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Abstract: A function f in n variables is called an order function if for any ®,,..., %, such
that z;, < ... < %, we have f(xy,...,%,) = x¢, where t is determined by the n-tuple
(¢1,...,1s) corresponding to that ordering z;, < ... < z;,. Equivalently, it is a function
built as a minimum of maxima, or a maximum of minima. Well-known examples are the
minimum, the maximum, the median and more generally rank functions, or the composition
of rank functions.

In this report we study the mathematical properties of order functions and give several
characterization theorems for them. We give then an interpretation of these properties in
terms order filters, that is, digital signal processing local filters based on order functions
(such as the median or separable median filter, Min-Max filters, or rank filters).
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ERRATA TO R500

— Page 31, line 9 (proof of Proposition 17):
“Take 21,...,%, and y1,...,Y,” instead of “Take (21,...,%,) and (¥1,...,Yn)".
— Page 34, line 15 (after (25)):
“commutes with the pair” instead of “commutes the pair”.
— Page 34, lines —14, —10, and —6, and Page 36, line 2 (proof of Proposition 16’ and
statement of Propositions 17’ and 19):
“decreasing” instead of “increasing”.
— Page 38, line 6:
“we apply fg” instead of “we apply fp”.
— Page 46, line —6:
“gp o [f}) I fB[p]]” instead of “gp|(p| o [fllj ol ... B [p]]”.
— Page 46, line —5:
“gp” instead of “gp[p]”.
— Page 46, line —1:
“gp” instead of “fp”.
— Page 50, line 14 (Property 6):
“p: D — D” instead of “n: R — R”.
— Page 52, line —-T:
“in the case where” instead of “in the case when”.
— Page 53, line 2:
“restriction to binary signals” instead of “restriction to binary signal”.



I. Introduction

Anyone working in non-parametric statistics or in digital signal processing has fre-
quently met rank functions; such a function r; in n variables selects the k-th smallest of its

arguments as result:
VelZyon i) =25 i Sk B

For k = 1 this is the minimum, while for & = n this is the maximum. When n is odd and
k = (n+1)/2, we have the well-known median.

In the same way as the median has been considered as an alternative to the mean in
non-parametric statistics (see [11], p. 46, and [13], p. 11), in digital signal processing one
has proposed to use smoothers based on running medians instead of running averages [22].
A signal filter using running medians is called a median filter. Rank filters, in other words
filters based on rank functions, have also been applied in image processing (see in particular
the recent survey [10]).

A rank function has the following feature: its result is not computed by an arithmetical
function of its arguments; it is rather selected among these arguments, in function of their
ordering. There are other functions possessing that same feature. We give here three
examples of such functions.

Consider first the following simple generalization of rank functions, called weighted
rank functions. Suppose that to each i = 1,...,n one associates a non-negative integer
weight w;. Then the k-th weighted rank function determined by the weights wy,...,w, is
obtained by applying the ordinary k-th rank function r; to a sample of wy = wy +--- + w,
variables containing w; copies of z; for each i = 1,...,n. When wy is odd and k& =
(wr +1)/2, we get the weighted median defined in [4,12].

The weighted median can be taken as an alternative to the weighted average in the
design of smoothers for digital signals. Take for example a two-dimensional digital image.
Then we can smooth it with a weighted median filter defined as follows. To each point we

associate a 3 X 3 window centered about it; then in the image we replace the grey-level of
each point by the weighted median of the grey-levels of the 9 points of the corresponding
window, where the weights can be repartited within the window as follows:

121

2 3 2

121

Our second example is the following n? variable function:
med[med(®i iso0 (i) MO Tss 5 %m0}

It intervenes in the two-dimensional separable median filter [16], which consists in the suc-
cession of two one-dimensional median filterings, one on the rows and one on the columns
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of a two-dimensional image. It is not hard to see that this function is not a weighted rank

function.

Our third example is given by the following operator for eroding narrow peaks and
ridges in a two-dimensional digital image. It is obtained by the composition of a min filter
followed by a max filter, and it is described in [7,15]. A point can be labelled with integer
coordinates (i, ), and its grey-level is then written (i, j). Now the operator replaces each
grey-level (i, j) by a new grey-level y(i, j) obtained as follows: within each d x d square S
containing (7, j), take the minimum m(S) of the grey-levels z(i’, ;') for all points (i’, j') in
S; then y(i, j) is the maximum among all these minima m(S). In other words, we have

“dgnficSG{ogT}glgd{x(s +u+a,j+v+b)}}.

y(i,j) =
This means that for a grey-level value g, y(#,7) > g if and only if there is a d X d square
S containing (¢, j), whose points (¢, j') have all a grey-level z(i’, j') > g. Thus peaks and
ridges too narrow to contain a d X d square are eroded in the new image.

The functions described above have a common flavor, and they can be charaterized in

two ways.

First, the result of such a function equals one of its arguments, and the choice of it
depends only upon the ordering of these arguments. In other words, assuming that such
function is in n variables, to every ordered n-tuple (iy,...,7,) obtained by a permutation
of (1,...,n) one can associate an integer ¢ = x(i1,...,i,) with 1 < ¢ < n, such that for
BNY Z1;...,8n, Ti; S ... < %, implies that f(24,...,2,) = 2¢ for t = x(i1,...,in). For
example, x(é1,...,1,) = ix for the k-th rank function.

Second, they can be obtained by a composition of the minimum and maximum func-
tions only. For example, the k-th rank function is obtained by taking the minimum among

all maxima of k-tuples of variables.

As we will show in Section III, these two properties are equivalent. We will call
such functions order functions (because of their relations to the order statistics among
their variables). The purpose of this report is the study of the fundamental mathematical
properties of such functions. As can be seen from some of the examples given above, our
motivation comes primarily from image processing, and we will indeed apply our results to
digital signal processing operators built from order functions, what we call order filters.

There is a strong argument justifying a fundamental mathematical study of order
functions. While many order filters have been built by heuristic methods, not much is known
about their nature, their behavior, and even the reasons guiding the choice of a particular
type of filter. The deepest theoretical results about them are mostly of a descriptive (see
for example [10,23]) or statistical (see for example [12]) nature, they study convergence
properties of certain types of rank filters (see for example [6,17]), or they relate order filters
to their counterparts for binary digital signals (see for example [5,7,15]). Our aim is to give
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the first rudiments of a general theoretical understanding of order functions, and so to allow
practitioners in digital signal processing to understand the nature of the order filters that
they will use, and in particular to choose them knowingly.

The report is organized as follows:

In Section II we give an axiomatic definition of order functions, and of a wider class
of functions that we call preorder functions. We characterize the possible values that order
functions may take. We study also the dual of an order function, based on the duality
between the two order relations < and >, and the composition of order functions.

In Section III we show the equivalence between the two definitions of order functions
given above and we study the possible min-max decompositions of an order function.

In Section IV we give several mathematical characterizations of order functions, relat-
ing to continuity, commutation with thresholding, etc..

In Section V we study the “threshold decomposition” method which was devised in
[6] for median filters, but is still valid for order functions and order filters.

In Section VI we define the order filters corresponding to order functions. We give a
practical interpretation in terms order filters of the properties of order functions stated in
Sections IV and V.

A more detailed study of order filters, going beyond the mere application of properties
of order functions, will be made in a second paper [20].

In a third paper [21], we will show that order functions relate also to fuzzy set theory.
The link between fuzzy set theory and minimum/maximum filters was investigated in [7,15]
and used in [18]; we will extend this link to order functions. We will explain why certain set
operations, such as the union or the intersection of a finite number of sets, or the convex
hull of a finite Euclidean set, etc., admit a unique fuzzy extension which commutes with
thresholding. It is so because these operations are increasing.

General definitions and notation

We will recall here a few definitions from the theory of functions and introduce a
particular notation that will be used throughout the report.

For a function f defined on a set X and a set ¥ D X, a function g defined on ¥ will
be called an extension of f to Y if f is the restriction of g to X.

Given a set X and two functions f: X™ — X (where m > 1) and ¢: X — X, we
will say that f commutes with g if for every #;,..., z,; € X we have

g(f (1, oy 2m)) = flg(@1), .- 9(7m)).

Write R for the set of real numbers. Let E be a subset of R. Let us recall the definition
of monotonous functions. Given a function f: E™ — E (where m > 1), we will say that
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— [ is increasing if for any 2y,...,%m,¥1,...,Ym € E such that z; < g; for each i =
1,...,m, we have f(z1,...,2,) < f(y1,.--,Ym); and that

— f is decreasing if for any x1,...,%m,Y1,..-,¥m € E such that z; < y; for each i =
1,50, m, wehave FlZi,.38m) 2 Tl¥is: cos¥n )
Now for a function g: E — E, we will say that
— g is strictly increasing if for any 2,y € E, « < y implies that g(z) < g(y); and that
~— g is strictly decreasing if for any z,y € E, = < y implies that g(z) > g(y).

We consider a subset D of R of size > 1, and an integer n > 1. We will study order
functions in n variables over D. In practice, D will be a set of possible signal values (for
example {0,...,255}), or a set of values in a discrete statistical sample, while n will be
the size of a window in an order filter for digital signals, or the size of a discrete statistical
sample. Let B be the binary set {0,1}. Two interesting particular cases will be D = R and
D = B. However, in our mathematical analysis, we will make no particular restriction on
D and n, except that |D|,n > 1.

Let I, = {1,...,n} and let T, be the set of ordered n-tuples (iy,...,#,) such that
{i1,...,in} = I, in other words the set of ordered n-tuples (iy,...,#,) obtained by a
permutation of (1,...,n). The elements (;,...,i,) of T, will correspond to the possible
orderings z;, < ... < #;, of the arguments of an order function.



II. Axiomatic definition of preorder and order functions

We will define order functions, and a generalization of them called preorder functions,
as functions selecting one of their arguments as result, where that selection is determined
by the ordering relations between these arguments. In Subsection II.1 we give an intuitive
definition for them. In Subsection II.2 this is made more formal; we show also that the
definition of an order function implies some constraints on the possible values that it may
take, and we characterize them. This subsection contains mainly mathematical details, and
so it can be skipped by readers interested only in practical applications of order functions.
In Subsection II.3 we show that the domain of variables of an order function can be extended
to R. Then in Subsection I1.4 we use the duality between the relations < and > in order to
define the dual of a preorder or order function, and we consider the composition of preorder
or order functions, and related constructions.

II.1. Selection, preorder, and order functions: an intuitive view

As explained at the end of the Introduction, we will consider a certain type of functions
in n variables over a set D (where n,|D| > 1). As we will later consider certain particular
cases for D (in particular, D = {0,1}), we will write these functions fp, gp, hp, etc., in
order to avoid any confusion.

The first property of such a function is that its result is always equal to one of its
arguments. It is thus selected among these arguments by some specific rule. We call such a
function a selection function. More precisely, we state the following:

Definition 1. Let fp be a function D™ — D. Then fp is called a selection function
if for any #;,...,%, € D, we have fp(21,...,2,) € {z1,..., 2, }.

This concept corresponds to the operation of selecting a value inside a sample of n
values in D. The choice of that particular value must be made according to some criterion.

Here we will consider that this criterion is based on the ordering of the samples. There are

two ways to express this.

Recall the set I, = {1,...,n} and the set T, of all n-tuples (iy,...,i,) obtained by a
permutation of (1,...,n).

Consider a selection function fp : D" — D. We require that for z4,...,2, € D,
fp(zy,...,%,) is chosen among #,,...,%, in function of their ordering. This ordering may
be understood in two ways:

(1°) It is the set of all ordered pairs (4, §), where i, j € I, such that #; < z;,.
(2°) It is a chain of the form z;, <... < @;,, where (i1,...,i,) € Tp.

In fact these two concepts are distinct, and (1°) leads to a wider class of functions than
(2°). Indeed, given a chain z;, <... < #;_, the set of ordered pairs (7, 7) such that z; < z;
is completely determined if we specify for each k¥ = 1,...,n—1 whether we have z;, = z;,_,
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or z;, < ;.. ,. Now in (2°) the distinction between these two cases is irrelevant, and they
both lead to the same result for fp(zi,..., %), while in (1°) this distinction matters, and
the two cases can lead to distinct results for fp(z1,...,2,).

As an example, consider the following function (with n odd):

med|Zy,...,2x) Bz =med{Zy00, 28, )
Toldy @ 1= Cminlzy; oo 2e] b E <medl®y i tn);
SHAE(Z], 3 E ) 0L 2y > el By i g )s

(It can be used for the design of a contrast-enhancing filter for digital images (with D
being the set of greylevels): to each point p we associate a window ©(p) of size n, and
we apply fp to the greylevels of the points of p(p), where z; corresponds to the reference
point p.) Suppose that we have z;, < ... < w;,, where in—1)j2 = 1 (in other words z;
is just before the median in the ordering of the variables x;). Then we may have either
T = Tig,,y) . = med(z1,...,2,) or 21 < med(z1,...,2,). The two cases lead to two
distinct results for fp(2y,...,z,), namely min(zy,...,,) and med(zy,...,%,). Thus here
the result of fp depends upon the ordering of the variables as in (1°).

On the other hand, the result of a rank function depends upon the ordering of the
variables as in (2°).
As (2°) is more restrictive than (1°), (1°) gives rise to a wider class of functions. For

the purpose of this report, we will call them preorder functions, while functions determined
by (2°) will be called order functions. We have thus the following two definitions:

Definition 2. Let fp be a function D* — D. Then fp is called a preorder function
if for any #;,...,%, € D, there is some { € I, which is chosen as a function of the set of
ordered pairs (7, f) for which z; < z;, such that we have fp(z1,...,2,) = ;.

Definition 3. Let fp be a function D™ — D. Then fp is called an order function if
to every (iy,...,4,) € T, one can associate an integer ¢ = x(iy,...,#,) € I, such that for
any zy,...,%, € D, 2;, <... < z;_ implies that fp(z1,...,2,) = ¢ for £ = x(i1,...,8,).

It is clear that an order function is a preorder function (because the set of pairs (i, j)
such that #; < z; determines the set of all orderings of the form z;, <... < 2; ), and that
order functions and preorder functions are selection functions.

The distinction between the two orderings (1°) and (2°) has been considered in [14]: a
chain @;, <... < ;, (determining the ordering as in (2°)) was called a configuration, while
achain ; *...*;, (where each * is either = or <, determining thus the ordering as in (1°))
was called a sub-configuration. Preorder functions were called configuration functions, and
order functions were identified with continuous configuration functions (it is indeed easy to
see that a preorder function is an order function iff it is continuous).

For an order function fp, the map x associating to each (iy,...,i,) € T, the value
X(#1,...,4,) € I, will be called the choice map of fp. It is clear that the behavior of fp is
determined by its choice map.



The functions described in the Introduction (i.e., rank functions, weighted rank func-
tions, compositions of rank functions, etc.) are order functions. For example, with the k-th
rank function 7, we have x(il, i .,z'n) = ig. With the k-th weighted rank function deter-
mined by the weights wy, ..., w,, we have x(i1,...,8,) = i if Zj«:t wi; <k< ZjSt w;,.

In an order function fp the choice of ¢ = x(iy, ..., i,) may not be arbitrary, because fp
must be well-defined. Take for example n = 3, and let s = x(1,2,3) and t = x(2, 1,3). Given
%y = Ty < z3, we have both 2; < 2, < x5 and 2o < @y < x3; thus f(2;, %2, 23) = 2, = 24,
and so we may not have for example s = 3 and { = 2, since x3 # 9. The restrictions on
the possible choices ¢ = x(iy,...,4,) will be characterized in the next subsection, where we
will also give a more formal version of Definitions 2 and 3. The most important thing to
remember is that the constraints to be satisfied by the choice map x of an order function
on D" are independent of the set D. Readers uninterested in mathematical formalism may
skip that subsection and resume the reading in Subsection II.3.

I1.2. Formal characterization of preorder and order functions

We will give here a more formal definition of preorder and order functions. Then we
will characterize the constraints that must be satisfied by the choices ¢t = x(iy,...,#,) for
(- 08 ET-

Let us give some precisions on the selection of ¢ in Definition 2. The set of pairs (3, 5)
such that z; < z; is not arbitrary. Let yi,...,yn be the distinct values taken by z1,..., 2,
where y; < ... < yp. The only constraints on the integer m are that m > 1, m < n and
m < |D|. For each j =1,...,m, let P; = {i € I, | z; = y;}. Then the sets Py,..., Py,
form a partition of I, in other words they are non-void, pairwise disjoint, and their union
is equal to I,,. The ordered m-tuple (Py,...,Py) will be called an ordered partition of I,,
and m will be its length; as it is determined by the values of #,,..., z,, we will say that it
is induced by ®1,...,%y.

Clearly, any ordered partition of I;, having length m, where 1 < m < min{n,|D|}, is
induced by some zy,...,%, € D. Now it is obvious that the ordered partition (Py,..., Py)
induced by z;,...,z, characterizes the set of ordered pairs (7, j) such that z; < z;, because
for i € P, and j € Py, we have z; < z; iff @ < b. Thus, given that ordered partition induced
by 2i,...,%,, there is some ¢ € I, such that fp(z,,...,2,) = 2;, and the choice of ¢ is
determined by that ordered partition; now if { € P,, then we have fp(z;,...,2,) = 2, for
any other s € P,. In other words, to each ordered partition (Py,...,P,) (with 1 < m <
min{r, |D|}) corresponds one of its members P,, such that if #;, ..., z, induce that ordered
partition, then fp(zi,...,%,) = «, for any s € P,. Hence we can give a new expression of

Definition 2 as follows:

Definition 2°. Let fp be a function D" — D. Let s = min{n, |D|}. Then fp is called
a preorder function if there is a map o associating to each ordered partition (Py,...,Py)
of I, where the length m satisfies 1 < m < s, one of its members P, = o(Py,...,Pn),
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and such that for any z;,...,2, € D, fp(%1,...,2,) = @ for t € ¢(Q1,...,Qn), Where
(@1,-..,Qp) is the ordered partition induced by x;, ..., Z;.

It is clear that any such map ¢ corresponds to a preorder function, and that the
correspondence between preorder functions D™ — D and such maps ¢ is one-to-one.

The formalization of Definition 3 is easier. We have only to remark that the choice
t = x(¢1,...,1y) for each (iy,...,i,) € T, is given by a map x : T, — I,. Hence we make
the following:

Definition 3°. Let fp be a function D® — D. Then fp is called an order function
if there is a map x : T, — I, such that for any z,,...,%, € D, z;, < ... < z;, (with
(i1,-..,8n) € Tp) implies that fp(zy,...,2,) = #; for t = x(i1,...,in). The map x is then
called the choice map of fp.

Now the correspondence between order functions D™ — D and their choice maps is
also one-to-one, but it must be stressed that not every every map x : T, — I, is the
choice map of an order function. We gave an example for n = 3 at the end of the previous

subsection. More generally, when z, = z; for a # b, there exist two distinct (iy,...,#,) and
(Jisii.adn) € T such that »;, < ... < and z; <...<z;,; then for ¢ = x(§1,... )
and d = x(j1,...,Jn), we must have z, = 25 = fp(#1,...,%,) if x is the choice map of an

order function fp, and so x may not be arbitrary in this case.

Choice maps are determined by the following criterion:

Proposition 1. Let Y be a map T, — I,. Then the following three statements are

equivalent:
(¢) x is the choice map of an order function fp : D™ — D.

(i) Given (iy,...,i,) and (j1,-..,Jn) € Tn such that for some a,b € I, with a < b we
have
{ik|k<a}={jk|k<a} and
olagk<b}={ilagk<t} =M,

then x(iy,...,i,) € M implies that x(j1,...,Jn) € M.

(1) Given (u1,...,un) and (v1,...,vs) € Ty such that for some k € {1,...,n—1} we have
Uk = Ug41, Vkt1 = Uk, and v, = u, forr # k,k+1, then x(uy,..., %) = x(v1,..-,¥n)
or {X(ula -'-yun)’X(Ul,“'avn)} = {uk’uk-f-l}’

Proof. (a) (i) implies (ii1).
Take (uy,...,u,) and (vy,...,v,) as in the statement of (¢ii). We can write x(uy,...,u,) =
wg and x(vy,...,v,) = up, where #,t' € I,,. Suppose that ¢ # #'; without loss of generality,
we can assume that { < ¢’ (otherwise we invert ¢ and #' in the following argument). As
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|D| > 2, we can take r,s € D such that r < 5. If { < k we define z;,...,2, € D as follows:

if § <1
xu_,-:{r IJ_,

s ifyj>¢t.
As t < k we have z,, < ... < ¥y, = %4y, < ... < 2y, and so this means that z,, <
..< a2, and z,, < ... < 2,,. As x is the choice map of fp, we have thus r = z; =

fD(zl,...,a:n) = xp = 8, a contradiction. If ¢ > k + 1 we define z,,..., 2, € D as follows:

ot it 3 <t
T e G2l
We get then the same contradiction r = z; = fp(®1,...,2,) =a2p = 8. Thusk <t < ' <
k+ 1, and so {ug, up } = {ug, upt1}-
(b) (itd) implies (7).
Take a,b and (iy,...,4,) as in (if). Let S be the set of all (ji,...,j,) € T, such that
{ix|k<a}={h|k<a} and
{ik[a§k§b}={jk|a5k5b}=M.

We have then also
{ir |b< k}={d|b<k}

We must show that if x(iy,...,in) € M, then x(ji1,...,/n) € M for every (j1,...,Jn) €
S. It is clear that any element of S can be obtained from (ij,...,i,) by applying to
it three permutations of the positions of its entries ir: one of the entries iy with k& <
a, one of those with a < k < b, and one of those with b < k. Each one of these 3
permutations can be decomposed as a succession of transpositions inverting neighboring
entries, i.e., transformations of S of the form

(Bpseio s ) = (oo UpyBraggse o) B (Vo0 W) = (oons Bpgas Wy

where either £,k +1 < a,ora < k,k+1<b,orb < k,k+ 1. This is the transformation
from (uy,...,u,) to (v1,...,v,) in (i¢). Thus either

X(vls'”svn):X(uls'“sun)a or

{X(ul: ey un):X(vl: KRR Un)} s {uk'l Uk41 }~
Now the restrictions on & and the definition of S imply that in the second case u; € M iff
a<k<biffa<k+1<b,iff upyy € M. Thus in both cases x(uy,...,u,) € M implies
that x(vi,...,v,) € M. Therefore, thanks to a succession of these transformations from
(u1y.0yuz) to (V1. 0), X(G1,. -1 Jn) € M for every (ji,...,Jn) € S.

() (i7) implies (7).
We define the function fp : D™ — D as follows: for any zy,...,2, € D, if z;, <...< 2,

9



for some (fy,...,4,) € Ty, then fp(=1,...,2,) = 2¢ for ¢ = x(i1,...,i,). We have only to
show that fp is uniquely defined, in other words that if we have z;, < ... < #;, for some
other (j1,...,Jn) € Tn, then z; = zy¢ for ¢’ = x(j1,...,Jn)-

Suppose that we have z;,...,2, € D such that #;, <...<z;, and 2;, <... L 2,
for two distinct (é1,...,4,) and (j1,...,Jn) € Tn- Let ¢ = x(i1,...,7,). Then there exist
a,b € I, such that @ < b, and there are @ — 1 elements § of I, such that z; < @, and
b—a + 1 elements j of I, such that z; = #;. Thus for every k € I,, we have:

=ua; ifa<k<b

<z ifk<a;
:ﬂ,k{
>z ifb> k.

Now ji,...,Jn satisfy the same property:

=2 fa<k<b

<2 H k< a;
ka{
>ai Hb> K

Therefore
{ix | k<a}={jk | k<a} and

{it|a<k<b}={js|a<k<b}=M.

Moreover t = x(i1,...,in) € M by definition of a and b. By (i), x(Ji,.--,J.) € M, in other
words zy = @ for t' = x(J1,.+.,Jn).

This result is very powerful for the determination of values of order functions, when
some of them are specified. We show this on two simple examples.

(1°) Let x be the choice map of an order function fp. Assume that there ex-

ist (up,...,u,) and (vy,...,v,) € T, such that u; = v, = ¢ for some ¢ € I,, and
Xl aue) = xlvy.000) =4 Then ¥(Fi,...,r5) = & for any (r1,....05) € Ty, ifi
other words fp(zy,...,%,) = x; for any zy,...,2, € D.

Indeed, if ry = £, this follows by applying (i¢) to (uy,...,u,) and (ry,...,r,) witha =
b=1. If r, = t, it follows by applying (i) to (vy,...,v,) and (ry,...,r,) witha =b = n.
If rp =tfor 1 <k <n,then x(rg,r1,... "e—1,7%41,-..,7) = 7'k, as shown above, and so

(¢7) applied to (r1,...,r) and (rg, #1,..., k=1, "k+1,---,,) With @ = 1 and b = k implies
that x(ry,...,tn) € {r1y...,7e}; but also X{riy...;Teeis Thtiyoos s Tns k) = 7k, and so (3)
applied to (ry,...,rp) and (ri,...,"%—1, k41, n, k) With @ = k and b = n implies that
x(r1y- .- 70) € {rk,..., s }; combining both results, we have x(ry,...,r,) =rg = L.

(2°) Consider now two integers a,b € I,, and an order function fp such that for every
Z1,...,%, € D, 2, = min{zy,...,®,} implies that fp(z1,...,%,) = re(21,...,2,), and
zy, = max{ey,..., %, } implies that fp(21,...,2,) = re(21,...,2,). In other words, for any
(i1y--yin) € Tny x(i1,...,in) = is if iy = 1 and x(f1,...,1,) = ip if i, = 1. Then the
method used in the preceding paragraph can be used to show that for any (i1,...,i,) € Tp,
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X(f1y...y8n) =4, if ig = 1 for k < @, and x(i1,...,n) = @ if i = 1 for k > b. We get
thus a contradiction for b < k < a, and we show then that fp(zy,...,%,) = @y if i =1 for
a < k < b. Hence one of the following holds (where ry, is the k-th rank function):

({) a < b, and for every zy,...,2, € D we have
ra(®1,-..,2a) if 21 <121, 20);
fo(z1,...,2.) = = if ro(21,...,20) < 21 < rp(21,.. ., 20);
Polt sy i) AL Tplai, s sy ) S 5.

In fact, fp is the b-th weighted rank function for the weights w; =b—a+1and w; =1
for i = 2,...,n. Two particular cases are: a = b, and then fp = r;;a =1, b=n and
then fp(z1,...,%,) = #; as in the preceding example.

(#2) a = b+ 1 and for every zi,...,%, € D we have fp(21,...,2,) = re(2a, ..., 2,).

For a =2 and b = n — 1, the function described in (i) can be used for the design of a
“no extreme” filter eliminating all isolated peaks in an image: if the greylevel of a point is
minimum in the window around it, then it is replaced by the next to minimum greylevel; if it
is maximum, then it is replaced by the next to maximum greylevel; otherwise it is preserved.

I1.3. Extending the domain of preorder and order functions

The alert reader will have noted that the definition of order functions (see particularly
Definition 3’ in Subsection II.2) is independent of the structure of the domain D of its vari-
ables. It depends only upon the choice map x associating to each n-tuple (iy,...,i,) € T,
an integer x(iy,...,¢,) € I,. Moreover, the constraints that x must satisfy (see Proposi-
tion 1 in Subsection II.2) have nothing to do with D. Hence, given another subset D’ of size
at least 2 of R, to an order function fp on D™ corresponds a similar order function fp: on
D'", which has the same choice map x as fp. We can thus restrict fp to C® for C C D, or
extend in a unique way fp to E™ for E O D, and we get the corresponding order functions
fo and fg, having the same choice map as fp. In other words:

Proposition 2. For C C D (with |C| > 2), the restriction to C™ of an order function
on D™ is an order function having the same choice map. Given E C R such that E D D,
an order function on D™ can be uniquely extended to an order function on E™, and that
extension has moreover the same choice map.

Thus, given an order function fp on D", we will assume that fp is the restriction to
D™ of an order function f on R". Conversely, the restriction to D™ of an order function f
on R" will be written fp. The distinction between f: R" — R and fp : D™ — D is thus
only a distinction on the domain of their variables, since both functions will have the same
choice map.

For preorder functions, the situation is somewhat more complicated. Of course, for
C C D, the restriction fo: C™ — C of a preorder function fp : D" — D is still a preorder
function. However, the extension of fp to a larger set E™ is not always uniquely defined.

11



In fact, as can be seen from Definition 2’ in Subsection II.2, one property of D in-
tervenes in the definition of a preorder function on D™: it is its size, which appears in the
expression min{n, |D|}. This number is the upper bound on the number of distinct values
that n variables z;,...,%, € D may take. Thus for E D D, if we wish to extend fp to a
preorder function fg on E™, then for z;,..., %, € E the value of fr(xy,...,®,) is uniquely
determined when z;,...,2, take at most min{n,|D|} distinct values, because it is then
possible to take yi,...,¥y, € D such that for i,j € I,, z; < z; iff y; < y;, and so we must
take fg(z1,...,%,) = ¢ if fp(y1,.-.,9n) = yt- On the other hand, when z,..., 2, take
more than min{n, |D|} distinct values, fg(zy,...,®,) cannot be determined from fp. Let

us explain this with a simple example:

We take n =3, D = {0,1}, and E = {0,1,2}. If we have fp(0,0,1) = 1, then we will
have fg(1,1,2) = 2 and fz(0,0,2) = 2, because in all three cases we have z; = 22 < 3.
Here the extension works well, because we use no more than 2 = min{n, |D|} values. But now
f£(0,1,2) cannot be determined from fp, because we have here 2; < #9 < 23, something
which cannot happen in D. Thus we can choose fg(0,1,2) equal to either 0, 1 or 2. The
trouble happened because we had 3 distinct values, and min{n, |D|} < 3 < min{n, |E|} Now
if we extend E to a larger set F', then the extension from fg to fr is unique. Suppose
for example that we have fz(0,1,2) = 1. Then for any a,b,c € F such that ¢ < b < ¢,
we will have fr(a,b,¢) = b. Here everything is all right because we have min{n, |E|} =
min{n, |F|} = 3.

Hence the extension from fp to fg for E D D is unique iff min{n, |D|} = min{n, |E|},
in other words iff |D| > n. We have thus the following:

Proposition 3. For C C D, the restriction to C" of a preorder function on D" is a
preorder function. Given E C R such that £ D D, a preorder function on D" admits an
extension to E™ which is a preorder function, and this extension is unique iff |D| > n.

I1.4. The dual and the composition of preorder and order functions

There is a natural duality between the two strict order relations < and > on R. It
induces a duality on preorder and order functions.

Consider a preorder function fp : D" — D. Given z;,...,2, € D, fp(21,...,2,) =
g, where ¢ is determined by the set R of all ordered pairs (¢, j) such that #; < z;. In other
words fp is determined by a map r associating to R some ¢ = r(R) € I,. The inversion of <
and > leads to the dual set R* of all ordered pairs (u,v) such that z, > z,, in other words
(v,u) € R. This dual R* of R induces a dual f}, of fp. It is defined as follows: for any
Z1,- .., %, € D, given the set R of ordered pairs (7, j) such that z; < z;, fH(z1,...,2,) = 24,
where ¢ = r(R*). Taking #),..., %), € D such that for any i, j € I, #; < x; iff ©} > |, then
R* is the set of all ordered pairs (i, j) such that = < 2, and so we have f(z},...,#;,) = =}
iff f5(%1,...,%,) = @¢. Thus we can state the following:

12



Definition 4. Given a preorder function fp : D™ — D, its dual f}, is a preorder
function D" — D built as follows: given zj,...,%,,2},...,%, € D such that z; < =z, iff

. > x; for each i, j € I, Th [nsis st ) = 2% when: I [yiv: < v85) = 2t

Let us explain why f}, is well-defined and a preorder function. Take zy,...,2, € D.
First, it is always possible to choose z,...,z!, € D such that for each i,j € I, #; < z; iff
z; > z';. Indeed, let yy,...,yn be the distinct values taken by @1,...,&,, with g1 < ... <
Ym. For each i € I, there is some u € I, such that z; = y,; we set then 2! = 41—y Now
fori,j € Ly,ifz; =y, and z; = gy, then ; =y, < pp = %, u < v, B m+1—u > m+1-v,

iff x; = Um+41—u > Um+1—v = -'5;

Second, the value of f}(z1,...,%,) = z; does not depend on the choice of zi,...,2},.
Indeed, if we have z},...,2},27,..., 2, such that for each i,j € I, #; < z; iff &y > 2 iff
! > &/, then fp(z},...,2,) ==} iff fp(=],...,2}) = ={ (since fp is a preorder function),

and so f5(21,..., %) = 2; is well-defined.

Finally, f}, is a preorder function. Indeed, as fp is a preorder function, we have
fo(#,...,2,) = zi, where ¢ is determined by the set of ordered pairs (j,7) such that
%, < xj, in other words #; < x;. Thus fp(e1,...,%,) = 2, where ¢ is chosen as a function
of the set of ordered pairs (¢, j) such that z; < ;.

In Subsection II.2, we gave a formal definition of preorder functions. We showed there
that the set R of all ordered pairs (7, j) such that z; < z; is characterized by an ordered m-
tuple (Py, ..., Py) of subsets of I, forming a partition of it (where 1 < m < min{n,|D|}).
Thus a preorder function fp is determined by a map ¢ associating to any such ordered
m-tuple (Py,...,Py) some ¢ € I,. Then it is easy to show that f}, is a preorder function
determined by the dual map ¢* defined by

0 Plasens Pia) = 0 Bongans P (1)

This equation can be taken as an alternative definition of the dual of a preorder function.
As can be seen from Definition 4 or (1), we have f5* = fp: a preorder function is the
dual of its dual.
It is also clear from the definition that the operation of taking the dual of a preorder

function commutes with the restriction from D to a subset C of it.

When fp is an order function, then f}, is also an order function. Indeed, given
Tiy-oes By ®Y,. .., 2, € D such that »; < x; iff #; > 2} for each i,j € I,, assume that
g, <... £7, . Then z;, < ... € 3y, To(Zissss 320] = 2 Tor t = Xlinsess 11); a0nd we
have also ff(2},...,2}) = a}. Thus f}, is the order function determined by the choice map

x*: Tn — I, defined by
X st =%l lwgss » %) for (iy,...,8n) € Ta. (2)
We can summarize our results as follows:
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Proposition 4. The dual of a preorder function fp is a preorder function f}, char-
acterized by (1), with the following properties:

— If fp is an order function with choice map x, then its dual f}, is an order function
with choice map x*, where x* is defined by (2).

— A preorder function is the dual of its dual: f5* = fp.

— Given a subset C of D, the dual f7, of the restriction fc of fp to C" is equal to the
restriction to C™ of the dual f}, of fp.

Let us describe briefly the dual of some well-known order functions: the maximum
is the dual of the minimum, the median is its own dual, the dual of the rank function
(selecting the kth smallest value of a sample) is the rank function r,4;—j (selecting the
kth largest value of a sample). The dual of the k-th weighted rank function determined by
the weights wy, ..., w, is the k’-th weighted rank function determined by the same weights
Wiy..., Wy, where ¥’ = w; ++--+ w, + 1 — k. In particular the weighted median is its own
dual.

There is often a “natural” bijection w : D — D which reverses the order of the
elements of D (in other words, which is strictly decreasing). For example, if D = R or Z
(the set of rational integers), w is the map D — D : z +— —z, while if D is finite, there is

in fact a unique strictly decreasing bijection D — D. Then for any zy,...,%, € D, we can
take w(zy),...,w(=,) for },..., 2! in Definition 4, and so we have
w(f:)(zlv"'!mﬂ)) :fD(w(xl)V"!w(xﬂ)): (3)
or
Ih(x1y ... 25) =w ™ (fo(w(z1), - - -, w(20)))- (4)

Note that w? is often the identity on D (in other words, # = w(w(z)) for any = € D). This
is the case for the two examples given above. Then, since w = w™!, we get

fo(z1,. .. 2,) = w(fp(w(zr),...,w(zs)))- (5)

Of course we can then take this equation as an alternative definition of the dual of fp in

this case.

As we will see later, duality takes an important place in the theory of order functions
and order filters. Another important operation for order functions is the composition. We
mentioned in the Introduction the composition of rank functions or rank filters, and an-
nounced the main result of Section III, that an order function is a composition of min and
max functions. We will end this section by giving its definition and main properties, and

some constructions derived from it.

Definition 5. Given m,n > 2, m functions gp,...,g% : D" — D and a function
fp : D™ — D, the composition fp o |gh,...,95] of gb,...,g% by [p is the function
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D" — D defined by
fD 0 [gll)a'“:gg](xll"'!wn) = fD(g})(mla-'wxn)"" ;gg(ﬂ’la ‘e ')z'n))

for 21,5 8n = Ds

The proof of the following result is left to the reader:

Proposition 5. Composition preserves the set of order functions, preorder functions,
and selection functions respectively: in other words, ifg},,. .., gn and fp are order functions,
preorder functions, or selection functions, then fp o [gh,...,g}] is an order function, a
preorder function, or a selection function respectively. The dual of a composition of preorder
functions is the composition of their duals: (fp o [gh,...,95])* = fHollgh)* ..., (g5)*].

Thus a composition of weighted rank functions is an order function, as we stated in
the Introduction. We will show in the next section that the reverse holds: an order function
is the composition of a particular type of weighted rank functions, namely min and max
functions applied to subsets of the set of variables of the function.

Let us now describe a simple method related to the composition, which allows the
building of a selection function, a preorder function, or an order function from another one.

We introduce a function D™ — D (where m > 2), the k-th projection p; defined by
(%1, ..., %m) =z for any @, ..., %, € D (with 1 < k < m). It is an order function with a

constant choice map: x(i1,...,in) =k for any (iy,...,4m) € Tm. It is moreover equal to its
own dual. We can now build from a function fp : D™ — D a function gp : D™ — D of the
form fp o [ps,,-..,Pa,), Where ay,...,a, € {1,...,m}. In other words, for 2;,...,2, € D
we have

gD(xla-'-sxn) = fD(xa,m---,m(Lﬂ)-

As gp is built by a composition of projections pr by fp, and as projections are order
functions, it is clear from Proposition 5 that this construction preserves the set of order
functions, preorder functions, and selection functions respectively. As the projection is its
own dual, Proposition 5 again implies that this construction commute with the taking of
the dual of a preorder function (or an order function), in other words that we have also

g?j(zlﬁ'“sxn) = fB(xals---aza")

when fp is a preorder function. Note also that the set of such constructions is closed under

repetition.

Let us give three particular cases of this construction. They are: the permutation of
variables, the weighted expansion, and the void expansion.

(1°) We take m = n and we choose ay,...,a, to be a permutation of 1,..., n (in other
words and (aj,...,a,) € T,). We call gp a permutation of variables of fp.
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(2°) Weighted expansion is the method by which we defined weighted rank functions
from rank functions in the Introduction. Suppose that we have m non-negative integer

weights wy,. .., w,, such that w; +---+w,, = n. Then we define gp from fp and wy,...,w,,
by letting ay,...,a, consist in w; copies of i for i = 1,...,n (in increasing order). Thus
for any zy,...,%, we set gp(21,...,2m) = fo(¥1,-..,¥n), Where yy,..., ¥y, consist in w;
copies of x; for i = 1,..., m. In other words,

gD(xl""sxm) — fD(yli'”syn)s where

Yij = &; for Zwt<jSZw;§, I = Lia
t<i t<i

We call gp the weighted expansion of fp by wy,...,w,. Note that the weighted rank
functions are the weighted expansions of rank functions.

(3°) A particular case of weighted expansion is when w; = 0 or 1 for each i. As
wy +-+wy, =n wehave m > n,and 1 <a; < ... < a, <m. We call gp the void
expansion of fp to D™ by ay,...,ay,.

As we explained above (see Proposition 2), it is possible to extend the domain D of
the variables of an order function. Now by void expansion it is also possible to extend the
number n of variables intervening in that function.

Note also that each one of these three subsets of constructions is closed under repe-
tition. In other words, the succession of two permutations of variables is a permutation of
variables, a weighted expansion of a weighted expansion of a function is again a weighted
expansion of that function, and the void expansion of a void expansion of a function is again
a void expansion of that function.

Weighted and void expansion will intervene in the definition of order filters for finite

images, as we will explain in Section VI.
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III. Order functions as compositions of min and max functions

As we said in the Introduction, order functions can be defined in two ways, either as
we have done in Subsection II.1 (with Definition 3), or as a composition of the minimum and
maximum functions. We give a simple proof of the equivalence between the two definitions
in Subsection II.1. In Subsection III.2 we analyze the possible min-max decompositions
of order functions. Then in Subsection II1.3 we give a description of order functions as a
generalization of weighted rank functions, that we call set-weighted rank functions. These
two subsections are rather technical, and can be skipped in a first reading.

III.1. The main argument

For any set ¥ of subsets of I,,, we define the minimum of maxima and maximum of
minima functions minmaz[}], mazmin[}]: R" — R by

minmaz|[H](x1,...,2,) = %E[Erleag(zjj), o
mazmin|N|(zy,...,2,) = Ié'leii}'}{{(?élg(mj))

We will give here a simple proof of the fact that a function D™ — D is an order function iff it
is equal to minmaz|}] for some ¥ (or mazmin[}'] for some ¥'). This result was first shown
in [2] for D = R. (In fact, following [14], order functions were then defined as continuous

preorder functions).

As we explained at the beginning of Subsection II.3 (see Proposition 2), the definition
of an order function fp on D" is independent of the domain D of its variables, and so the
behavior of fp is completely determined by that of the corresponding function fz on B™,
where B = {0,1}. It suffices thus to show the result for D = B. We have the following
characterization of order functions with boolean variables:

Theorem 6. Recall the set B = {0,1}. Counsider a function fg: B™ — B. Then the

following four statements are equivalent:
(¢) fB is an order function.
(¢¢) fB is a non-constant increasing function.
(i1é) There is a set ¥ of subsets of I, such that fg = minmaz[X|p.
)

(iv) There is a set X' of subsets of I, such that fg = mazmin|}'|p.

Proof. (a) (i) implies (ii).
Clearly an order function fp is non-constant. Let us show that it is increasing. Take
Zlyeees Ty Y1,- -5 Yo € B such that z; < y; for each i € I,. We set
U={i€l| =y =0}
V={iel|z=0y=1}
W={iel,|s=y=1}
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and let u = |U|, v=|V|, and w = |W|. Take (iy,...,i,) € T, such that

V={lu+1<j<u+uv}
W={i;|lu+v+1<j<n}

Then #;, <... <2, ¥, £... L ¥y, and so for ¢ = x(§1,...,4,) we have fg(z;,...,2,) =
z¢ and fp(Ys,. .., ¥n) = yr. As 2t < yi, we get fp(e1,..., %) < fB(Y1,- -1 Yn)-

(b) (i7) implies (iii).
This is a well-known result in the theory of boolean functions. A proof of it can be found
in Theorem 5 on page 189 of [8]. We will also give some explicit decompositions of fp as a
minimum of maxima in Subsection III.2.

(¢) (i#7) implies (7).
This follows by the distributivity law for the minimum and maximum (a minimum of maxima
can be decomposed as a maximum of minima, in the same way as a product of sums can be
decomposed as a sum of products).

(d) (iv) implies (i).
As the maximum and the partial minima min eg(2;) (for X € ¥) are all order functions,
their composition is an order function by Proposition 5. i

We deduce then the following characterization of order functions D™ — D:

Corollary 7. Consider a function fp : D™ — D. Then the following three statements
are equivalent:

(¢) fp is an order function.
(é¢) There is a set { of subsets of I, such that fp = minmaz|}|p.

(¢4f) There is a set X' of subsets of I, such that fp = mazmin[}'|p.

Proof. (a) Each one of (ii) and (iii) implies (i).
The argument is the same as in point (d) of the proof of Theorem 6.

(b) (¢) implies (ii) and (:i7).
Let f be the (unique) extension of fp to R", and let fg be the restriction of f to B"; then
f and fp are order functions (see Proposition 2). By Theorem 6 there is a set ¥ for which
fB = minmaz[}|g. Now minmaz[}] is an order function (by (a)), and by Proposition 2
we must then have f = minmaz[}], and so fp = minmaz[¥]p. Thus (ii) holds, and we
prove similarly that (¢ii) holds. W

It follows that the set of order functions on D" is equal to the set of functions built
from n variables z;,..., %, in D by arbitrary combinations of min and max functions. This
set is isomorphic to the free distributive lattice generated by n symbols (see [3], pages 59-63).
In particular, the number of order functions in n variables is the size of that lattice. The
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determination of this number is known as the “Dedekind problem”, and it is still unsolved
for n > 7.

In the next subsection, we will describe the sets ¥ and X’ satisfying (¢7) and (#4i) in
Corollary 7 in terms of the properties of fg.

ITI.2. Characterization of the possible min-max decompositions

We consider an order function fp on D" and the corresponding order function fg on
B". We will derive min-max decompositions of fp from the behavior of fg. But we must
first introduce some notation.

Given a subset S of I, we write S¢ for its complement in I, in other words 5S¢ =
I, —S. Following the classical use in Boolean algebra, for any o € B we write « for the other
element of B, in other words @ = 1 — o. The map « — @ is called the complementation. It
reverses the order of B and is its own inverse. Thus (5) implies that given the order function
fB on B", its dual fj satisfies the equality

fB(21,-.. %) = fB(F1,. .., %n) (7)

for any #,,...,2, € B.

Now, given i € I,, S C I,, « € B and a function gg : B™ — B, we define the

following two quantities:

e it S,
5("’*’5)"’{a if i ¢ S, (8)
and
§(, g8, S) = gB(e(a, 1,5),...,6(a, n, 5)). (9)

Let us mention here some of their properties with respect to complementation. Clearly
(8) implies that
s(a, ¢, 5°) = e(@, i, 5) = &(a, i, S). (10)

Then by (9) and (10) we get:
5(“& ngSC) = 5(6:1 Q'B,S)- (11)

In the case of the order function fg, we obtain by (7), (9), and (10):

5(a, f3,5) = (@, f5, 5) = b(a, /5, 5°). (12)

We can now introduce the sets that may belong to the two sets ¥ and )’ mentioned
in Corollary 7 for the min-max decomposition of an order function. Given ¢ € B, S C I,
and gg : B™ — B, we say that S is a-heavy for gp if 6(a, gp,S) = a. Such a set satisfies
the following properties:
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Lemma 8. Given o € B and the order function fgp: B™ — B, we have:

(i) Forevery S,T C I, if S is a-heavy for fp and S C T, then T is also a-heavy for fg.

(¢4

)
(¢4) I, is a-heavy for fg, while §) is not.
ii) For every S C I, S is a-heavy for fg iff it is a-heavy for f}.
)

(iw) For every S C I, S is a-heavy for fp iff S¢ is not a-heavy for fg.

Proof. (i) Suppose first that « = 0. Then (8) implies that £(0,7,5) > €(0,¢,T) for
each ¢ € I,. As fp is increasing, we have by (9)

0=16(0,fB,S) = fB(c(0,1,5),...,6(0,n,5)) > fe(e(0,1,T),...,6(0,n,T)) =6(0, f5,T),

in other words 6(0, f,T") = 0 and so T is 0-heavy.

Suppose last that « = 1. Then a similar argument shows that ¢(1,,5) < &(1,4,T)
and 1=6(1, f,5) <6(1, fB,T), in other words 6(1, fg,T) = 1 and so T is 1-heavy.

(#%) follows from the fact that f(0,...,0) = 0 and f(L,...,1) = 1, in other words
0(a, fB, In) = e and d(e, fB,0) = 2.

(¢4s) Applying (12) with @ instead of «, we have §(a, f}, 5) = 6(«, fB,S). Thus S is
a-heavy for fp iff 6(c, fB,S) = a, iff §(a, f§,5) = @, iff S is a-heavy for f§.

(¢v) Applying (11) with @ instead of o, we have §(@, f5, S¢) = é(qa, fB, S). Thus S is
a-heavy for fg iff §(a, fB,S) = «, iff (@, fB, 5¢) = a, iff S is not @-heavy for fg. I

The denomination “w-heavy” that we introduced above can be explained by prop-
erty (7), since a set having a heavy subset is itself heavy. It will also be justified in the
next subsection, where we will characterize order functions as a generalization of weighted
rank functions, with a weight associated to each subset rather than to each element of I,,;
of course, that weight will depend upon the heavy subsets of that set.

For a € B and an order function fg, write ¥,[fg] for the set of all a-heavy sets for
fo. Let My[fB| be the set of all minimal elements of ¥,[f5]; its elements will be called
minimal a-heavy sets for fg. Then by Lemma 8 (i) we have

Nlsl= U reniscm. (13
SEM.[rB]

We can now characterize the possible min-max decompositions of an order function fp on
D™ in terms of a-heavy sets for fg.

Proposition 9. Given the order function fp : D™ — D and the corresponding order
function fg : B" — B, for any sets X, X' of subsets of I,, we have:
(Z) fD = minmam[){]n iff Mo[fB] g N Q MO[fB]
(i)  fo =mazmin[¥'|p i Mi[fs] CH' C H[fB]
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Proof. (i) As explained in the proof of Corollary 7, fp = minmaz[}]p iff fp =
minmaz[}]p. Now this equality is equivalent to the following statement:

— For any 21,...,%n € B, fB(21,...,2,) = 0 iff minmaz|[¥]|(z1,...,2:) = 0.
Define N(zy,..., %) as the set of all j € I, such that z; = 0. Then fp(zy,...,2,) =0
means that N(zy,...,®,) is O-heavy, while minmaz[¥|g(21,...,%,) = 0 means by (6) that

there is some S € ¥ such that max;eg(2;) = 0, in other words S C N(zy,...,%,). Thus
that statement can be rewritten as follows:

— For any 2y,...,2, € B, N(2j,...,%,) is O-heavy iff there is some S € } such that
S EN(Zr 00 T0)

Now N(.’El, e zn) can be any subset P of I,. Thus the statement is equivalent to

the following one:
(*) For any P C I, P is 0-heavy iff there is some S € ¥ such that S C P.

Now we have three possibilities:

(a) MolfB] € ¥ C o[ fB].
Take P C I,. If P is O-heavy, let S be a minimal 0-heavy subset of P; then S C P, and
S € XM, since Mo[fB] C H. Conversely, if there is some S € ¥ such that S C P, then S is
0-heavy, since ¥ C }y|fB], and so P is O-heavy by Lemma 8 (i). Hence the statement (%) is
satisfied in this case.

(b) A _C_ )‘{Q[fB], but Mo[fB] Z X.
Let P be an element of Mo[fg| not contained in ¥; then P is O-heavy, and as it is minimal
0-heavy, it does not contain another 0-heavy set S. As every element of } is O-heavy, there
is no element S of ¥ such that S C P. Hence the statement (%) is contradicted in this case.

(C) ¥ Q yo[fB]
Take S € ¥ such that S is not O-heavy. Then for P = S, P is not O-heavy and S C P with
S € ). Hence the statement (%) is contradicted in this case.

Therefore (*) is equivalent to (a), in other words fg = minmaz|}]p iff Mo[fs] C H C
HolfB).

(¢7) As the minimum is the dual of the maximum, by Proposition 5 mazmin[¥'|p is the
dual of minmaz|X'|p. Thus fp = mazmin[}'|p iff f}, = minmaz[{'|p, iff Mo[fg] CH' C
Xo[f%]- Now Lemma 8 (ii7) states that for S C I, S is 1-heavy for fp iff it is 0-heavy for f5.
In other words X[ fg] = Xo[/f3]- It follows then (by identifying the minimal elements in both
sets) that M;[fs] = Mo[f%]|. Therefore fp = mazmin[}'|p iff M{[fs] C X' C N1[fB]- 1

We have thus characterized the possible min-max decompositions of an order function
fp on D". Note that for @ = 0,1, ¥,[fp] is determined by Mo[fs] (see (13)). Thus the sets
X and X' for which fp can be decomposed as minmaz|N]|p and as mazmin[}'|p are deter-
mined by Mo[fB] and M;[fp] respectively, which are also the smallest sets giving these two
decompositions. It is thus natural to consider minmaz[Mo[fg]|p and mazmin|M:[fBl|p
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as the two standard min-max decompositions of the order function fp.

Let us now give simple characterization of a-heavy sets for fg in terms of fp:

Proposition 10. Let P C I,,. Then:
(¢) P is O-heavy for fg iff fp(z1,...,%,) < max;ep(z;) for any z;,...,2, € D.
(¢¢) P is 1-heavy for fp iff fp(z1,...,%,) > minjep(z;) for any z,,...,2, € D.

Proof. (i) The set P is O-heavy for fg iff ¥o[fs] = Xo|fB] U {P}, in other words
iff minmaz[}o|fsllp = minmaz[Ho[fs] U {P}]p. Now Proposition 9 (¢) implies that

minmaz|Xo|fs]]p = fp, while for any z;,...,%, € D we have (by (6))
minmazx|Xo[fe] U {P}(21,..., %) = min(xjnea;jc[xj), minmaz[ o[ f8]lp(21,- .., 2a)).

Thus P is O-heavy iff for any 2;,...,®, € D we have

TolZys o8] = min(ljl_éa;c(xj),fp(xl,... ,xn))
But the latter equality is equivalent to fp(21,...,#,) < max;ep(z;).

(¢4) is proved in the same way as (i).

IT1.3. Set-weighted rank functions

Recall the weighted rank functions mentioned in the Introduction. Let us give here a
slightly different formulation of their definition. To each i € I, we associate a non-negative
integer weight w;. Let wr = wy 4+ -+ 4+ w,. Then for any integer k such that 0 < k& < wy,
the k-th weighted rank function iy, ,... v, determined by the weights wy, ..., w, is built as
follows: given #y,...,%, € D such that #;, <...<=; (with (i;,...,i,) € Tp), we have

iy i \ Bl ovyBi) = Elps where Zw,-j <k< ngj.. (14)
J<t i<t

Thus to each subset P of I, we associate a cumulative weight W(P) equal to the sum of
the weights of its elements; then for each (iy,...,4,), we look at the successive weights

W({il})’W({ila iﬂ}L . 'aW({(ih £ 'aif)})’ i 'aW({(ila teey “n)})a

and we take x(i1,...,i,) = ii, where ¢ is the smallest integer j = 1,...,n such that
W({(i1,--.,45)}) = k. Note that the inequality } ; ,wi; < k < } <, w;; in (14) can
also be expressed in a dual way as th wi;, <wr+1-k< Ej?_t w; ;. Here we look at the
successive weights

W({ia})s W {in-1sin})s- - W({(es - 80)})s o, W ({1580 )})s
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and we take x(i1,...,i,) = i, where ¢ is the largest integer j = 1,...,n such that
W({(i;,.-.,in)}) 2 wr+1—-k.
One can generalize weighted rank functions by associating to each subset P of I,
a weight W (P) which is not equal to the sum of the weights of its elements. Here W is
a real-valued increasing function on the set of parts of I,, in other words, for P C @,
W(P) < W(Q). We call it a weight function. Set Wy = W (@) and Wr = W(I,). Take a
threshold K such that Wy < K < Wq. Then we can define from W and K two set-weighted
rank functions R}y, and Ry, having respective choice maps x% .y and xj.y defined by
setting for any (iy,...,4,) € Tp:
ey =i, where W({iz|j<t}) <K SW({i |5 < 1))
x}(;w =45 where W({i;|j>t}) <K <W({i;|i=t}).

When W is a linear function, set-weighted rank functions reduce to ordinary weighted rank

(15)

functions.

Before making a mathematical analysis of set-weighted rank functions, let us indicate
here some possible uses for them. We will give below two examples.

(1°) Assume that we have n devices or observers Ty,..., T, making n respective mea-
surements z;,..., 2, of a quantity X. If we make no further assumptions, then an estimation
of X will be given by med(zy,...,%,), while for 0 < 4 < 1, a v confidence interval will be
obtained by rejecting from the sample the smallest and largest values in a proportion of
n = (1 —4)/2; in other words it will be bounded by ry(2y,...,%,) and rs(21,...,2,) for
a=14+yg(n—-1)andb=1+(1-7)(n-1).

Suppose now that the devices T; have distinct degrees of accuracy. Such a degree
may be measured by a weight w; associated to the measurement ;. Then we will use
weighted rank functions instead of rank functions. Thus the estimation of X will be the

weighted median @wl,__,,wﬂ(zl,...,zn), and the confidence interval will be bounded by
Frwriwyywn (B1,- -+ Ta) and f(IHn)wT;wx,---,wn(xl’---""n)-

Suppose further that the agreement between certain particular devices has a particular
weight; for example with two devices T; and T, the fact that for an estimation z* of X
we have both z; < * and #; < #* increases their weight by w;;. We associate thus to
each P C I, a weight W (P) measuring the accuracy of the fact that for an estimation z*
of X we have z; < z* for each i € P; in our example we have W({i}) = w;, W({j}) = wy,
and W({i,j}) = w; + w; + w;;. Then the lower bound of the confidence interval will be
given by RSWT;W(xls ...y %y ). Similarly the higher bound of that interval will be given by
R;wﬂr,;w:(ﬁ,---,-’ﬂn), where for P C I, the weight W'(P) measures the accuracy of the
fact that for an estimation z* of X we have z; > 2™ for each i € P (one can generally choose
W' =W).

(2°) Suppose that we want to design a noise smoothing filter for two-dimensional
digital images that replaces the grey-level of each point by the result of the application of
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an order function to the grey-levels of the 9 points of a 3 X 3 window centered about it. The
usual choice for that order function is the median (and so we get a median filter). Suppose
that the window around a given point p is as follows:

! [ S |
1-1-0
000

Then the grey-level of p will be changed from 1 to 0. But here p may be the corner of
a square of grey-level 1, and it should not necessarily be erased. In fact, as the three points
around p having grey-level 1 are connected, the triple that they constitute should have a
bigger weight than a triple of disconnected points, as in the following example:

1 00
0 = 1
1 00

Thus it will be more convenient to apply within the window a set-weighted rank
function such that connected sets have more weight than disconnected sets having the same

size.

Let us now make a mathematical analysis of set-weighted rank functions. As n vari-
ables zy,...,2, € D may satisfy z;, < ... < z;, and z;, < ... < z;, for two distinct
(i1,.-+s8n) and (j1,...,Jn) € Tn, we must show that these two functions R}y, and Ry

are well-defined, in other words that their choice maps X?{;w and X}(;W satisfy the require-
ments stated in Subsection II.2 (see Proposition 1). This will be done in Proposition 11.
They are then order functions, and then by (2) Ry is the dual of Ry.,,,. We will then show
in Proposition 12 that every order function can be expressed as a set-weighted rank function.
Thus the two concepts of order function and set-weighted rank function are equivalent.

It is clear from (15) that the behavior of x% ., and k., does not depend on the
weight W (P) of each P C I, but only on the set ¥ of all sets P C I, such that W(P) > K.
These sets P are called heavy. The set ¥ satisfies the following two conditions:

(1) For every S, T C I,,,if S € X and S C T, then T € X.
(¢8) I, € X, while D € ¥.

Indeed (a) follows from the fact that W is increasing, and (s’z’) from the fact that Wy < K <
Wr. Conversely, given a set ¥ of subsets of I, satifying conditions (¢) and (i), we define
the weight W by W(P) =1 if P € X and W(P) = 0 otherwise, and we take the threshold
K = 1; then ¥ will be the set of all P such that W(P) > K. A set ¥ of subsets of I,
satisfying conditions (i) and (i¢) above will be called a heavy set collection in I,.

Therefore we can define set-weighted rank functions by their heavy set collection rather
than by their weight function. We will thus write R°[X], R[X], x°[X], and x'[] for
the set-weighted rank functions R}, and Ry, and their choice maps xg., and Xj.y
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respectively. Here we have for any (iy,...,4,) € Ty:

N =i, where {i;|j<it}¢ N and {i;|j<t}eX;
xH] = iy, where {i;|j>t})¢ ¥ and {i;|j>t}eX.

As announced above, set-weighted rank functions are well-defined:

Proposition 11. Let ¥ be a heavy set collection in I,,. Then the two maps x°|¥] and
x'[H] defined in (16) are well-defined, and they are choice maps. Thus the two set-weighted
functions R°[H] and R[] that they define are well-defined order functions.

Proof. Given (iy,...,i,) € T,, we have {i; | j <0} =0 ¢ ¥ and {i; | j < n} =
I, € X (by (¢f)). There is thus some ¢ € I — n which is the smallest a € I, such that
{i; | § £ a} € H. Then for every b € I, such that ¢ < b, we have {i; | j < b} € ¥ by (i).
Thus ¢ is the unique a € I, such that {i; | j < a} € ¥ and {i; | § < a} € . Therefore
x°[¥] is well-defined by (16). We show similarly that x'[}] is well-defined.

To prove that the two functions R°[}] and R[¥] are well-defined, we only have to show
that the two maps x°[X] and x'[X] are choice maps. It is sufficient to show that they satisfy
the condition (if) in Proposition 1. Suppose that we have (iy,...,4,) and (ji,...,Ju) € Tu
and a,b € I, with a < b, such that

{iklk<a}={jk|k<a}:L

and
{ikIGSka}:{jklagkgb}zM.

We must prove that for « = 0,1, if x*[¥](iy,...,i,) € M, then x*[X|(j1,...,Jn) € M.

By (16), if x°[}](i1,...,is) € M, then there is some ¢ € I, with i; € M, such that
{ix | k <t} ¢ M and {ix | k < i} € A. By property (i) above, this implies that L ¢ ¥ and
LUM € Y. Again by property (i), there is an integer s such that e < s < b, {ji |k < s} ¢ ¥,
and {jx | k < s} € X. Thus x°[X]|(j1,.--,Jn) € M.

Let N = {ir | b <k} = {ji | b < k}. We show similarly that x*[¥](iy,...,in) € M
implies that N ¢ ¥ and N UM € X, which implies in turn that x'[¥](j1,...,J») € M.

Thus x°[¥] and x*[}] are choice maps. i

Given the equivalence between the representations (15) and (16), it follows that set-
weighted rank functions defined by (15) are well-defined order functions.

The reader may have noted that by Lemma 8 () and (i7), for any order function fp
and o« € B, },[fp| is a heavy set collection in I,. This is no coincidence, and we will
show in the next proposition that the two maps fp — ¥,|fs] and ¥ — R*[}|p establish a
one-to-one correspondence between order functions on D™ and heavy set collections in I;,:

Proposition 12. Let « = 0 or 1. Then:
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(¢) Given an order function fp with choice map x, fp = R*[N.|fB]|p, that is x =
X*[Ho|fB]]- In particular, every order function is a set-weighted rank function.

(¢%) Given a heavy set collection ¥ in I,, X = X,|R*[H]g].

Proof. (i) For any k € I, and (i1,...,8,) € Ty, let iz = x(i1,...,3x), and take
%1, ...,%, € B such that for any j € I,,

[0 #Hi<H
TV i >k

Then z;, <... < z;, and so we have

0 ift<k,

fo(#1,. .1 2n) = 22, = {1 i > k.

Now fp(z1,...,2,) =6(0, fB, {i; | 1 < j <k}) (by (8) and (9)), and so {i; | 1< j <k}is
0-heavy for fp iff k > ¢. Thus {i,; | j <t} ¢ Xo[fB] and {i; | j < 1} € Ho[fB]. By (16) this
means that x = x°[¥o[/fB]]-

Now {i; |j >t} ={i;|j<t}*and {ij | j >t} = {i; | j < t}°, and so Lemma 8 (iv)
implies that {i; | j > t} € ¥y[fp] and {i; | j > ¢} ¢ Hi[fB]. By (16) this means that
x = x'u[f8]].

Thus fp = R*|Hu|[fB]|p for a =0, 1.

(#7) Let X' be a heavy set collection such that R*[¥] = R¥[}’]. Then x*[X] = x*[X'].
Let S be a subset of size k of I,,, where 0 < k < n. There is then some (iy,...,i,) € T, such
that S = {i; | 1 < j <k}. By (16), S € ¥ iff x*[H](i1,...,in) = X*[H'](31,...,8n) = ¢ for
some ¢ < k, in other words iff S € ¥'. Thus X' = X.

Applying (i) with R¥[}] and x*[X] for f and x, we obtain x*[¥] = x*[¥a[R*[X]5]].
By the preceding paragraph, this means that ¥ = ¥, [R*(X|g].

Proposition 12 states that if (n, D) is the set of order functions on D" and §(n) is
the set of heavy set collections in I, then the two maps fp — M.|fs] and ¥ — R*[X]p
constitute a bijection #(n,D) — §(n) and its inverse. This explains why we called the
elements of X,[fp] “a-heavy sets”, since they are the heavy sets in a set-weighted rank
function Rf .y (in other words, the sets P having W(P) > K).
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