we did in the previous section. When the orientation of £ is
closer to the orientation of the secondary diagonals than to the orientation of the principal
diagonals, Q*(L) is determined by the intersections £ N P, only. On the other hand, when
this orientation is closer to orientation of the principal diagonals, Q*(£) is determined by
the intersections £ N §, only. Finally, when £ is vertical or horizontal, then we can restrict
ourselves to the intersections £ N Py, or LN §, indifferently. The same holds for @*(C) for
a segment C, but here again we might have to extend the extremities of C.

Let us now introduce the diagonal coordinates of points in the plane, i.e., coordinates
along diagonal axes. A point p with diagonal coordinates u and v will be labelled (u,v)*,
where the * serves to avoid confusion with ordinary coordinates (z,y). These diagonal
coordinates must be such that the point at the intersection of P, and §, will have m and
n as diagonal coordinates. Thus by (17), a point p = (z,y) will be equal to (u,v)* iff

u=z—y and v=z+y, (20)
or equivalently
= (u+v)/2 and y=(v-u)/2 (21)

Then for every integer ¢,
Pi={(u,v)* €eR? |u=i}

Si = {(u,v)* €R? | v=1i}.

Note that z and y are both integers iff v and v are both integers and congruent modulo 2.

(22)

Given two points p = (z,2) = (u,v)* and p' = (2',y') = («',v")*, (21,22) imply the
following formulas for the 4- and 8-distance between them:

di(p,p') = |2’ — 2| + |y’ - y| = max(|(' — =) + (v - )|, (2" = 2) = (' = ¥)])
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= maz(|u’ — u|,|v" = v]). (23)
ds(p,p') = max(|z' — 2|, |y — y|) = maz(|(x' —u) + (' —v)|,|(«' —u) = (v' - v)])/2
= (Ju" —u| + o' —v|)/2. (24)

This is due to the formula |a| + |b] = maz(|a + b],|a —b]).

We can now get the equivalents of Proposition 14 and Theorem 15. These two results
were proven first by Kim [16] (with Q° instead of @*, but this does of course not matter):

Proposition 18 [16]. Given a straight line segment C, Q*(C) is a simple 4-connected
path having the strong chord property.

Proof. We can proceed in the same way as in the Proof of Proposition 14, but we
substitute the diagonal coordinates to the ordinary onmes, 7, to X;, and §, to V;. We
assume that the orientation of C' forms an angle of less than 45° with the orientation of
principal diagonals. The extremities of C' are two points (g, s)* and (h,{)*, where s and ¢
are integers and s < f. For every integer n such that s < n <, C intersects §, in a single
point ¢, = (u,,n)* (with g = u, and h = u¢), and this intersection induces in Q*(C) a
pixel p, = (myg,n)*, where u, —1 < m, < u, + 1 (note that we have 1 instead of 1/2 in
Proposition 14). Write A={w € R| -1 < w < 1} and A\, = m, —u,. Then A, € A. Note
that for every A, X' € A, |A = )| < 2.

To show that for s < a < b < ¢, [mg — mp| < b —a, we do the same as in the second
paragraph of the proof of Proposition 14, but here we have |, — As| < 2, and so we get
|me —mp] =< 2+ b —a. Now both b — a and |m, — my| are integers, but they must also
be congruent modulo 2 (since @ and b are congruent to m, and my respectively). Thus
|me — mp| < b—a.

An argument similar to the one in the third paragraph of the proof of Proposition 14
shows that Q*(C) = {ps,...,p¢} is a simple 4-connected path.

To show that Q*(C) has the strong chord property, it is sufficient to prove the state-
ment (¢ii) of Theorem 13. Counsider a,b such that s < a < b < ¢, and let = be a point in
[Pa,ps] N D, where D is an diagonal grid line. We must show that D contains a pixel r such
that ds(z,r) < 1. We have two cases:

(@) D = §, for some n. An argument similar to the one in the corresponding point
(a) in the proof of Proposition 14 shows that z = (u, + A, n)*, where A € A. Now p, €
QR*(C) N 8, and as A\, A, € A, ds(z,pn) = |A — An| /2 < 1. Thus we can take r = p,.

(b) D = P, for some m, but z ¢ §,, for any n. This case and the following argument
are illustrated in Figure 19. We have z = (m,n + 8)*, where ¢ < n < b, n is congruent
to m modulo 2, and 0 < § < 2. We can assume that m, < mp. Suppose that p, € S,41.

Then p, = (m + 2t + 1,n + 1)* for some integer t. As p,, py and z are collinear, we have
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Figure 19.

(mp —mga)/(b—a) = (2t +1)/(1—0). As |m, — my| < b— a (see above), this implies that

2t +1 1 s
1-0|=Jo—1

a contradiction. Thus p; ¢ Sp+1, and a similar argument shows that py ¢ Sp41. Thus [pa, ps)

my — Mg

1>
b—a

1,

crosses $, and §,49, and so it contains two points &' = (m—1,n)* and 2" = (m+9¢,n+2)*,
where 0 < ¢ = 0(mp—m,)/(b—a) <0 <2and0< ¢ = (2—8)(mp—m,)/(b—a) < 2-60 < 2.
Let r; = (m,n)*, ro = (m — 2,n)*, rs = (m,n+2)* and ry = (m +2,n + 2)*. As every
pixel of §, — {ry, 2} is at 8-distance at least 1 from z', (a) implies that r; or ry = pp,. The
same argument with z" implies that r3 or r4 = pp42. If 11 = pm, then the result holds with
r = ry, since r; € Py, and dg(z,r,) = 0/2 < 1). If rg = pyyye, then it holds with r = rs.
If ry # pm and rs # Py, then ppm = ro, Pmys = r4, and so dy(Pm,Pmy2) = 4, which
contradicts the fact that {p,,...,p:} is a simple 4-connected path.

Thus we can find the appropriate pixel r in each case, and therefore @*(C) has the
strong chord property. §

Theorem 19 [16]. Let S be a set of pixels having the strong chord property and
let p,g € S. Then there is a straight line segment C such that Q*(C) C S and the simple
4-connected path Q*(C) has p and g as its extremities.
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The proof is similar to the one of Theorem 15, if we substitute the diagonal coordinates
to the ordinary omes, P, to X;, and S, to V;, and we make a few other small changes:

(1°) In the first paragraph, we can apply a parity argument similar to the one in the second
paragraph in the proof of Proposition 18: |b — a| and v — u must be congruent modulo
2, and as |b — a| < v — u, this implies that b —a| < v —u — 2.

(2°) We must replace 1/2 by 1 in the definition of D(r) and of D; and in the inequalities
satisfied by x;, A and g in the last paragraph. By (1°), the distance between p' and
g' along the secondary diagonal direction is then < (u —v—2) +2=u— v,

It is finally possible to derive the following two results in the same way as Corollaries
16 and 17:

Corollary 20. Let S C G, then the following two statements are equivalent:
(¢) S is a simple 4-connected path having the strong chord property.
(i) There is a straight line segment C such that S = Q*(C).

Corollary 21. Let S C G; then the following two statements are equivalent:

(¢) S has the strong chord property.

(1) For every p,q € S, there is a straight line segment C such that Q*(C) C S and the
simple 4-connected path Q*(C) has p and ¢ as its extremities.

Note that in the 4 results stated above, one can replace @*(C) by Q°(C).



V. TFurther topics in digital convexity

Chapter IV introduced relations between digital convexity and quantization of a par-
ticular class of convex subsets of the Euclidean space, namely straight line segments. One can
go further and analyze the relations between digital convexity and quantization of Euclidean
convex sets through various digitization schemes. This is done in particular in [15,23].

Digital convexity and straightness can also be defined in 3 or more dimensions. A study
of the 3-dimensional case has begun [18,19,22]. Some properties studied in this Report can be
generalized to n-dimensional digital images. For example Proposition 1 leads to the following
generalization of L- and T-convexity: a n-dimensional digital image S is said to be (n, z)-
convex (where z = 1,...,n) iff for every U C S such that |U| < #+1, ({U) C S. Thus L- and
T-convexity are (2,1) and (2, 2)-convexity respectively. One can then investigate whether
there exists an n-dimensional correspondent of Theorem 5. Another example of possible
study is the generalization of the method used in Chapter IV in order to derive from n-
dimensional theorems of Santald type characterizations of the digitization of u-dimensional
subspaces (u = 1,...,n — 1) on a n-dimensional grid.

Let us note finally that it is possible to study infinite digital straight lines. For this
purpose one can generalize Santalé’s Theorem to the case of an infinite number of parallel
straight line segments by requiring that these segments are bounded and closed.
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