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Abstract. We show that a local finitary operator on an up-distributive complete lattice

is lower semi-continuous. When the lattice satisfies some additional constraints, such an

operator is continuous. This generalizes previous results by Heijmans, Serra, and the author.

It applies in particular to local neighbourhood operations in binary, grey-level, or colour

digital images.
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1. Introduction

In [H1,H2,HS,RH,R,S], various results have been given concerning the continuity of operators on

complete lattices. They were then applied to image processing. In this note we generalize some of

the most recent results from [HS,R]. We must beforehand introduce our terminology.

Definitions and notation. Let (L,≤) be a complete lattice. This means that L is partially

ordered by ≤, and every subset S of L has a supremum
∨

S and an infimum
∧

S. Let Xn, n ∈ IN,

be a sequence in L. We say that Xn ↑ X (pronounce: Xn up-converges to X) if this sequence is

increasing (i.e., Xn ≤ Xn+1 for every n ∈ IN), and X =
∨

n∈INXn. Given Y ∈ L and an increasing

sequence Xn, n ∈ IN, with Xn ↑ X , we have

X ∨ Y =
(

∨

n∈IN

Xn

)

∨ Y =
∨

n∈IN

(Xn ∨ Y ),

in other words Xn ∨ Y ↑ X ∨ Y . We say that L is up-distributive if whenever Xn ↑ X , then for any

Y ∈ L we have

X ∧ Y =
∨

n∈IN

(Xn ∧ Y ),

in other wordsXn∧Y ↑ X∧Y . Note that up-distributivity is independent from ordinary distributivity

(namely, that A∧ (B∨C) = (A∧B)∨ (A∧C) for all A,B,C ∈ L). For example, in IRd the complete

lattice of convex sets is up-distributive but not distributive, while the one of closed sets is distributive

but not up-distributive.

We say that L is σ-sup-distributive if

(

∨

n∈IN

Xn

)

∧ Y =
∨

n∈IN

(Xn ∧ Y )

for any Y ∈ L and any sequence Xn (n ∈ IN) in L (not only increasing ones). Given a sequence Xn,

if we define Ym =
∨m

n=0Xn for all m ∈ IN, then Ym ↑
∨

n∈INXn; it is thus easily shown that L is

σ-sup-distributive if and only if it is both distributive and up-distributive.

We define in an analogous way dual concepts, namely “Xn ↓ X” (pronounce: Xn down-

converges to X), down-distributivity, and σ-inf-distributivity.

Let Xn, n ∈ IN, be a sequence in L. We define

lim inf
n∈IN

Xn =
∨

n∈IN

∧

m≥n

Xm;

lim sup
n∈IN

Xn =
∧

n∈IN

∨

m≥n

Xm.

Obviously lim inf Xn ≤ lim supXn; we say that Xn converges to X , and write Xn → X or X =

limXn, if X = lim inf Xn = lim supXn.

A function L → L will be called an operator. An operator θ is said lower semi-continuous if

for a sequence Xn converging to X we have θ(X) ≤ lim inf θ(Xn). Dually, we say that θ is upper

semi-continuous if forXn → X we have lim sup θ(Xn) ≤ θ(X). When θ is both lower and upper semi-

continuous, then we say that it is continuous; this means that for Xn → X we have θ(Xn) → θ(X).

Note that Heijmans and Serra [HS] use the expressions “↑-continuous” and “↓-continuous” where we

say “lower semi-continuous” and “upper semi-continuous”.
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An element F of L is called finite if the set {G ∈ L | G ≤ F} is finite. For every X ∈ L, write

fin(X) for the set of all F ∈ L such that F ≤ X and F is finite. We say that an operator θ : L → L

is finitary if for any X ∈ L we have

θ(X) ≤
∨

F∈fin(X)

θ(F ). (1)

A subset ℓ of a complete lattice L is called sup-generating if every X ∈ L is the supremum of

a subset of ℓ, in other words X = sup ℓ(X), where ℓ(X) = {x ∈ ℓ | x ≤ X}. Note that X is finite if

and only if the set ℓ(X) is finite.

Let the complete lattice L contain a sup-generating family ℓ. An increasing operator θ : L → L

is called ℓ-finitary if to every h ∈ ℓ we can associate a finite M(h) ∈ L in such a way that for every

X ∈ L we have

h ≤ θ(X) if and only if h ≤ θ(X ∧M(h)). (2)

The map M : ℓ → L : h 7→ M(h) is called the mask function. Note that an ℓ-finitary operator is

finitary, because for any X ∈ L we have

θ(X) ≤
∨

h∈ℓ

θ(X ∧M(h)),

In Section 4 of [R] we considered several types of semi-continuity properties of operators, and

obtained a few results (which will be discussed in more detail in the next section). In particular, let

us mention the following ones:

— If L is up-distributive, every increasing and finitary operator is lower semi-continuous (see [R],

Theorem 4.4 and after).

— If L is up-distributive and has a sup-generating family ℓ, every increasing and ℓ-finitary oper-

ator is continuous (see [R], after Theorem 4.5).

Heijmans and Serra showed on Proposition 6.2 of [HS] that for L = P(E) and ℓ consisting of all

singletons, every ℓ-finitary operator is continuous. We will generalize the latter two results by

showing that when L satisfies certain properties, every ℓ-finitary operator is continuous.

2. New Theorems

We recall this elementary result from [R]:

Lemma 1. Assume that L is up-distributive. Take X,F ∈ L, where F is finite, and let Xn, n ∈ IN,

be a sequence in L such that Xn ↓ X or Xn ↑ X . Then there is some m ∈ IN such that for any

n ≥ m, Xn ∧ F = X ∧ F .

In order to show our first result, we require beforehand a generalization of Lemma 1:

Lemma 2. Assume that L is up-distributive. Let X,F ∈ L, where F is finite, and let Xn, n ∈ IN,

be a sequence in L such that Xn → X . Then there is some m ∈ IN such that for any n ≥ m,

Xn ∧ F = X ∧ F .

Proof. We have X = lim supXn = lim inf Xn. For each n ∈ IN we define

Yn =
∧

m≥n

Xm and Zn =
∨

m≥n

Xm.
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Then

Yn ↑
∨

n∈IN

∧

m≥n

Xm = lim inf Xn = X and Zn ↓
∧

n∈IN

∨

m≥n

Xm = lim supXn = X.

As L is up-distributive, by Lemma 1 there exist m0,m1 ∈ IN such that for n ≥ m0 we have

Yn ∧ F = X ∧ F , and for n ≥ m1 we have Zn ∧ F = X ∧ F . Let m = max(m0,m1); then for n ≥ m

we have Yn ∧ F = Zn ∧ F = X ∧ F ; now Yn ≤ Xn ≤ Zn, so that we get Yn ∧F ≤ Xn ∧ F ≤ Zn ∧F ;

hence Xn ∧ F = X ∧ F for n ≥ m.

Theorem 3. Let L be up-distributive and have a sup-generating family ℓ, and let θ be an ℓ-finitary

operator. Then θ is lower semi-continuous.

Proof. Let Xn → X ; take h ∈ ℓ such that h ≤ θ(X). Then h ≤ θ(X ∧M(h)) (since θ is ℓ-finitary).

By Lemma 2 there is some m ∈ IN such that for every n ≥ m we have Xn ∧M(h) = X ∧M(h);

thus for n ≥ m we have h ≤ θ(Xn ∧ M(h)), so that h ≤ θ(Xn) (since θ is ℓ-finitary). Hence

h ≤
∧

n≥m θ(Xn), so that

h ≤
∨

m∈IN

∧

n≥m

θ(Xn) = lim inf θ(Xn).

As θ(X) is sup-generated by all such h below it, we deduce that θ(X) ≤ lim inf θ(Xn), and θ is lower

semi-continuous.

Note that the assumption that L is up-distributive cannot be dropped. Indeed if L is not up-

distributive, then there exists an increasing sequence Xn ∈ L (n ∈ IN) and X,Y ∈ L such that Xn ↑

X but X ∧Y 6=
∨

n∈IN(Xn∧Y ); as Xn∧Y ≤ X ∧Y for each n, we get thus X ∧Y >
∨

n∈IN(Xn∧Y ).

Let Z =
∨

n∈IN(Xn ∧Y ). As Xn ↑ X and Xn ∧ Y ↑ Z, we have Xn → X and Xn ∧ Y → Z (see [HS],

Proposition 2.3). Hence

lim(Xn ∧ Y ) = Z < X ∧ Y = (limXn) ∧ Y.

This implies that the increasing operator ψ : L → L : A 7→ A ∧ Y is not lower semi-continuous.

We might wonder whether we can show that θ is also upper semi-continuous. Following [R],

we say that θ is down-continuous if for every decreasing sequence Xn, n ∈ IN, with Xn ↓ X , we have

θ(X) ≥
∧

n∈IN

θ(Xn). (3)

As explained in [R], upper semi-continuity implies down-continuity, and for an increasing operator,

they are equivalent. We showed in Theorem 4.5 of [R] that:

— If L has a sup-generating family ℓ, every ℓ-finitary operator θ is down-continuous.

It follows in particular that if θ is also increasing, then it will be upper semi-continuous. When θ is

not increasing, we can show the upper semi-continuity of θ by imposing additional constraints on L;

recall that for every X ∈ L, ℓ(X) = {x ∈ ℓ | x ≤ X}.

Theorem 4. Let L be σ-sup-distributive and have a sup-generating family ℓ; let θ be an ℓ-finitary

operator with mask functionM such that for any h ∈ ℓ,
∨

k∈ℓ(h)M(k) is finite. Then θ is continuous.

Proof. LetXn → X ; take h ∈ ℓ such that h ≤ lim sup θ(Xn). Now lim sup θ(Xn) =
∧

m∈IN

∨

n≥m θ(Xn),

so that for every m ∈ IN, h ≤
∨

n≥m θ(Xn). Let N(h) =
∨

k∈ℓ(h)M(k); as N(h) is finite, there exists
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by Lemma 2 some m ∈ IN such that Xn ∧ N(h) = X ∧ N(h) for all n ≥ m. As h ≤
∨

n≥m θ(Xn),

from the σ-sup-distributivity of L we deduce that

h =
∨

n≥m

(h ∧ θ(Xn)). (4)

Take any n ≥ m and k ∈ ℓ such that k ≤ h ∧ θ(Xn); the fact that θ is ℓ-finitary implies that

k ≤ θ(Xn ∧M(k)); as n ≥ m, Xn ∧N(h) = X ∧N(h), and as k ∈ ℓ(h), M(k) ≤ N(h), so that we

have Xn∧M(k) = Xn∧N(h)∧M(k) = X ∧N(h)∧M(k) = X ∧M(k), and hence k ≤ θ(X ∧M(k));

thus k ≤ θ(X) since θ is ℓ-finitary. Now h ∧ θ(Xn) is sup-generated by all k ∈ ℓ below it, and

hence we get h ∧ θ(Xn) ≤ θ(X) for n ≥ m. By (4) it follows that h ≤ θ(X). As lim sup θ(Xn) is

sup-generated by all such h ∈ ℓ below it, we deduce that lim sup θ(Xn) ≤ θ(X). Therefore θ is upper

semi-continuous. As θ is lower semi-continuous by Theorem 3, it will be continuous.

Note that in a distributive lattice, the supremum of two finite elements is finite. Indeed, for F, F ′

finite and G ≤ F ∨ F ′, we have G = (G ∧ F ) ∨ (G ∧ F ′); as G ∧ F ≤ F and G ∧ F ′ ≤ F ′, there is

only a finite number of possibilities for each of them, so that we have a finite numbre of choices for

G. By induction, the supremum of a finite number of finite elements is finite. It follows that the

assumption that we made on the mask function M is satisfied in the following situations:

— all elements of ℓ are finite;

— for h, k ∈ ℓ, k ≤ h implies M(k) ≤M(h);

— for any h ∈ ℓ, there is only a finite number of k ∈ ℓ(h) such that M(k) 6≤M(h).

Note that the first two situations are particular cases of the third one.

We do not know whether the condition on the mask function can be weakened. On the

other hand, the σ-sup-distributivity condition on L cannot. Recall that it means that L is both

distributive and up-distributive. The following two counterexample show that neither of the two

partial conditions can be dropped, even when ℓ consists of points:

Example 1. A subset X of ZZ is convex if it is the intersection of ZZ and a convex subset of IR, in

other words if for any a, b ∈ X with a < b, X contains all m ∈ ZZ such that a < m < b. Let L be

the set of all convex subsets of ZZ, ordered by inclusion. As an arbitrary intersection of convex sets

and the union of an increasing sequence of convex sets are convex, L is an up-distributive complete

lattice. Now define θ as follows:

θ(X) =
{

{−x} if X = {x}, where x > 0 and x is even;
X otherwise.

As X is convex, X = {x} if and only if x ∈ X and x − 1, x + 1 /∈ X . Thus for every point p ∈ ZZ,

whether p ∈ θ(X) depends only on the intersection of X with M(p), where we have:

M(p) =







{p} if p is odd or p = 0;
{p− 1, p, p+ 1} if p is even and p > 0;
{p,−p− 1,−p,−p+ 1} if p is even and p < 0.

Hence θ is ℓ-finitary for ℓ being the set of singletons. Now define Xn = {n} for all n ∈ IN. Then

Xn → ∅, while lim sup θ(Xn) = ZZ, because for each m ∈ IN,
∨

n≥m θ(Xn) is convex and contains

arbitrary large positive and negative numbers. Thus θ is not upper semi-continuous.
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Example 2. Let L be the set of topologically closed subsets of IR, ordered by inclusion. As an

arbitrary intersection of closed sets and a finite union of closed sets are closed, L is a distributive

complete lattice. Let Xn = [2−n, 1] for each n ∈ IN, and define θ : L → L by θ(Z) = Zc ∩ {0},

where Zc is the complement of Z in IR. Then Xn → X = [0, 1], with θ(X) = ∅, while θ(Xn) = {0}

for each n ∈ IN, so that θ(Xn) → {0}. Thus θ(limXn) is strictly smaller than lim θ(Xn), and so

θ is not upper semi-continuous. However θ is ℓ-finitary, where ℓ is the set of singletons and we set

M(p) = {0} for all p ∈ IR; indeed

θ(Z) = Zc ∩ {0} = (Zc ∪ {0}c) ∩ {0} = (Z ∩ {0})c ∩ {0} = θ(Z ∩ {0}) = θ(Z ∩M(p))

for all p ∈ IR.

3. Application to Digital Image Processing

An important application of Theorems 3 and 4 lies in the neighbourhood operations used in digital

image processing. Let E be a set, for instance a subset of the digital space ZZd for some d ≥ 1. We

consider binary images on E as subsets of E , and grey-level images as functions E → G, where G

is the set of grey-levels. Let us assume that G is a finite lattice with least element g0 and greatest

element g1. Thus (P(E),⊆) is the complete lattice of binary images, while (GE ,≤) is the complete

lattice of grey-level images.

For binary images, we take ℓ to be the set of singletons of E , and the fact that θ is ℓ-finite

means that to every p ∈ E one associates a finite window W (p) ⊆ E such that

∀X ∈ P(E), p ∈ E , p ∈ θ(X) ⇐⇒ p ∈ θ(X ∩W (p)). (5)

In other words whether θ(X) contains p depends only on the configuration of points of X on W (p).

This condition, as expressed now, is independent from the ordering relation ⊆. In [HS,R] it is shown

that it is its own dual by complementation, in other words

∀X ∈ P(E), p ∈ E , p ∈ [θ(Xc)]c ⇐⇒ p ∈
[

θ
(

[X ∩W (p)]c
)]c
.

This is nothing but (5) expressed for the dual operator θ∗ defined by θ∗(X) = [θ(Xc)]c.

As P(E) is σ-sup-distributive and singletons are finite, by Theorem 4 an operator θ satisfying

(5) will be continuous. Alternately, by Theorem 3 both θ and θ∗ will be lower semi-continuous, in

other words θ will be continuous. This was first shown in Proposition 6.2 of [HS].

We refer to [H1] for a number of examples in the Boolean case; further developments can also

be found in [H2,HS].

In the grey-level case, we take ℓ to be the set of all pulse functions h = fp,g (g > g0), having

grey-level g on p and g0 elsewhere. The condition that θ is ℓ-finitary means that to each such h we

associate some grey-level function M(h) with finite support (that is, M(h)(p) > g0 only for a finite

set of points p), so that for each X ∈ L, h ≤ θ(X) if and only if h ≤ θ(X ∧M(h)). Here M(h)

can vary as p is fixed and g varies along G. As it is expressed now, this condition is weaker than

the requirement of finitary local knowledge, namely that the grey-level of θ(X) depends only on the

configuration of grey-levels of X on the finite set W (p). For A ⊆ E , let χA be the characteristic

function of A, having grey-level g1 on A and g0 elsewhere; for p ∈ E , let χp = χ{p} = fp,g1 . Note
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that χA is finite for a finite set A; in particular χp and χW (p) are finite. Then we can express finitary

local knowledge as follows:

∀X ∈ GE , p ∈ E , χp ∧ θ(X) = χp ∧ θ(X ∧ χW (p)). (6)

Finitary local knowledge, as expressed above, is also independent of the ordering ≤ on L. One can

show that (6) leads to

∀X ∈ GE , p ∈ E , χ{p}c ∨ θ(X) = χ{p}c ∨ θ(X ∨ χW (p)c).

This is nothing but (6) expressed in the dual lattice (with the order ≤ reversed).

As GE is σ-sup-distributive and characteristic functions χp are finite, by Theorem 4 an operator

θ satisfying (6) will be continuous. Alternately, by Theorem 3 θ will be lower semi-continuous for

both (GE ,≤) and its dual (GE ,≥), in other words θ will be continuous.
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