IV. Mathematical characterizations of order functions

In this Section we prove several mathematical characterizations of order functions
(and sometimes also of preorder functions) and describe some of their consequences. As
we will see in Subsection IV.1, order functions can be characterized as: increasing preorder
functions, continuous selection functions, functions commuting with thresholding, and funec-
tions commuting with increasing functions in one variable. These results are commented in
Subsection IV.2, and their consequences for order filters will be discussed in Section VI.

IV.1. Characterization theorems

We showed in Theorem 6 that for B = {0,1}, a function fg : B™ — B is an order
function iff it is a non-constant increasing function. We will see how it is possible to extend
this result to functions on D". But we must first introduce one more definition.

Given two finite sets C,C’ having the same size, there is a unique strictly increasing
function ¢ : C — €', which is in fact a bijection. Then, given two functions go : C"* — C
and her 1 O™ — C', we will say that hcr is order-isomorphic to gc if for any y, #1,..., %, €
C, y=gcl(zi,...,x,) implies that ¥(y) = hor(¢(21),...,¥(2,)), in other words if for any
Plyee0 3 Ta €O,

P(gc(z1s. .- 20)) = her(P(21), .- 9(20))-

This means that go and her have the same behavior w.r.t. ordering.

It is easy to see that the relation “is order-isomorphic to” is an equivalence relation,
ie., it is reflexive, symmetric, and transitive. Moreover, if gc is an order function and if ¢
is order-isomorphic to go, then hcr is an order function having the same choice map x as
gc, in other words go = fe and hgr = fer for some order function f.

Now we can state our result:

Theorem 13. Let fp be a function D™ — R. Then fp is an order function iff fp is
increasing and satisfies the following two conditions:

(¢) Given a subset C of size 1 or 2 of D, the restriction fc of fp to C" is a selection
function C" — C.

(i7) Given two subsets C,C" of size 2 of D, the restrictions fc and fcr of fp to C" and
C'" are order-isomorphic.

Moreover, conditions (i) and (ii) are satisfied when fp is a preorder function. Thus fp is
an order function iff it is an increasing preorder function.

Proof. (a) If fp is a preorder function, then it is a selection function, and so for any
C C D, its restriction to C" is a selection function C" — C. Thus fp satisfies (i). Given
two subsets C, G’ of size 2 of D, let 1 be the unique strictly increasing bijection C — C'. For
any 2j,...,%, € C and i,j € I,, we have z; < z; iff ¢(2;) < ¢(z;), and so by Definition 2
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we must have fD(%b(-""l)s ’ib(xn)) = ¢(fD($1,...,xn)). Thus fer is order-isomorphic to
fc, and so fp satisfies (¢7).

(b) Suppose that fp is an order function. Then fp satisfies (i) and (¢i), since it is
a preorder function. Now fp is increasing thanks to Corollary 7 and to the fact that the
functions min and max are increasing.

(¢) Suppose now that fp is an increasing function D* — R satisfying (¢) and (if).
Take a subset C of size 2 of D, and let ¢ be the unique strictly increasing bijection B — C.
Take then the function gg : B™ — B which is order-isomorphic to f¢; in other words, for
any y,...,&, € B we have

gB(%1,-- -, 20) = 07 (f(¢(21), -, B(20)))-

As the restriction fe of fp to C™ is an increasing selection function, gp must be an increasing
selection function. By Theorem 6, gg is an order function; let x be its choice map. But
then fo is also an order function, and it has the same choice map y. Now for any other
subset C! of size 2 of D, for is an order function with the same choice map x, because fo
is order-isomorphic to fc.

Take now zj,...,%, € D such that z;, < ... < z;, for some (iy,...,i,) € Tp. Let
it = x(i1,...,in). We define then y;,...,¥n,21,...,2, € D as follows:

. Jwi, ifi=ijforj <{
V=2, ifi=i;forj>

o : (17)
. ) ifi=14; for j <t
H= Ve, ifi=ijforj>t.
Then for any ¢ € I, we have y; < x; < #;, and as fp is increasing, we get
fo(yis ..o 4a) < fp(®1,.. 0, 20) < fol21y. 005 20). (18)
If #;, = @;,, then y; = ... = y, = u by (17), and so (i) implies that fp(y1,...,4) =

fo(u,...,u) =u =y, Ifz;, <, then we set C = {2;,,2;,}, and as y;,...,y, € C
and Ui, <. S Yi,, We have fD(yh“':yn) = fC'(yli'“)yn) = Vi because fC’ is an
order function with choice map x. A similar argument shows that fp(z1,...,2,) = 2;,. As
Yi. = zi, = i, (by (17)), we get fo(yr,-.. 42) = fo(21,...,%,) = 2;,. Combining this
equality with (18), we get fp(z1,...,%,) = %;,, where &y = x(é1,...,i,). Hence fp is an
order function whose choice map is x. il

Continuity is an essential requirement in any practical method for processing data,
because the quantization of data (necessary for their digital processing) always implies a
quantization error, which is propagated throughout subsequent processing. In this respect
the fact that order functions are increasing can be used to prove the following:

Theorem 14. Let f be a selection function R® — R. Then the following three
statements are equivalent:
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(¢) f is an order function.
(17) f is continuous.

(#4¢) For any z1,...,%p,Y1,---,Un €R,
|7 (21001 20) — Fy1s- - 00)] < max{]z; — y1,..., |22 — gul}-

Proof. (a) (i) implies (iii).
Take #1,...,%n,¥Y1,---,Yn € R and let ¢ = max{|z; — y1,...,|%n — yn|}. For each i € I
we have z; < y; + ¢, and as f is increasing (by Theorem 13), we get

flar,nzn) S flyn e, un +e).

It is clear that for any (iy,...,%,) € T, ¥, < ... < @i, ff i, +€ < ... < yi, +¢, and so
that for t € Iy, f(i1, ... in) = ye iff f(y1 +6€,...,4n +€) =y + €. In other words,

f(yl+f,---,yn +6)=f(y1:"'ayn)+€-

Combining both equalities we get

F(z1yey20) < flyn, i) +e

Now we can invert z;,...,%, and y;,..., ¥, in the above argument, and so we have

FWtre s tn) € F(#1r- 2 20) e

Combining the last two equalities, we get (iii).

(b) (¢4¢) implies (é7). This is evident.

(¢) (i) implies (7).
Let (iy,...,in) € Ty. Choose y1,...,yn € R such that y;, < ... < y;,. Let yy =
(W1, yn). Weset then & = x(i1,...,1).

Let zy,..., %, € R such that z;, <... < z; . We must show that f(zy,...,2,) = ;.
For any A € R such that 0 < XA < 1 and each { € I, we set z(A) = Ay + (1 — A)z,.
Thus z;(0) = =; and 2;(1) = y;. As f is continuous, the function g defined by g(A) =
F(z1(A), ..., 2 (X)) — 2¢(A) (for 0 < A < 1) is also continuous. Let ¢ be the minimum of all
lyi — y;| for i,j € I, i # j. Take A > 0. Then for any i,j € I, with i # j, #; — #; and
yi — y; have the same sign, and so for any real number g such that A < p < 1, we have

|2i(1) = 25(0)] = |y = 95) + (1 = ) (=i — )| = wlye =yl + (1 = p) [ — 5] 2 pe 2 Ae.
Let X = {p| A < p <1}. Now for any pt € X we have either
Fzi(p), .-y za(p)) = 2e(p) and so g(p) = 0; or

29



F(z1() -« -y 20 (1)) = 25(p), where s # ¢, and so |g(p)| = |2s(pt) — ze(1)] > Ae.

Moreover, g(1) = f(y1,.--,¥n) — y: = 0, and so g(X) contains 0. But X is connected,
and so its image g{X) by the continuous function g is a connected subset of {0} U {u € R |
|u] > Ae}. Thus g(X) = {0}, and so g(A) =0 for A > 0. The continuity of g implies that

0(0) = lim g(3) = lim 0 =0,

in other words f(zi,...,2,) = ¢ for t = x(i1,...,4,). Hence f is an order function. i

Thus order functions are continuous, and they are the only continuous selection func-
tions. In particular, property (i#i) (a particular case of uniform continuity) implies that an
order function will never increase the quantization error of its variables. (This is interesting
in the case of a succession of compositions of order functions).

For preorder functions one can show the following related result, whose proof is left
to the reader.

Proposition 15. Let U = {(z1,...,2,) € R" | #; # =z, for i # j}. Let f be a
selection function U — R. Then [ is a preorder function iff f is continuous on U.

It is known that a rank function on R™ commutes with any increasing function R — R
[9,23]. This can be generalized to order functions, and even to preorder functions if one
replaces “increasing” by “strictly increasing”:

Proposition 18. Let fp be a function D* — D. Then:

(¢) If fp is a preorder function, then fp commutes with any strictly increasing function
D —D.

(i¢) If fp is an order function, then fp commutes with any increasing function D — D.

Proof. (i) If fp is a preorder function, let gp : D — D be a strictly increasing
function. For any zy,...,2z, € D and i, j € I, we have z; < z; iff gp(2;) < gp(z;). Hence
(by Definition 2) if fp(#1,...,%,) = 24, then fp(gp(21),...,9p(2x)) = gp(2:), and so gp
commutes with fp.

(¢1) If fp is an order function, consider an increasing function gp : D — D.
For any z;,...,%, € D such that z;, < ... < z;, (where (iy,...,i,) € Ty), we have
gp(®i,) < ... < gp(wi,). Thus for { = x(i1,...,8,) we have fp(z1,...,2,) = 2; and
Iolgp(#i,)s---,0p(%i,)) = gp(2:¢), in other words fp commutes with gp. B

The converse holds also to a certain extent. We will show in Corollary 19 that the
converse of (i) is true when |D| > 3. On the other hand, the converse of (i) cannot be
proved when D is finite, because in this case the only strictly increasing function D — D
is the identity, and so we cannot deduce anything from the fact that a function commutes
with it. We can however prove the following partial converse of Proposition 16 (i):
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Proposition 17. Let f be a function R* — R. If f commutes with any strictly
increasing function R — R, then f is a preorder function.

Proof. Suppose that f commutes with any strictly increasing function R — R. Let
us first show that f is a selection function. Indeed, given z;,...,z, € R, it is easy to see
that there exists a strictly increasing function g : R — R such that g(:ci) = z; for i € I,,
but g(z) # = for every = ¢ {z1,...,2,}. Then we have

g(f(mlz- . -:xn)) = f(g(xl)v" . ,Q(Zn)) = f(xla- “ey xn)s

which implies that f(z;,...,2,) € {#1,...,%,}, in other words f is a selection function.

Take (21,...,%,) and (y1,...,¥n) such that for i,j € I, #; < =; iff y; < y;. There
is thus a strictly increasing function g : R — R such that g(x;) = y; for ¢ € I,. If
f(z1,...,%,) = %, then we have

Y- um) = Flg(21),- .., 9(22)) = g(f(21y. .., 22)) = g(2:) = .

This means that f is a preorder function. il

Before proving the converse of Proposition 16 (i7) for |D| > 3, we will concentrate on
a particular class of increasing functions D — D:

For any y € R, the thresholding function 8, is a map R — B defined by

0 if z <y
dla) = {1 if2-> 9. (19)

It is clear that such a function 8 is increasing. Thus for an order function f, we can apply
Proposition 16 (i7), and so for y € R and #,,...,2, € D we have

Ol (Bisiii ) = FlO kw1 ) s 050 0y (20 s

In other words, an order function commutes with thresholding. Considering the restrictions
fp and fg of f to D™ and B"™ respectively, we can thus write: given any y € R,

0y (fo(21y---, %)) = fB(Oy(21),...,0y4(2))  for z,...,2, €D. (20)

The possible converse of this property would be that a function fp : D™ — D satisfying
(20) for every y € R (with B C D) is an order function. More generally, consider two
functions gp : D™ — D and hg : B™ — B and a relation between them of the form:

Oi{gplzy; .- 2a)) = BplOpl®1); i Oylan))  for @y i8x €D, (21)

If (21) holds for any y € R, then does it imply that there is an order function f such that
gp = fp and hp = fg7"
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When |D| = 2, nothing can be deduced from (21), because in this case thresholding is
either a constant function or a bijection D — B. Indeed, for any y € R, hp and gp satisfy
(21) provided that gp and hp are order-isomorphic selection functions, and when D = B,
fB satisfies (20) if it is a selection function.

On the other hand, when |D| > 2, that converse is true:

Theorem 18. Suppose that |D| > 3. Given two functions gp : D™ — D and
hg : B"™ — B, gp and hp satisfy (21) for any y € R iff there is an order function f such

that gp = fD and hB = fB.
Proof. As an order function f satisfies (20), (21) holds for gp = fp and hp = fp.

Suppose now that gp and hp satisfy (21) for any y € R. Let us show that hp is
increasing. Take z1,..., %y, ¥1,...,Yn € B such that x; < y; for each i € I,. We set:

U={lel|#i=u=0)

V=liel |#=0u%=1}
Wﬁ{ieln]:q:y,-:l}.

As |D| > 3, there exist u,v,w € D such that < v < w. Now define zj,..., 2, as follows:
u forieU,;
zi=Sv fori€eV;
w forieW.

Then 0,(z) =1for i € VUW, and 8,,(2) = 1 for i € W, in other words

0y (2:) = yi,
olzs) = for i€ l,. (22)
HUJ(Zf) = 3,':‘,
As w > v, for any h € D, 0,,(h) < 6,(h). Thus
b ity ) s (o i ) (23)

Combining (21, 22, 23) we get:

hp(t1,...,280) = he(0uw(21), ..., 0uw(2n)) = Oulgp(21,. .., 2a))
<O (gp(z1,---,2s)) = BB(0y(21),...,04(2:)) = BB(Y1, .. .1 ¥n)-

Thus hpg is increasing. By Theorem 6 one of the following holds:
(a¢) hg is an order function.
(b) hp(z1,...,2,) =0 for any =;,...,2, € B.

(¢) ha(zy,...,2,) =1 for any #,,...,2, € B.
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If (a) holds, then there is an order function f such that fg = hp. By (20,21) we have

for any y € R and 2,...,2, € D:
Oy (Ip(21s - r20)) = [0y (21); - - - s Op(2a)) = Oyl (215 - - - s 28)).

Thus for any y € R and z,...,2, € D, fp(z1,...,%,) 2 ¢y iff gp(21,...,2.) > 9, in other
words gp = fp.

If (b) holds, then for any y € R and #,..., 2, € D we have

0y(gp (21,- - - 1 2)) = RB(0y(21), ..., 0y(2:)) = O,

that is gp(21,...,2,) < y for any y € R, a contradiction.

If (c) holds, then for any y € R and z,...,2, € D we have

0y(g9p(21,-..,22)) = kB(Oy(21),...,0y(2)) = 1,
that is gp(z1,...,2,) > y for any y € R, a contradiction. §

We derive from this result the following partial converse of Proposition 16 (#i):

Corollary 19. Suppose that |D| > 3. Let fp be a function D* — D. Then fp is an
order function iff it commutes with any increasing function D — D.

Proof. We showed in Proposition 16 (ii) that if fp is an order function, then it
commutes with any increasing function D — D.

Suppose now that fp commutes with any increasing function D — D. We show that
fp is an order function. Take ag,a; € D such that ay < a;, and consider the bijection
¢: B — {ag,a;} defined by ¢(0) = ao and ¢(1) = a;. Let Ap be the function B* — B
defined by

hg (21, 20) = 07 (fp(P(21),- .., $(an))) (24)
for zy,...,%, € B. (In other words, hp is order-isomorphic to f{s,,}). For any y € R,
the map ¢, : D — {ag,a1}: 2+ ¢(0y()) is increasing. Therefore it commutes with fp,

and so for any 2;,...,2, € D we have

Yy(fD(21,. -3 20)) = fo(Py(21), ... Py (2n)),
in other words
¢(8y(fo(21,- .1 20))) = Fo(D(0y(21)), - -, $(0y(2n)))-

Applying ¢! to both sides, we get by (24):

Oy(fo(z1,.. -, 2a)) = 67 (Fn(0(0y(21)), - -, {0y (20)))) = B (0y (1), . .. Oy (2n)).
Thus fp and hp satisfy (21), and by Theorem 18 fp is an order function. i

When |D| = 2, it is easy to see that an increasing function D — D is the identity or
a constant function; in fact, for D = B such a function is equal to a thresholding. Thus
a function D* — D commutes with any increasing function D — D iff it commutes with

thresholding, and this happens iff it is a selection function. Note that when n = 2, it is easy
to show that a selection function D" — D is an order function.
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IV.2. Some consequences

Commutation with thresholding (see (20)) implies that the behavior of an order func-
tion fp on D™ is determined by that of the corresponding order function fp on B™. Indeed,
for any z € D, z is determined by the set of all 8,(z) for y € R; thus for #;,...,2, € D
the value of fp(zy,...,%,) is determined by all thresholded values 8y(fp(21,...,2,)) =
fe(0y(%1),...,0,(2,)), which are determined by the behavior of fg. A practical applica-
tion of this fact to the computation of fp(zi,..., %y, ), called threshold decomposition, will
be given in Section V.

The last four results of the preceding subsection (i.e., Propositions 16 and 17, Theo-
rem 18 and Corollary 19) dealt with the problem of commutation with increasing (or strictly
increasing) functions D — D. What about decreasing (or strictly decreasing) functions? We
will show that similar results can be obtained, but here we obtain, instead of the commuta-~
tion of fp with such a function gp, an equality of the form

gp(fp(z1,...,2.)) = fH(gp(21),- .., gD (%0))- (25)

We say then that gp commutes the pair (fp, f};). We give below the four statements
corresponding to the four results mentioned above:

Proposition 16°. Let fp and gp be two functions D" — D and D — D respectively.
If either

(¢) fp is a preorder function and gp is strictly decreasing, or
(i2) fp is an order function and gp is decreasing,
then gp commutes with the pair (fp, f}), where f}, is the dual of fp.
Proof. (i) If fp is a preorder function and gp is strictly increasing, then for any
Z1,...,%, € D and i, § € I, we have z; < z; iff gp(2;) > gp(2;). Hence (by Definition 4)

fo(#1,...,2,) = x¢ implies that f5(gp(z1),--.,90(%x)) = gp(=¢), and so fp and [}, satisfy
(25).

(z':') If fp is an order function and gp is increasing, then for any =zy,...,2, € D
such that z;, < ... < z;, (where (i1,...,6,) € Tn), we have gp(2;,) < ... < gp(=:,).
Thus for ¢ = x(iy1,...,4n) we have fp(21,...,%s) = 2¢, and as x*(ix,...,41) =t (by (2)),
fi(gp(21),--.,9p(2n)) = gp(2¢), in other words fp and [}, satisfy (25). B

Proposition 17°. Let f, f' be two functions R® — R. If any strictly increasing
function R — R commutes with the pair (f, '), then f is a preorder function and f' = f*,
the dual of f.

Proof. The map R —+ R : z+— —z is strictly decreasing, and so it commutes with
the pair (f, f'), in other words for any yy,...,y, € R we have

"_f(ylt'“syn)=f'(_y1:---a—yn)- (26)
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For any strictly increasing map g : R — R, the map R — R : & — —g(z) is strictly
decreasing. We have then for any z;,..., 2z, € R:

—g(f(21,. .- 20)) = f'(~g(21),- .., —g(2a)).
Applying (26) with y; = g(z;) (i € I.), we get:
—flg(21), ..., 9(za)) = F'(=g(21),- .., —g(2n))-

Combining the last two inequalities, we obtain

g(f(zl: cheJh g | :Un)) = f(g(xl)a O )g(xn))!
in other words f commutes with g. By Proposition 17, f is a preorder function. But then
(26) means that f' = f*. &

Recall the complementation z — # = 1 — 2 in B. The decreasing correspondent of
thresholding is the complemented thresholding éy defined by gy(z) = 0y(z). We get then
instead of (20): given any y € R,

O (Fp(%x, v ov@a)) = TE(05(71) s 05(2:)) . for ®ije..;Zn € D. (27)

We have then the following:

Theorem 18°. Suppose that |D| > 3. Given two functions gp : D" — D and
hg : B®™ — B, gp and hpg satisfy

0,(gp(21,...,20)) = hp(0y(21),...,0y(7n)) for =z1,...,2, €D (28)

for any y € R iff there is an order function f such that gp = fp and hp = f5.

Proof. As an order function f satisfies (27), (28) holds for gp = fp and hp = f5.
Suppose now that (28) holds. We can rewrite it as

0y(gp(21,..., ) = hp(0y(21),.. ., Oy(20)),

and defining the function hl; : B™ — B by

K21y 1 2) = RB (702 Z0), (29)

we get
Oy(gp(21,. .., 20)) = Rig(Oy(21);. -, Oy(2a)),

in other words gp and h', satisfy (21) for any y € R. Thus by Theorem 18 there is an order
function f such that gp = fp and hly = fp. But then (29) means that hg = R = f5.
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Corollary 19°. Suppose that |D| > 3. Let fp, f}, be two functions D™ — D. Then
fp is an order function and fj, = f}, iff any increasing function D — D commutes with the

pair (fp, fp)-
The proof is similar to that of Corollary 19, and it is left to the reader.
Given a,b € R, the map & — ax + b is strictly increasing when a > 0, and strictly

decreasing when a < 0. When a = 0, it is a constant map, and so it commutes with any
selection function. We derive thus from Propositions 16 and 16’ the following:

Corollary 20. Let f: R™ — R be a preorder function. Then for any a,b € R and
Z1,..., 2, € R we have

af(zy,...,2e) -+ Ha>0;

flazi +b,...,a2, +b) = {af*(xl,...,:cn)-t-b ifa <0, (30)

In particular, when f is equal to its dual f* (for example if f is the median), then f
commutes with the map = — ax + b.
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V. Threshold decomposition and its unicity

Recall the definition of the thresholding function 6, in (19): for y € R and # € D we
have 0,(z) = 1if z > y, and 8,(z) = 0 if < y. The value y is called the threshold. Given
a order function f : R™ — R, f commutes with 8, for any y € R; this means (see (20))
that for 1,...,%, € D and z = fp(®1,...,%), Oy(2) = fB(0y(21),...,04(2s)), where fB
and fp are the order functions B® — B and D" — D corresponding to f.

As we explained at the beginning of Subsection IV.2, a consequence of this fact is
that the behavior of fp is determined by the behavior of fg, because z is determined by
its thresholded values 8,(z) for all y € D. Thus many properties found in the binary case
can be directly extended to the non-binary case. For example, if two order functions f and
g satisfy fp < gp, then fp < gp, orif fg = gp o [h(l),...,hg)] for n order functions
R, ... k™, then fp =gp o[BSV, ..., BV,

In fact, many results of Section III were also found by relating the properties of fp to
those of fg, for example the min-max decompositions of fp were found by an analysis of

the a-heavy sets for fz.

In practice, thresholding can be useful for the computation of the values of an order
function fp only if we have to apply it with a finite number of thresholds. In other words,
the set D should be finite. In this case it is possible to obtain fp(zy,...,#,) by a linear
combination of the results of fg on all thresholded values of zy,...,z,, as we explain
in Subsection V.1. We show moreover in Subsection V.2 that there is no other possible
method for a linear decomposition of any order function. For the reader with only practical
applications in mind, the latter subsection can be skipped.

V.1. Threshold decomposition

In practical situations, when D is finite one generally assumes that D is the set of all
integers k such that 0 < k < m for some integer m > 0. For example, in signal processing
D will often be the set of integers 0,...,255. Now more can be said about thresholding in

this case:

Proposition 21. Suppose that D = {0,...,m} for some integer m > 0. Then:

(a) for any k€ D, k=Y 72, 6;(k).

(b) Let fp : D™ — D be an order function and let y,x,,...,%, € D such that y =
fo(21,...,2,). For any j = 1,...,m, set y") = 8;(y) and zg” = 0;(z;) (i € I,).
Then:

m (5
=1 -

() Forany i€ I,, ; =
(i5) Forany j=1,...,m, g = f(=?,..., ).
(i) y = X, 5.
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The proof of (a) is straightforward (and we omit it), while (b) is an immediate conse-
quence of (a) and (20).

Proposition 21 shows the functioning of the method of threshold decomposition, which
was devised by Fitch [5] for the median filter, but is still valid for order functions and,
as we will see in Section VI, for order filters. We compute the m thresholded vectors
(0 (21),...,0k(s)) for k =1,...,m, then we apply fp to each one, and finally we sum the
m results.

Another form of threshold decomposition exists when D is finite, but not of the form
10; ssupttifs
Proposition 22. Suppose that D = {do,...,d;,} for some integer m > 0, with
do<...<dp. Forj=1,...,m,let c; =d; —d;_y. Then:
(@) Forany k € D, k =do + ) ;- ¢; - 0a,(k).

)
(b) Let fp : D™ — D be an order function and let y,zy,...,3, € D such that y =
fo(#y,...,2,). Forany j=1,...,m, set ') = 9,,(y) and .1:53) = 04;(x;) (1 € In).

Then:
(i) Forany i € I, z; = do + Y-, ¢; x(j)_
(i) Forany j=1,...,m, 4 = £, .., a9

(itd) y=do + X1, ¢5 -y,

Again the proof is left to the reader. Note that a similar threshold decomposition
formula has been given for another type of functions, multivalued multithreshold functions
(see Definition 3 and Subsection IV.A.2 of [1]).

Proposition 22 can also be used for the computation of fp(=1,...,2,) for zy,..., 2, €
D, whatever the form taken by D. Indeed, suppose that the distinct values of #,,...,2, € D
are yi,..., 4%, with y; < ... < yx. Then Proposition 22 implies that

fD(xls sy Tn —y1+z Yy — Y5 1 yj(xl),...,eyj(mn)).

When £ is much smaller than the size of D, this reduces by far the total number of compu-
tations necessary to obtain fp(z1,...,%,).

One computational consequence of threshold decomposition is that for D = {0,...,m}
the complexity of computing fp(21,...,%,) for #1,...,2, € D is asymptotically at most m
times that of computing fg(y1,...,¥x) for y1,...,yn € B, plus a term linear in n.

We can now consider the reverse problem: are there other decompositions of a variable
¢ as a linear combination Ajz® + --- + X, 2("™ such that for any order function fp we
have fp(zy1,...,2,) = Alfp(xgl),...,.’cgl)) + 0+ Amfp(:cgm),...,x.,(%m))? The answer is
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negative. We will show in the next subsection that the only such decomposition is the
threshold decomposition. Readers uninterested in matheatical details can skip it and resume
the reading in Section VI.

V.2. Theimpossibility of other linear decompositions

We consider first a collection X of n-tuples in R® and contemplate the possibility of
a linear decomposition of an order function on X. This requires the introduction of a new
concept. We say that X is order-coherent if there exists some (iy,...,4,) € T, such that for
any (1,...,%,) € X, i, <...< z;,, in other words if the elements of X admit a common

ordering.

We have the following characterization:

Proposition 23. Let X be a set (of size larger than 1) of n-tuples in R™. Then the
following four statements are equivalent:

(/) X is order-coherent.

(i) For every (#1,...,%a), (¥1,---,¥n) € X and a,b € I, with a # b, we may not have
both z, < xp and ¥, > ys.

(#4¢) For any (zgl), .. .,z;gl)), ceey {zgt),.. . z,(zt)) € X and any nonnegative Ay,..., A\ € R,
where t > 2, we have

FOaz 4o+ 22, 4 a2)
= Alf(zgl),...,zgl)) TR W 1 € L O}

for every order function f: R"™ — R.

(¢v) For any (z1,...,2),(¥1,..-,¥Un) € X, there exist (zgl),...,z,(zl)),..,,( ® .. (t)) =

R" and nonnegative Ay,...,A\s € R, where t > 2, A\, A0 > 0, (z;77,...,20 ") =
(®isoss w20 ); and (zgg),...,z,(f)) = (¥1,.-+,Yn), such that

FOE o a2 a2 4 02(0)
= Alf(Zil), e 2 )\tf(zgt), sy B
for every order function f: R™ — R,
Proof. (a) (ii) implies (i).
Suppose that (#7) holds. Given a,b € I, we have one of the following two possibilities:
— for any (21,...,2,) € X, 74 < 7p;
— for any (z1,...,%,) € X, 2, > 5.

In the first case, we write a < b, and in the second one we write & < a. Then the
relation < is transitive, and so it can be used to order the elements of I,,. Thus there is
some (iy,...,i,) € T, such that iy < ... < i,, in other words (3).

39



(b) (¢) implies (ii5).
There is some (i1,...,%,) € T, such that for any (z;,...,2,) € X, #;;, <... < x;,. Given
an order function f with choice map x, let ¢ = x(iy,...,i,). For j = 1,...,%, we have
z}f) e sz), and so

Alzgl) R Atzgt) S oo ¥ S Alz,(zl) +ee 4 Atzgt).

As f is an order function, this means that f(z1 - ,z,(f)) = m and

F2 + -+ A ® e Az = A e 0,
Now we have also
AMFGEW, LD Atf(zl yeeey 20) = Alzgl) et ,\tsz).

Combining both equalities, we get (ii7).

(¢) (i#7) implies (iv). This is evident.

(d) (iv) implies (ii).
Suppose that there exist a,b € I, such that z( ) = ¥ € By = z,g ) and 3,22) = i >
Yo = ;:l(3 ). We take the order function f defined by f(z15...,2,) = max{z,, 25 }. We have
f(z(l) ,z;g,l)) max{z(l), zbl)} > 248 while for j = 2,...,¢ we have f(zf’), ...,z,(ff))
max{zgf ), z(j)} > . By taking a linear combination of these inequalities with Ay, A2 > 0
and A; > 0for j=3,...,, we get:

A f( (1) .1351.1)) SRR )\tf(zgt)a' --1zs§tt)) > ‘)\lzt(ll) il Atz‘gt).

We have similarly f(z1 - z,(f)) - max{zc(ﬁ),gb?)} > zbz)’ while f(zt @ ,z,(,,j)) _
max{sz), ,()J)} > zbj) for j=1,3,...,¢ and so:

Alf(zgl),...,z(l)) +---+Atf(z£t),...,z£t)) p . Alz})l) + '--+Atz§t).

n
Combining both inequalities, we obtain

MIED, D) 4+ AL 6, A
>maX{Alzg1)+--.+Atz(),klzl£l) ""I’Atzgt)}
=f(Az{? + - -I-Az()...,Alz£1)+...+3tz£t)),

which contradicts (iv). ]

Statements (ii¢) and (iv) mean that order-coherence is a neccessary (by (iv)) and
sufficient (by (iii)) condition for the linearity of an order function on elements of X, while
statement (ii) is another expression of the order-coherence of X. Note that by (if), X is
order-coherent iff every pair in X is order-coherent.
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In the binary case, we have a simple characterization of order-coherence. Recall the
set B = {0,1}. Given two vectors (®1,...,%,) and (y1,...,¥n), We write (z1,...,2,) <
(915 4n) if #; < y; for each i € I,.

Proposition 24. Let X be a set (of size larger than 1) of n-tuples in B™. Then X is
order-coherent iff for every (zy1,...,%5), (¥1,-..,Yn) € X, either (21,...,2,) < (¥1,---,¥n),

Or(yl,...,yn) _<_ (zls---:xn)-

Proof. By Proposition 23 (i) the set X is not order-coherent iff there exist two
n-tuples (21,...,%4), (¥1,...,yn) € X and a,b € I, such that z, < zp and y, > yp. As
Zg, Ty, Yo, Yo € B, the following set of inequalities are equivalent:

Tq < xp and Y, > Yp.
xa:(]’ mb=1,ya:11 aﬂdyb=0.
2y < Yo and xp > yp.

But precisely we have neither (y1,...,¥n) < (21,---,2n) DOr (Z1,..,2,) < (Y1,---1Yn)
iff 2, < y, and =, > y; for some a,b € I,. Thus X is not order-coherent iff there are
(#1y-..,22),(y1,...,9a) € X such that we have neither (yi,...,¥x) < (®1,...,%,) noOT
(.’!‘31,...,37n) < (yly---,yn)- fl

Given a vector (2y,...,%,) € R" and a number y € R, we will write 0,(zy,...,z,) for
(6y(21),...,0y(x,)). We derive from Propositions 23 and 24 the following characterization
of threshold decomposition:

Corollary 25. Let m > 2 and D = {0,...,m}. Consider m vectors (wgl), — mg,l)),

& (xgm),...,:cgm)) in B, and let (#i,...,%,) be their sum. Then (z,...,2,) € D" and
the following two statements are equivalent:

(¢) For every order function fp : D™ — D,
oz, ... 2,) = fD(.’vgl), sy mg‘)) Fows ¢ fD(xgm), —_— :L'Szm)).

(1) {(«7,..., 2, @™ ™) = {0y (21, @)y O, 7))

Proof. As the sum of m elements of B is in {0,...,m}, (2y,...,2,) € D". If (if)
holds, then (7} follows from Proposition 21. Let us now show that (i) implies (ii):

If (i) holds, then (2{",...,2"),..., (2\™,..., &™) constitute an order-coherent set
by Proposition 23 (iv). Now Proposition 24 implies that for u,v € {1,...,m}, either
(:cgu),...,:cg“)) > (m&”),...,zg’)), or (:c(lv),...,xg")) > (zg“),...,zg‘)). Thus we have

(iﬁgtl)s-":mgl)) >...2 [:Bgtm), ---;55,(:7"))

16T BOME Tiyn- « siliy € Ty} With {5y, « ) = {dyensstm}
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For any ¢ € I, :cgt‘) +---+zf-t”‘) = 2;; as xgt‘) >...> 2" and z(t‘),...,xgt’") € B,

“ v st P Pl

this implies that given j € {1,...,m},

(¢;5 _ J1 forj <y
¢ T 10 forj >z

Now the right-hand side of this equality is nothing but 8;(x;). Thus &{*) = 6;(2;), and so
(x(lt"),...,:cgj)) = 0;(®1,...,%,). Hence (i) holds. B

This shows that for D = {0,...,m}, threshold decomposition is the unique way to

decompose a signal S — D into a sum of binary signals in such a way that any order filter
respects that decomposition.

More generally, one can apply Propositions 23 and 24 to other problems of signal
decompositions; in particular one can give criteria for the order-coherence of a set of two or
more non-binary n-tuples.
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VI. Order filters

In this section we will consider local filters for digital signals based on order functions,
what we call order filters. In Subsection VI.1 we define preorder and order filters, and apply
to them concepts of Section II, such as the dual and the composition. In Subsection VI.2
we apply results of Sections IV and V to order filters, and in Subsection VI.3 we give some

consequences of these results.

VI.1. Definition and main features

Let Z be the set of rational integers. Usually a physical signal is a real function, and
it must be digitized. This is done as follows. A d-dimensional signal R — R is sampled
at fixed intervals, and the sampled signal can thus be considered as a map Z% — R. The
signal values are quantized, and one obtains thus a digital signal Z¢ — Z. In practice one
works with a finite digitization, and so the digitized signal will be a map S — D, where S
and D are finite subsets of Z% and Z respectively.

We will consider here signals S — D, where S is a discrete set and D is any subset of
R. The elements of S are called points, and those of D are called signal values. Given such
a signal X, its value on a point p € S will be written X (p). We write D? for the set of all
signals S — D.

We assume that S is totally ordered by a precedence relation <. For example if
S C Z9, that ordering can be chosen as the “lexicographic order”, which is used for ordering
decimal numbers or words in dictionnaries, and is defined by (zy,...,24) < (y1,...,9q) if
there is some k with 1 <k < d such that zx <y, and z; =y; for 1< j <k (ford =21t is
also called the “raster-scan order”, while for d = 1 it reduces to the usual ordering relation
<). Then given a signal X € D°, a subset P of size n of S, and a function fp: D" — D,
we will write fp(X(q) | ¢ € P) for fp(X(p1),...,X(prn)), where py,...,p, are the elements
of P, with p; <... < p,.

Let us now define a local filter for signals in DS. We suppose that there exists a
windowing function ¢ which associates to each point p € S a finite subset p(p) of S,
generally containing p, called the window corresponding to p. Let n, be the size of p(p)
(p € §). Assume that for each p € S there is a function fp[p] : D™ — D. Then p and
the functions fp[p| for p € S induce a local filter Fp which transforms a signal X : § — D
into another signal X¥2 : § — D defined by:

X' (p) = folpl(X(a) e € p(p)) (pES). (31)

Then we say that the local filter Fp is a selection filter if the functions fp[p] (p € S) are
selection functions, that Fpp is a preorder filter if the functions fp[p] (p € S) are preorder
functions, and that Fp is an order filter if the functions fp[p| (p € S) are order functions.
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In fact the choice of the ordering < of the points on the point set S does not matter.
Indeed, changing that ordering leads to a permutation of the signal values entered as vari-
ables of each fp[p|, and a permutation of variables does not change the property of being an
order function, a preorder function, or a selection function (see the end of Subsection II.4).
Thus the fact that a filter is a selection filter, a preorder filter, or an order filter, does not

depend on the choice of the ordering of S.

Similarly the size and shape of the windows ¢ (p) is not fundamental: one can extend
a window p(p) to a larger window ¢'(p) containing it, and this leads to a void expansion
of the function fp[p]. Again this operation does not change the property of being an order
function, a preorder function, or a selection function (see the end of Subsection II.4). Thus
the fact that a filter is a selection filter, a preorder filter, or an order filter, is not modified

by the enlargement of windows.

As it was the case with order functions (see Proposition 2), order filters can be made
independent of the set D. Thus for C C D the restriction to signals in CS of an order filter
Fp on D% will be an order filter written F, and for E D D, Fp admits a unique extension
to an order filter for signals in E°, written F. We can assume that the order filter F, for
signals in D is the restriction to D of an order filter F for signals in RS.

Local filters have been used extensively in digital signal processing. Let us give here
a few examples of preorder and order filters.

For D = B and S C Z? (or Z?), local filters are local operators for binary (black and
white) digital images, and they are well-known. Here the resulting grey-level (1 for black
and 0 for white) of a pixel p is determined by the configuration of grey-levels in the window
©(p). One often takes p(p) to be the 3 X 3 neighborhood of p. Such a filter is a preorder
filter iff it is a selection filter, and this happens iff each fg[p| satisfies fz[p](0,...,0) = 0 and
felpl(1,...,1) = 1, in other words iff every pixel in a neighborhood of constant grey-level is
not modified by the operator. Moreover, it is an order filter iff it is an increasing preorder
filter (see Theorem 13). There are several known examples of preorder filters for binary

images:
— Shrinking and expansion; these are in fact order filters.

— For a finite image, the digital convex hull; this is also an order filter, with each window
©(p) equal to the whole point set S.

— Thinning operators, and more generally topology-preserving shrinking or expansion
operators.

— Border marking operators, etc..

These filters can be extended to images with grey-levels in D for a larger set D, but this
extension is unambiguous only for order filters (see Propositions 2 and 3 in Subsection II.3).

As mentioned in the Introduction, several order filters (for digital signals with values
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in an arbitrary set D) have been considered in the literature, mainly rank filters [9,10], the
weighted median filter [4,12], or filters built by a composition of rank filters, for example
the separable median filter [16], or Min-Max filters [7,15], which extend shrinking/expansion
operators for binary images.

For non-binary images, preorder filters which are not order filters are less frequent.
One example is the mode filter, which assigns to a point p a new signal value Y (p) equal to
the mode [13] of the signal values X(g) for points ¢ within the corresponding window ©(p),
that is the most frequent occurence among them. Another possible example is the following
contrast-enhancing filter for signals on R®, defined by:

: med(X(q) | g € p(p)) if X(p) = med(X(q) | g € p(p));
X" (p) = { min(X(q) | ¢ € v(p)) if X(p) < med(X(q) | ¢ € p(p));
maz(X(q) | ¢ € p(p)) if X(p) > med(X(q) | ¢ € p(p)).

(This filter was already suggested in Subsection I1.1).

Some customary assumptions are generally made about local filters. Given D C Z¢,
one postulates that a local filter is translation-invariant. In other words, the windows p(p)
are translates of a fixed template ©*, and the functions fp[p| are identical.

In fact, when the digital set S is finite, then for a point p near the border of S, the
translate o(p) of ¢* by p will not be completely contained in 5. The most frequent solution
to this problem is to extend S to a larger digital set S’ by adding to it one or more layers
of points, and to extend a signal X on S to a signal X' on S’ by assigning to each point
r € §' — 8 a signal value X'(r) equal to the signal value X(g) of the closest point ¢ € S.
For example, if S is a two-dimensional rectangular grid and if each p(p) is a 3 x 3 window
centered about p, the window o(p) will not be contained in S when p is in the border of
S; then we add a layer L of points around S, and each point in L gets as signal value
the one of the neighboring point in S. This type of construction is compatible with our
definition of a local filter. Indeed, for a point p in the border zone (in other words with ¢ (p)
extending outside S), one can consider that the corresponding window is in fact p(p) N S,
and that within this window, certain signal values X(g) occur several times as arguments
of the function fp[p]. In other words one applies on ¢(p) N S a function gp[p] which is a
weighted expansion (see the end of Subsection II.4) of fp[p|. As we explained there, that
expansion does not modify the property of being a selection, preorder, or order function,
and so by taking the windows p(p) N S and the functions gp[p] instead of p(p) and fp[p],
we do not change the fact that the local filter Fp is a selection filter, a preorder filter, or an

order filter.

Let us stress that we will not make here such an assumption of translation-invariance,
because we do not require it. We will allow local filters having windows ¢ (p) of varying
sizes and shape, and applying within them distinct functions fp[p]. There are several
justifications for this non-uniformity. We have seen above that the postulate of translation-
invariance is not preserved along the border of a finite digital set. We will introduce later a
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variant of the local filter in the case of a finite digital set S, called a recursive filter, and we
will show that it is equivalent to a non-recursive filter which is not translation-invariant. We
will also see in [20] that one can design order filters for digital images having a heterogeneous
behavior, varying between the distinct image portions.

Now that we have defined local, selection, preorder, and order filters, let us describe
how the basic operations of composition and dual described in Subsection I1.4 can be applied
to them.

Given two filters Fp and Gp, the composition FpGp of Fp by Gp is a local filter
defined by X*PG» = (XFP)9D for a signal X € D5. If Fp is determined by the windowing
function ¢ and the functions fp[p| (p € S), and Gp by the windowing function 3 and the
functions gp|p] (p € S), then FpGp will have the windowing function 7 defined by

rp)= |J elg) for pes,
g€Y(p)

and it will apply within each window 7(p) the function

golp e [foladl,---. folar]],  where {g1,...,¢-}=9(p) and ¢ <...<g,,

in other words the composition of the functions fplg] (for ¢ € ¥(p)) by gp[p]. Thanks to
Proposition 5, the composition of two order filters, preorder filters, or selection filters is an
order filter, a preorder filter, or a selection filter respectively.

The composition of functions can occur in another way in the design of local filters.
Suppose that we have n local filters F5,. .., F5 for signals on DS, and a function gp : D* —
D. Then we define the composition (F},,...,Fp)-gp of F},...,F5 by gp as follows:

X(F};,...,FS)-gp(p) = gD(XFb (p)$ vimie }XFB (p)) (p € S)

for any signal X € DS. Clearly if Fj,...,F} are determined by the windowing functions
©1,+.., Py and the functions f}[pl,..., /(o] (p € S), then (F}, ..., FR)-gp is alocal filter
with windowing function i defined by

Y(p) =p1lp)U---Upu(p) for peSs,

and it will apply within each window #(p) the function

gD[p] o [J%[P], SRR fg[p]]’

in other words the composition of the functions f}[p],..., f[p] by gplp]. Again Propo-
sition b implies that if fp is a selection function, a preorder function, or an order func-
tion, and F},,..., F5 are selection filters, preorder filters, or order filters respectively, then
(Fh,...,F}) - gp is a selection filter, a preorder filter, or an order filter respectively. Ex-
amples of such a composition are given in [7] with fp being the maximum or minimum.
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Let us now extend to preorder filters the definition of the dual of a preorder function.
Given the preorder filter Fp (on D) determined by the windowing function ¢ and the
preorder functions fp[p] (p € S), its dual F}, will be the preorder filter (on D) determined
by the windowing function  and the dual preorder functions fp[p|* (p € S). Proposition 4
implies that:

— The dual of an order filter is an order filter,
— A preorder filter is the dual of its dual: F5* = Fp.
— Taking the dual commutes with restriction: Given a preorder filter Fp for signals in

D?® and a subset C' of D, the dual F}, of the restriction Fz of Fp to signals in C* is
equal to the restriction to signals in C of the dual F}, of Fp.

By Proposition 5, the dual of a composition of preorder functions is the composition
of their duals. Thus, considering the use of composition of functions in local filters, we have
the following:

— The dual of the composition of two preorder filters is the composition of their duals:

(FpGp)* = FLG%,.

— The dual of the composition of several preorder filters by a preorder function is the
composition of their duals: ((F},...,Fp)-gp)* = (F5*,...,F5*) - gb.

What we said in Subsection I1.4 about the dual of rank functions applies also to rank
filters: the dual of the minimum filter is the maximum filter, the median filter is its own
dual, etc..

We can also extend the equality (3). For any map 5 : D — D we derive the signal
value transformation T}, which is a map DS — D¥ defined by

XM (p) =n(X(p)) for peS and X €D (32)
Then, given a strictly decreasing bijection w: D — D, (3) implies that
T, =1, Fp (33)

for any preorder filter Fp on DS, Note that when D is finite, such a map w exists and is
unique, it is the “natural” reversion of the elements of D.

Given a filter Fip and two signals X and Y in D¥, equation (33) says that for X' = X%
and Y' = Y7o, Y = XFD is equivalent to ¥’ = X'"”, This means that the behavior of the
dual F}, corresponds to that of Fip by complementation. If Fjp erodes ridges in an image,
then Fp, will fill valleys in that image, if Fp deletes positive impulse noise in a signal, then
F}, will delete negative impulse noise in that signal, and so on.

We have defined local filters, selection, preorder, and order filters, and have given their
major features. When S is finite, there exists a variant type of local filters: recursive filters.
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They were introduced in [17] in the case of the median filter for one-dimensional signals,
but they can be derived from any kind of local filter.

As defined above in (31), filters for digital signals are non-recursive (from the point of
view of signal processing), or parallel (from the point of view of algorithms). This means
that the new signal value X¥P(p) on a point p is obtained independently from the new
signal values X¥» (g) obtained on the other points g. When S is finite, one can also derive
from the windowing function @ and from the functions fp|p| another filter f’g, which is
called a recursive filter (in the signal processing sense, see [17]) or a sequential filter (in the
algorithmic sense). Recall the orderlng of S by <; then FD works like Fp, except that for
each p € S, the new signal value XFD( ) is computed after having replaced X(g) by XFD( )
for every g < p. Let us describe this more formally. We suppose that the elements of S are
81,...,8, Where 851 < ... < 8,. Forany j =2,...,n, we set

p(si) ={s; €plsi) | < i} (34)
©

T(si) ={s; € p(s:) | 2 7}.
Then for a digital signal X on S, Xﬁ P is built recursively as follows:

XF2(s1) = fD[Sll(X(Sj) | 85 € p(81));
X (o) = folsil(XFP (0-), X (5j4) | 8- € 0 (5:), 0+ €67 (81))  (i=2,...,n)
(35)
It is easy to see that such a filter can be achieved by the composition of n non-recursive
local filters Fj,..., Fp defined as follows:

e X(s5) if j #14;
X0(eg) = {fD{Sa](X(q) |g€ p(s:) ifj=i. 189)

When the functions fp[s;| (i = 1,...,n) are selection, preorder, or order functions, the filters
F f) are selection, preorder, or order filters respectively. As the composition of local filters
preserves these three properties, a recursive selection, preorder, or order filter is equivalent
to a non-recursive one.

Note that in the non-recursive equivalent of a recursive local filter, the corresponding
windows 1(s;) increase with i; they satisfy the following recursive equality:

Y(s1) = p(s1);
Y)=et()u |J vl (i=2...n). (37)

q€p—(si)

This implies in particular that



For example, given S = {1,...,n}, s; =i and p(s;) = {j € §|i —k < j <i+k}, we have
Y(s:)={j€S|1<j<i+k}.
Thus the windows #(s;) of the non-recursive equivalent of a recursive local filter will

not have the same size. This is one of the reasons why we did not require translation-
invariance, as it is generally done in the literature on rank filters.

Recursive filters can be useful in the case of one-dimensional digital signals (indeed
many recursive linear filters have been applied in speech processing). It has been shown
in [17] that one pass of a (translation-invariant) recursive median filter reduces a one-
dimensional digital signal to a root signal, that is a signal invariant under further median
filtering. On the other hand, the (translation-invariant) non-recursive median filter requires
in general several passes to reduce a one-dimensional digital signal to a root [6].

In the case of multi-dimensional signals, the application of recursive filters is more
problematic, becaunse there is no natural ordering of a multi-dimensional digital space, as
it is the case for a time sequence. The result of a non-recursive filter relies heavily on the
choice of the ordering of the elements of the point set S, and introduces an anisotropy on it.

More details on the definition of order filters will be given in [20].

VI1.2. Properties and characterizations

We will give below the interpretation in terms of local filters of the results of Sections IV
and V. We will first introduce some general definitions (extending to filters those made in
the Introduction).

For any y € D, let Cy be the constant y signal defined by Cy(p) = y for every p € S.
Given X,V € DS, we write X <Y if X(p) < Y(p) for any p € S. Given a local filter Fp,
we say that Fp is increasing if for any X, Y € D°, X <Y implies that X» < Y¥p and
that Fpp is decreasing if X <Y implies that X¥? > Y¥P: given another local filter Gp, we
say that Fp commutes with Gp if FpGp = GpFp. We recall from (32) that every map
n: D — D induces a signal value transformation T, defined by X (p) = n(X(p)) for
X € DS and p € S; cleatly T, is a local filter with trivial windows (p) = {p}, and applying
within each of them the same function fp[p] = n.

We can now state several properties of preorder and order filters. Let Fip and Gp be
two local filters for signals in D°. Theorems 13 and 14 have the following consequences:

Property 1. Fp is an order filter iff it is an increasing preorder filter.

Property 2. Suppose that D = R and that Fp is a selection filter. Then the following
three statements are equivalent:

(¢) Fp is an order filter.

(i7) Fp is continuous.
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(iii) For any X,Y € D’ ande € R, C_, < X -Y < C, implies C_, < XFpo —Y¥ > < C..

We now apply Propositions 16, 16’, 17 and 17°, and Corollaries 19 and 19":

Property 3. If Fp is a preorder filter, then:
(¢) For any strictly increasing function 5 : D — D, Fp commutes with T),.

(¢¢) For any strictly decreasing function n : D — D, FpT, =T, F},

Property 4. Suppose that D = R. Then:

(¢) Fp is a preorder filter iff for any strictly increasing function n : R — R, Fp commutes
with T),.

(¢¢) Fp is a preorder filter and Gp = FY}, iff for any strictly decreasing functionn: R — R,
Property 5. If Fp is an order filter, then:

(¢) For any increasing function y: D — D, Fp commutes with Tj,.

(¢¢) For any decreasing function n: D — D, FpT, =T, F},.

Property 6. Suppose that |D| > 3. Then:

(¢) Fp is an order filter iff for any increasing function n : D — D, Fp commutes with

Ty.
(¢#) Fp is an order filter and Gp = Fy, iff for any decreasing function n : R — R,
FpT, =T,Gp.

We can define on signals the arithmetic operation of scalar multiplication: for any
X € R® and € € R, we define ¢X by (¢X)(p) = ¢(X(p)). Then Corollary 20 is translated in
the following way:

Property 7. If Fp is preorder filter, then for any a,b € R and X € RS we have

a(XFP)+Cy ifa>0;

Fp _ P
Lottt s {a(XFo) +Cy ifa<o.

In particular if F, is equal to its dual, then Fp commutes with the map X — aX + C,.

For any y € R, we derive from the thresholding 6, : R — B defined in (19) the digital
signal thresholding ©, : RS — BS: X +— ©,(X) by setting for any signal X € RS and
point p € S:

0 if X(p) <y
&, (x)(p) = 0,(x(w) = {3 HXH Y (38)
We derive similarly from the complemented thresholding _éy : R — B defined by ?y(:c) ==
0,(z) the digital signal thresholding ®, : RS — B defined by ©,(X)(p) = 04(X)(p).
Then we derive the following from (20), (27), and from Theorems 18 and 18"
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Property 8. If F')p is an order filter, then:
({) Fp commutes with thresholding: for any y € R and X € D%,

0, (X"2) = (0,(X))"™. (39)

(i) For any y € R and X € D%, ©,(X*1) = (6,(X))"5.

Property 9. Suppose that |D| > 3. Let Hg be a local filter for signals in BS. Then:
(¢) Fp is an order filter and Hg = Fp iff for any y € R and X € D%, 9,(X'?) =
(0y(X))"=.
(i) Fp is an order filter and Hg = F}, iff for any y € R and X € DS, ©,(XFr) =
(0,(X))"=.
We can also define on signals the arithmetic operation of addition: for any X,¥ € RS,

we define X + Y by (X + Y)(p) = X(p) + Y(p). Then Propositions 21 and 22 imply the
following:

Property 10. Suppose that D = {0,...,m} for some integer m > 0, and that Fp
is an order filter. Take Y,X € D® such that Y = X*P, and for any j = 1,...,m, set
Y; =0,(Y) and X; = 0,(X). Then:

(i) X = Z;'n:1 X;.
(ii) Poranyj =1,..:,m, ¥; = X[®.
) Y= 8.

i=1

Property 11. Suppose that D = {do,...,dn} for some integer m > 0, with dy <
.+ <dp,, and that Fp is an order filter. Forj =1,...,m, letc; = d;j—d;_,. TakeY, X € DS
such that Y = X¥? and for any j=1,...,m, set Y; = ©4,(Y) and X; = 04,(X). Then:
(i) Forany j =1,...,m, ¥; = X]*.
(3'”) Y = Odo + Z;’n:l cf}fj'

VI.3. Consequences

As explained in Subsection VI.1, a recursive local, selection, preorder, or order filter
is equivalent to a non-recursive one. Thus all the properties given above apply indifferently
to both recursive and non-recursive local filters.

The fact that an order filter Fp is increasing (see Property 1) implies that if F, deletes
from a signal some feature, it will also delete any smaller features. Let us explain this with
more details. We suppose that we have a nonnegative signal X (ie., X > Cp), which is
added to a constant signal Cj, and the order filter Fp deletes X from C,+ X, in other words
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(Cy + X)FP = C,4. Consider now a smaller nonnegative signal ¥ {i.e., X > Y > Cp). Then
Cy £ Cy+Y < Cy+X and as Fp is increasing, Cy = Cf? < (C,4Y)'? < (Cy+X)'? = Cy,
that is (C, +Y)¥> = Cy, in other words Fp deletes ¥ from Cy+Y. The same thing happens
if we suppose instead that X <Y < C,.

In practice, the median filter for example is used to delete noisy peaks in a signal, and
it will delete all peaks of size less than half the window size. Other order filters can be used
to delete some particular features whose size is bounded from above.

On the other hand, a preorder filter which is not an order filter is not increasing. It
can thus delete a feature and preserve a smaller one.

In our comments on Theorem 14 we stressed the importance of continuity for any
practical method for data processing. The same can be said for Property 2. Order filters
are the only continuous selection filters. Moreover item (iii) implies that:

— An order filter will not increase the quantization error of a digital signal (this is not
the case, for example, with linear filters, because they require a new quantization of
the result after each pass).

— Given a digital signal corrupte.d by an additive noise signal whose amplitude never
exceeds some bound ¢, the image of this noisy signal by an order filter is equal to the
image of the original signal corrupted by an additive noise signal whose amplitude also
never exceeds €. In other words, for any X, N € D such that |[N(p)| < € for every
p € S, and for any order filter Fp on DS, we have (X + N)fo = XFp 4+ N', where
|N'(p)| < € for every p€ S.

Properties 5 and 6 are important for digital image processing. Indeed one often en-
hances a digital picture by applying a {(non-linear) increasing grey-level transformation to
each pixel. The original picture and the enhanced one normally represent the same scene
(and this is often the case for the human eye), and so a filter should extract the same features
whether applied before or after the grey-level transformation. Now order filters commute
with all increasing grey-level transformations; moreover, when there are more than two grey-
levels, they are the only filters having that property. Thus an order filter can be applied
either before or after an increasing grey-level transformation, giving the same result in each

case.

By Properties 3 and 4, the same can be said with preorder filters and strictly increasing
grey-level transformations in the case when we have a continuous range of grey-levels. The
fact that human vision recognizes features in an image after some strictly increasing grey-
level transformations indicates that preorder functions might well intervene in this process.

Commutation with thresholding (see Property 8) has an important consequence —
both theoretical and practical — for the behavior of order filters. We explained at the
beginning of Subsection IV.2 that it implies that the behavior of an order function fp on
D" is determined by that of the corresponding order function fg on B™. Now the same can
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be said about order filters: the properties of an order filter can be determined by those of its
restriction to binary signal, since a digital signal X is determined by all the binary signals
©y(X) obtained by thresholding it for every possible threshold value y € D.

By Property 9 order filters are the only filters for non-binary digital signals which
commute with thresholding.

Consider now threshold decomposition (Properties 10 and 11). Its functioning for
order filters is the same as for order functions (see Subsection V.1). The input digital signal
X is decomposed into a sum of binary signals X; obtained by thresholding; each of these
binary signals is processed separately by one or a composition of several order filters, and
the resulting binary signals Y; are added in order to give the output signal ¥. In order
to stress the importance of this method, we can simply quote the first paragraph of the

conclusion of [5]:

“The threshold decomposition and the set of binary signals perform the same function
for median filters that superposition and sinusoids perform for linear filters—they allow
complex problems to be decomposed into simpler problems. This has very fortunate
practical and theoretical consequences.”

Of course, in that statement one can replace “median filter” by “order filter”. One of
the consequences of threshold decomposition mentioned in the conclusion of [5] is the fact
that the behavior of the median filter is determined by its behavior on binary images (this is
just what we said above about order filters). In fact the results in [6,17] about the invariant
signals and the convergence of recursive and non-recursive median filters for one-dimensional
digital signals can be easily proved in the binary case, and then extended to the non-binary
case by threshold decomposition.

In practice, threshold decomposition can be used for the computation of the image of a
signal X by an order filter Fp when only the behavior of Fjg is known. Thus one can design an
order filter by specifying its behavior for binary signals (according to certain requirements),
and then computing its behavior on non-binary signals by threshold decomposition. We will
give some examples in [20].

Note that there is another method for the derivation of the behavior of an order
filter on DS from its behavior on BS: in Subsection III.2 we showed how the min-max
decompositions of an order function fp on D™ can be determined from the behavior of f5,
and more precisely from the a-heavy sets for fg (a = 0,1).

We proved in Subsection V.2 that threshold decomposition is the unique linear de-
composition method for an order function. It is easy to extend the results proved there to
the case of order filters.

Finally, let us remark that any order filter will have a behavior in some ways similar to
that of a smoother (or a low-pass filter). We note indeed that in practice, order filters have
been used for purposes of this kind: noise smoothing with median filters [19,22], erosion of

53



narrow peak features by composition of Min and Max filters [7,15], etc..
Several arguments can be given to justify this comparison:

(a) As it is a selection filter, an order filter will leave invariant a non-zero constant
signal. Now such a signal has frequency zero, and so it is preserved by low-pass linear filters,
but not by band-pass or high-pass filters.

(b) With a linear filter, the output signal value Y (p) on a point p is a linear com-
bination of the input signal X(g) for all points ¢ within some neighborhood of p: Y (p) =

qugo(p) ApgX(g). Now:.

— This filter is an increasing signal transformation (see Property 1) iff the coefficients
Apg of these linear combinations are all non-negative.

— This filter preserves non-zero constant signals and satisfies item (i) of Property 2 iff
the coefficients Ay; of these linear combinations are all non-negative and qu o(p) Ave =
1 for any p€ S.

In both cases the coefficients A, are nonnegative, and then the linear filter is a smoother.
Now an order filter is an increasing signal transformation, it preserves non-zero constant
signals, and it satisfies item (#47) of Property 2; thus it looks like a smoother from this point

of view.

There are nevertheless some differences between the smoothing properties of a linear
low-pass filter and those of an order filter. Given a signal decomposed into a linear combi-
nation of sinusoid components of various frequencies, a low-pass filter suppresses all sinusoid
components whose period is below a given threshold, and preserves the other ones. Thus
features of the signal corresponding to high frequencies are deleted. On the other hand,
given the threshold decomposition of that signal, an order filter will delete in each binary
threshold layer small groups of ones or of zeroes (see our comment on Property 1 at the
beginning of this Subsection); in other words it will erode small peaks or fill small holes.

An order filter will never enhance a feature, it will rather delete it. But one can use it
for feature enhancement by subtracting it from the identity; in other words we can enhance
certain features in a signal X by taking X — XFP for an order filter. For example, in a
two-dimensional image the composition of a Min filter followed by a Max filter will erode
all narrow peaks and ridges [15]; thus these peaks and ridges in an image X € SP can be
displayed by taking X — XMinpMazp,
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