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Abstract: Two opposite orientations in image analysis are given on the one hand by lin-

ear filtering, spectrometry, and Fourier analysis, and on the other hand by mathematical

morphology, which emphasizes order relations and set-theoretical properties. The former

derives its appeal from its wide application in the processing of sound signals, while the

latter has been sucessfully used in the analysis of materials or in cytology. We make a

fundamental study of issues at hand in the choice of such methodologies in image analysis

and vision. We start by outlining the difference in purpose of vision and audition and

its physical basis, the scattering of waves. We criticize Serra’s arguments on this mat-

ter. Then we consider the general limitations of linear filtering methodologies and the

unsuitability of phase-independent spectrometry. We propose a paradigm of concurrent

processing and of sorting of information rather than a single sequence of processing mod-

ules with a controlled loss of information. Finally we analyse the domain of applicability of

mathematical morphology to the visual process and suggest that it is restricted to certain

types of tasks.
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1. Introduction

In [38] Pavlidis notes that 15 years of recent research on image analysis have brought only

small progresses in practical applications of this discipline. One of the problems faced by

both theorists and practicing engineers is the existence of a multitude of methodologies and

techniques, without a general framework indicating the scope of each. There is no coherent

theory as in classical physics for example.

Although Pavlidis gives much attention to the lack of availability of general software

tools, it is also important to look at the way researchers develop methods and techniques and

to see if they bring a better understanding of the problem they deal with. As Marr indicated

[29], a widespread attitude is empiricism: try something (or even anything), and see what

happens. Although it tends to avoid reflection on fundamental issues, empiricism does not

exclude the use of a theoretical and mathematical apparatus. For example: Theory X deals

succesfully with Problem A, let us try to adapt it to Problem B. However the two problems

might differ in a more fundamental way than in some apparent mathematical parameters,

and we have to understand the mathematical and physical assumptions underlying Theory X,

and its conceptual link with Problem A, to see whether it suits also Problem B.

In this work we deal with low-level vision, and we analyse methodologies for transform-

ing images and their possible role in the analysis of these images. Indeed, as pointed out by

Serra in the introduction of [46], perception involves a transformation of the signal, which

makes explicit some features which are only implicit. In order to analyse an image we have

to distinguish the meaningful information from the irrelevant one. Therefore any method

for image analysis uses transformations.

Two important classes of image transformations, which are in some way opposite, are

on the one hand linear filtering and Fourier analysis, and on the other hand mathematical

morphology. The first one has been extensively applied in the processing of sound signals

(music and speech), and it relies on tools such as the Fourier transform and the study

of its amplitude spectrum. The second one originated in the Paris School of Mines and

has been applied sucessfully to the analysis of material properties of samples (ores, porous

objects, cytological preparations, etc.) from images made by planar sections; it emphasizes

set-theoretical concepts, order relations, and lattice-theoretic operations.

How far can such methods be used in image analysis? If we want to apply techniques

of speech processing to image analysis, we have first to see how they relate to the goals of

audition and vision. In Section 2 we explain that these two senses have different purposes:

audition analyses sound waves, while vision recognizes the form and surface properties of

objects, as well as their position, orientation, motion and mutual spatial relations in a scene,

from the pattern of light waves that they reflect. We consider this distinction in relation

to psychophysics, neurology, but also physics: the scattering of waves and the relation

between wavelength and resolution in imaging. This problem is dealt with by Serra (see

the introduction of [47] or of [49], and [48]) in a justification of the non-linear and lattice-

theoretic techniques of mathematical morphology; we criticize his arguments in this respect.

In Section 3 we recall Gabor’s uncertainty relations for linear filtering (which generalize

such relations encountered in quantum mechanics) and outline some of their consequences.
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Then we explain the inadequacy of spectrometric methods in image analysis, in particular

because of the greater importance of phase than amplitude in the Fourier transform of an

image, and point out several facts which seem to limit the role of linear methods in vision,

in particular in the perception of texture.

In vision and image analysis, a methodology developed for extracting features in some

types of pictures seems certainly more suitable than one for speech processing, and indeed

actually mathematical morphology is more fashionable than Fourier analysis, but it should

not be considered as a panacea. In particular we need to know its scope and limitations.

In Section 4 we criticize Serra’s suggestion of a single sequence of transformations and of

controlled loss of information; we suggest rather a concurrent processing and a sorting of

information, based on actual neurological knowledge concerning primate vision. In Section 5

we analyse the physical assumptions underlying morphological operators and propose that

such operators are suitable when local configurations of grey-levels in an image represent

directly material properties of objects pictured; we show that it is generally the case for

many typical applications of mathematical morphoplogy. However for many aspects of visual

analysis, in particular the inference of three-dimensional features and spatial relations from

two-dimensional images, this is not the case, and indeed mathematical morphology has not

been applied for such tasks and perhaps will never be.

2. The Different Purposes of Vision and Audition

It is an obvious fact that when we hear a sound, what we perceive is that sound, not the

objects which emit or reflect it. We cannot ‘hear’ the shape of objects around us. The

only spatial information we obtain from hearing is a rough estimation of the direction of

the sound source (this is why we have stereo audio equipment), or the existence of a surface

reflecting sound in the case of echo.

On the other hand, when we see an image or a movie, we perceive objects in three-

dimensional space, their shape, colour, position, orientation, movement, etc. (see [8], Fig-

ure 1, for a more complete list of visual attributes of objects). It is not the intensity and

spectrum of light waves which interest us. Indeed, Land and McCann [20] showed that we

perceive the brightness of a surface not as the intensity of light that it reflects towards us,

but as a function of the change of that light intensity between neighbouring surfaces. This

allows us to perceive accurately the reflectance of objects under varying illumination con-

ditions (the light reflected by a black object under bright sunshine has greater energy than

that reflected by a white object at twilight, but we are not confused about their intrinsic

colours). Similarly, the spectral hue of a surface is perceived as a function of the change of

spectrum of light reflected by neighbouring surfaces [3]. Indeed, the spectrum of sunlight

varies a great deal between morning and evening, and we can still perceive the colour of

objects and distinguish hues which differ by much less than the daily variation of the sun-

light spectrum. Thus our visual system can separate the reflectance of objects from their

illumination and orientation. In particular it can use context to discriminate between edges

in image which are due to a change of reflectance and a change in illumination/orientation

(shading or shadow): see for example [12] (we will discuss this further in Section 5).
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Although nobody amalgamates audition and vision on the ground that they ‘analyse

waves’, it is nonetheless customary to group them into ‘signal processing’: sounds are one-

dimensional temporal signals, while images are two-dimensional spatial signals. However one

must question this analogy, because it hides what physical reality a signal represents. An

image may represent a two-dimensional object or a three-dimensional scene. Given a grey-

level gradient edge in a picture, it can be due to a change of reflectance (between a darker

and a lighter portion of a surface), or to a change of illumination/orientation (between two

surfaces forming different angles w.r.t. the source of light); this is illustrated for example

in the first figure of [12], where the same edge can be interpreted in one way or the other

thanks to the context. Similarly, speech and music are both sound signals, but they are not

analysed according to the same criteria.

In quite general terms, one can distinguish sound and image signals by the fact that

the image represents an object, while a sound represents itself. Thus the information pro-

vided by an image is often indirect. While the primitive for sound analysis is generally a

local frequency, it seems that the primitive for image analysis can be the point. This idea is

supported by sensory physiology. In the cochlea of the inner ear, each acoustic nerve fiber

responds to a narrow frequency band of sound waves [45], leading to a tonotopic coding of

sound at the entrance of the brain, where each position corresponds to a certain frequency;

portions of the cortex devoted to low-level auditory processing have their neurons sensitive

to local intensity and phase features in the frequency spectrum (see [18], Section 4.4). On

the other hand, photoreceptors on the retina respond to light coming from a certain direc-

tion, and the arrangement of neurons in the optic nerve up to the primary visual cortex is

retinotopic, in other words to each elementary unit (‘column’) in the visual cortex corre-

sponds a small portion of the retina, whose receptors are connected to the neurons of that

unit, and these neurons respond to features in the corresponding local portion of the visual

space [10].

2.1. Object location and navigation by ultrasound

One will object to the above that ultrasound echography is used in medical imaging, and

that several animal species (bats, dolphins) detect obstacles and orient themselves in their

environment thanks to some kind of sonar (like the one of submarines). We also mentioned

above the human stereophonic ability of roughly locating the origin of sound.

In humans, mechanisms of spatial localisation of sound seem to be concentrated in

primitive portions of the brain. For example in the mesencephalon (mid-brain), the inferior

colliculus is devoted to sound processing, and it contains spatial maps whose neurons respond

to stereophonic disparity of sounds, and some of them even detect changes in such a disparity,

in other words spatial motion of sounds (see [18], Section 4.4). Above it, the superior

colliculus contains maps of the visual space, and it controls unvoluntary eye movements.

Correspondences between such visual and auditory representations of space allow us to

automatically move our eyes in the direction of either a sound source, or a moving stimulus

at the periphery of visual space.

At any rate, the tasks of navigation and object location performed by the auditory

system of some animal species are small feats compared to the achievements of human
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vision. In particular, they require neither a precise description of the objects located nor

a fine resolution in that location. They never approach the precision of our visual system,

which detects a motion of less than one minute of arc per second of time, and perceives

depth from stereopsis with binocular disparities of only a few seconds of arc.

In the next subsection, we will explain that such a precision cannot be achieved by an

acoustical imaging process; it requires an optical one.

2.2. The scattering and diffraction of waves

The image of an object is obtained by measuring the interaction between it and a wave

(light or sound). But the form of this interaction depends on the ratio between the object

size and the wavelength. As it is explained at the beginning of Chapter 8 of [36]:

“When a sound wave encounters an obstacle, some of the wave is deflected

from its original course. It is usual to define the difference between the actual

wave and the undisturbed wave, which would be present if the obstacle were not

there, as the scattered wave. When a plane wave, for instance, strikes a body

in its path, in addition to the undisturbed plane wave there is a scattered wave,

spreading out from the obstacle in all directions, distorting and interfering with

the plane wave. If the obstacle is very large compared with the wavelength (as

it usually is for light waves and very seldom is for sound), half of this scattered

wave spreads out more or less uniformly in all directions from the scatterer, and

the other half is concentrated behind the obstacle in such a manner as to inter-

fere destructively with the unchanged plane wave behind the obstacle, creating a

sharp-edged shadow there. This is the case of geometrical optics; in this case the

half of the scattered wave spreading out uniformly is called the reflected wave, and

the half responsible for the shadow is called the interfering wave. If the obstacle is

very small compared with the wavelength (as it often is for sound waves), all the

scattered wave is propagated out in all directions, and there exists no sharp-edged

shadow.”

Note that this statement is true both for sound and light waves. (NB. Even if one takes into

account the fact that light consists of particles (photons) rather than waves (see [9]), this

remains true as long as the light is strong enough to behave as a classical wave.)

In optics, the scattering of light produces diffraction, that is an alternation of dark and

bright bands near the edge of the shadow of the object. (NB. In acoustics, the scattering of

sound waves also produces diffraction bands when the wavelength is very small compared

with the size of the obstacle). The width of these bands depends on the wavelength. This

puts a limit on the resolution of optical instruments (we follow [4], Chapter XI, Section IV).

In such an instrument (telescope, microscope, or eye),the image of a luminous point is a

small blob surrounded by diffraction rings which are generally unseen (since the energy in

the bright bands is much smaller than in the central blob). When we have two neighbouring

luminous points, they appear separated if the two central blobs are separated by at least

one dark interval. This defines the separating power of the instrument, in other words its

resolution: the smallest resolvable angular distance between two luminous points is such
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that the bright central blob of one of them coincides with the first dark band of the other

(see [4], § 139). For both telescopes and microscopes (that is, viewing of objects at infinite

or finite distance), this minimal resolvable distance is proportional to the wavelength (see

[4], § 140-141).

This explains why acoustical imaging uses ultrasound rather than audible one (the

greater the frequency, the smaller the wavelength), and why optical instruments have in

general a finer resolution than acoustical ones, such as sonar (the wavelength range of visible

light is about 400–700 nm, and for ultrasound in air, this would require a frequency around

500 MHz).

Note finally that the fact that wavelengths are very small compared to the size of

obstacles is the physical basis of geometrical optics, which studies geometric properties of

the propagation of light. Indeed, in this case waves can be considered as propagating along

straight lines, contrarily to sound waves which ‘turn around’ obstacles. On the other hand

geometrical acoustics is possible only for very high frequency ultrasound.

2.3. Serra’s argument

The above discussion on physiological and physical aspects of acoustics and optics is relevant

to an analysis of the methodological basis of mathematical morphology. Indeed in [47], p. 2,

we read (translated by us): “To those who, later, will study the history of sciences in the

XXth century, mathematical morphology will appear as a branch of optics, among others,

as radiology and tomography”. Serra [47,48] considers optics as the study of vision and

light, and proposes to integrate the work of his team in the framework of what he calls

‘morphological optics’.

One of his basic arguments deals with the concept of linearity and its applicability

in signal processing (we follow Section 2 of [48], which is reproduced in [49], pp. 2-3).

After stressing the wide applicability of linearity in geometrical optics, for example in the

description of the behaviour of optical lenses, he also considers its relevance to accoustics:

“Linearity also occurs in acoustics. Indeed, the intensity of sounds, when

one leaves aside considerations of phase, combine arithmetically. When several

sources emit sound at the same time, the hearing process accommodates all the

vibrations, and, to a certain extent, isolates and compares them. If this were not

the case, there would be no orchestras. Since preserving the ratios among the

sound sources is necessary for an intelligent understanding of the sound scene, all

amplifiers (or transmitters) are required to comply with the relative proportions

of the source origins, i.e. in mathematical terms, they must be linear.”

In brief, sound waves are linear w.r.t. sound sources. Next Serra considers linearity in vision:

“However, visual signals combine differently. Objects in space generally have

three dimensions, which are reduced to two dimensions in the photograph or on

the retina. In this projection, the luminances of the points located along a line

oriented directly away from the viewer are not summed, because most physical

objects are not translucent to light rays, in the same way that they would be to

X-rays, but are opaque. Consequently, any object which is seen hides those that
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are placed beyond it with respect to the viewer: this self-evident property is a

basic one.”

This comparison between audition and vision shows a confusion between light waves

and visual signals (that is, images), and between light sources and reflecting objects. A strict

analogy between acoustics and optics would say: “The intensity of lights, when one leaves

aside considerations of phase, combine arithmetically. When several sources emit light at

the same time, the visual process accommodates all the vibrations, and, to a certain extent,

isolates and compares them. If this were not the case, there would be no light shows.”

Indeed, televisions are subjected to linearity in the same way as sound amplifiers. As far as

wave sources are concerned, the fact that the three-dimensional visual scene is projected onto

the two-dimensional retina does not matter more than the fact that the three-dimensional

auditory scene is projected onto the two-dimensional ear drum. However Serra does not

speak of light waves, but of visual signals (that is, two-dimensional projections of these

waves), and above all does not consider linearity w.r.t. light sources, but w.r.t. objects in

the scene: this is completely different. Indeed, in acoustics too, the auditory signal is not a

linear function of the set of objects in the scene, and this is what makes concert hall acoustics

a difficult matter. Thus we see again that the difference between vision and audition is not

much a difference of signals or waves, but rather a difference of purpose: vision looks at

objects in the scene, not light waves, while audition listens to sound waves, not objects.

The next question is: what matters more, the fact that objects are opaque to light,

or that they have sharp edges in geometrical optics (as we explained in Subsection 2.2).

Consider indeed X-ray images. Following Serra’s argument, methods deriving from sound

analysis would be more appropriate for dealing with them than those from image analysis, for

example mathematical morphology. This is not the case; standard image analysis methods,

including mathematical morphology, have been applied to X-ray images. Following our

analysis, as X-rays have very short wavelengths, they produce sharp edges, and so obviously

edge detection algorithms can be applied to the images that they make; the fact that objects

are translucent implies that such edges can be superposed, and hence that segmentation

must be done in a different way than with opaque objects. Next, image analysis deals

also with images of two-dimensional objects, for example flat sections of materials, where

the problem of occlusion is absent; in fact, this type of images is very sucessfully dealt

with by mathematical morphology. Note finally that in the case of acoustics, objects are

not completely ‘transparent’ to sound waves; a wall separating completely a source from a

listener will generally act as a filter. The fact that an object does not completely ‘hide’ in

the acoustic sense another one behind it is due to the fact that the sound wave scattered

by that object is propagated in all directions and produces no sharp-edged shadow hiding

another object behind (see again Subsection 2.2): a sound ‘turns around’ obstacles, even

‘opaque’ ones.

From the above considerations Serra deduces that a set approach is necessary:

“Stating that A is in front of B is equivalent to asserting that we see the

visible contour of B minus, in the set sense, that of A. Stating that A hides B is

equivalent to saying that the contour of B is included in the contour of A, etc. A
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morphological description, i.e., a description of their shapes, must primarily use

portions of space.”

Other similar considerations are found in Section 5.2 of [49]. Note first that the above

statements are not exact: A is in front of B if and only if we see the visible contour of B

minus the projection (not the contour) of B; A hides B if and only if the contour of B is

masked by the projection of A (not contained in it), and in this case the contour of A will be

surrounded by the contour of B. We will discuss further such confusions between masking

and inclusion in Subsection 5.2.2.

Second, we could add further related statements like: the shadow of a union of objects

is the union of their shadows. All this is sensible in the case of objects and Boolean images,

but mathematical morphology does not restrict its scope to them, it studies other things,

in particular grey-level images. How can the above considerations be translated in a mean-

ingful way for grey-level images? What then is the theoretical justification for grey-level

morphologigal operations? The traditional approach (see [46], Chapter XII) is to consider a

grey-level image on a two-dimensional plane as a three-dimensional set (with the grey-levels

forming the third dimension), but then there is in general no direct correspondence between

the shape of a three-dimensional physical object and the ‘shape’ of the three-dimensional

set corresponding to its two-dimensional grey-level image. This problem will be discussed

in more detail in Subsection 5.2.1.

3. Linear Filtering, Fourier Analysis, and their Limitations

Given a complex-valued function f in n real variables, the Fourier transform of f is the

complex-valued function F(f) in n real variables defined by

F(f)(ω1 . . . , ωn) =

∫

IRn

f(t1, . . . , tn) exp
[

−2πi(t1ω1 + · · ·+ tnωn)
]

dt1 · · · dtn. (1)

In some textbooks the factor 2π does not appear in the imaginary exponential; in quantum

mechanics it becomes 2π/h, where h is Planck’s constant, and then the above formula links

the ‘wave functions’ of position and momentum [22]. However with these modifications the

theory remains the same, with only factors 2π or 1/h to be added in some formulas.

Given two complex-valued functions f and g in n real variables, one defines the Her-

mitian product

〈f, g〉 =

∫

IRn

f(t1, . . . , tn) g
∗(t1, . . . , tn) dt1 · · · dtn,

where g∗ is the complex conjugate of g, leading to the L2 norm

‖f‖ =
√

〈f, f〉.

The convolution operation ∗ is defined as follows:

(f ∗ g)(s1, . . . , sn) =

∫

IRn

f(t1, . . . , tn) g(s1 − t1, . . . , sn − tn) dt1 · · · dtn.
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Now the main properties of the Fourier transform is that for functions f, g satisfying

certain mathematical properties (which we will not consider here), we have

F(F(f))(t1, . . . , tn) = f(−t1, . . . ,−tn) almost everywhere,

‖f‖ = ‖F(f)‖ ,

and F(f ∗ g) = F(f)F(g).

(2)

3.1. The uncertainty relations and their consequences

In 1946 Gabor [11] showed the mathematical relations underlying a general principle of

information communication: to transmit a certain amount of information in a unit time, a

certain minimum of frequency bandwidth is necessary. In other words, a meaningful signal

cannot be arbitrarily compressed in both the time and frequency (Fourier) domains. This

principle is mathematically identical with the ‘uncertainty principle’ in quantum mechanics,

which sets a theoretical limit on the precision of joint measurements of the position and

momentum of a particle (because the ‘wave functions’ of position and momentum form a

Fourier pair).

The precise mathematical formulation of these relations was given in [11] for one-

dimensional signals (in other words, for n = 1 in (1)). For the sake of clarity we will indeed

first consider functions in one variable, and next the generalization to functions in n > 1

variables, in particular for n = 2 (pictorial signals).

Given a function having norm ‖f‖ = 1, the measure of its spread around a point a can

be given by

‖f(t) · (t− a)‖ =
(

∫

IR

|f(t)|
2
(t− a)2 dt

)
1

2

.

For example in quantum mechanics |f(t)|
2
represents the probability distribution for the

measurement associated to the ‘wave function’ f , and if a is its mean, then ‖f(t) · (t− a)‖

is its standard deviation. If ‖f‖ 6= 1, we can ‘normalize’ f (divide its values by the norm

‖f‖), or equivalently the measure of the spread of f is ‖f(t) · (t− a)‖ / ‖f(t)‖. One can then

show that under general mathematical conditions on f (which we will again not consider),

the spread of f around a and that of its Fourier transform F(f) around b have their product

bounded by below:
‖f(t) · (t− a)‖

‖f(t)‖

‖F(f)(ω) · (ω − b)‖

‖F(f)(ω)‖
≥

1

4π
, (3)

with the equality if and only if f takes the form

f(t) = C exp[−A(t− a)2] exp[2πib(t− a)], (4)

where C is a complex constant and A a positive real one (in other words f is, up to a

multiplicative constant, a Gaussian envelope centered about a modulated by an imaginary

exponential of frequency b). Functions of the form (4) are called Gabor functions.

Consider now n-dimensional signals. Here the generalization of (3) is given by:

‖f(t1, . . . , tn) · (ti − ai)‖

‖f(t1, . . . , tn)‖

‖F(f)(ω1, . . . , ωn) · (ωj − bj)‖

‖F(f)(ω1, . . . , ωn)‖
≥

1

4π
for i, j = 1, . . . , n. (5)
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The equality holds for every i, j = 1, . . . , n if and only if

n
∏

i=1

‖f(t1, . . . , tn) · (ti − ai)‖

‖f(t1, . . . , tn)‖

n
∏

j=1

‖F(f)(ω1, . . . , ωn) · (ωj − bj)‖

‖F(f)(ω1, . . . , ωn)‖
=

( 1

4π

)2n

,

and this happens if and only if f is an n-dimensional generalization of Gabor functions of

the form:

f(t1, . . . , tn) = C exp
[

−
(

A1(t1 − a1)
2 + · · ·+An(tn − an)

2
)]

· exp
[

2πi
(

b1(t1 − a1) + · · ·+ bn(tn − an)
)]

,
(6)

where C is a complex constant and A1, . . . , An are positive real ones. By analogy with

quantum mechanics, inequalities (3) and (5) are called the uncertainty relations.

In order to understand their meaning in practice, suppose that we convolve a signal g

by a linear filtering function f . As F(f ∗g) = F(f)F(g), the above implies that if the spread

of f is small, in other words the action of the convolution is localized in the spatiotemporal

domain, then the spread of F(f) is large, in other words the convolution operates on a

large frequency bandwidth. Thus localization in the spatiotemporal and Fourier domains

are contradictory requirements. The two extreme cases illustrating this opposition are:

— f being the Dirac distribution about (t1, . . . , tn), which is completely localized in the

spatiotemporal domain and gives (f ∗ g)(s1, . . . , sn) = f(s1 − t1, . . . , sn − tn), but with

F(f) having infinite spread.

— f(t1, . . . , tn) = exp[2πi(ω1t1 + · · · + ωntn)], a function completely unlocalized in the

spatiotemporal domain, but with a complete localization in the Fourier domain, since

(f ∗ g)(s1, . . . , sn) = exp[2πi(ω1s1 + · · ·+ ωnsn)]F(g)(ω1, . . . , ωn).

Between these two extremes, Gabor functions realize the best compromise between localiza-

tion in the spatiotemporal domain and in the frequency bandwidth.

Gabor [11] noted that frequencies defined globally in the Fourier transform contradict

our physical intuition of local frequencies, in particular changing ones (for example in mu-

sic). Gabor functions were thus proposed as local frequency units, the Gaussian envelope

providing the temporal extent and the imaginary exponential the frequency.

In image analysis, interesting features (such as edges) form patterns localized both in

space and frequency. Thus the Fourier transform is inappropriate for analysing the meaning

of images. It simply turns the problem upside down, from an information perfectly localized

in space and completely unlocalized in frequency to one vice-versa. Although Gabor’s work

dates from 1946, until 1980 most researchers in the field of human or machine vision remained

unaware of it. The Fourier transform as a model of visual coding and analysis was fashionable

in the early seventies, sometimes under the appealing denomination of ‘holographic model’

of vision and memory. In parallel and opposition to it was developed a local methodology

for feature analysis which generalized template matching and produced the ‘difference of

boxes’ technique for edge detection [43]. The defect of such an approach is that it ignores

the effects of such operations on the frequency spectrum and typically gives ‘dirty’ results

(see [30]).
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Since then the work of Gabor has been ‘rediscovered’ and its consequence become

understood. Some approaches refer explicitly to the ‘uncertainty principle’ [56,57]. The

optimality of Gabor functions w.r.t. the uncertainty relations has been exploited in the

now current practice of preprocessing images (before gradient measurement) by convolving

them with Gaussians (Gabor functions with frequency zero) instead of boxes or pure low-

pass filtering functions. Daugman [7] has studied two-dimensional Gabor functions in more

details, and presented evidence that they are implemented in cells of the mammalian visual

cortex.

Moreover, uncertainty relations imply that any linear processing stage in visual anal-

ysis needs the concurrent use of several filters having different spatial resolutions. Indeed,

the set of linear shift-invariant operators is closed under composition, in other words it is

useless to repeat linear convolutions in succession, since the result will always remain a lin-

ear convolution. We must thus do something else afterwards, in particular if we want to

pass from filtering to recognition, which involves classification into discrete categories. For

example we can do a measurement, or apply a non-linear shift invariant operator, such as

an edge detector. Now if we have used only one linear filter, a convolution by a function f ,

then by the uncertainty relations f cannot have a good localization in the both spatial and

Fourier domains. A bad localization in spatial domain means that features (such as edges)

detected afterwards will have an imprecise position. A bad localization in Fourier domain

means that the spatial extent of these features will be imprecise, for example we will not be

able to tell of an edge segment if it is purely local or if it separates two large regions.

It is possible to escape from this dilemma by convolving the image with several func-

tions. For example we take f1 and f2 having a fine localization in the spatial and Fourier

domains respectively (say, f1 and f2 are Gabor functions, f1 with a narrow Gaussian en-

velope, but f2 with a wide one); by correlating the results of a non-linear operation (such

as edge detection) on the two convolutions of the image by f1 and f2, we can determine

with precision both the position and spatial extent of features. This methodology is called

multiresolution image processing, it has been applied in [30], where several (3 or 4) Gaus-

sians corresponding to different resolutions were used for convolving the original image into

‘frequency channels’, and edges were detected in each ‘channel’; the spatial coincidence of

edge elements in all ‘channels’ was the criterion for selecting the meaningful edges of the

image.

In human vision, four ‘frequency channels’ have been observed [55], each corresponding

to a distinct resolution in spatial and Fourier domains. Furthermore, anatomical and physio-

logical studies by Livingstone and Hubel [24,25] have revealed two complementary pathways

in the monkey visual system, called ‘magno’ and ‘parvo’; ‘magno’ neurons generally have a

coarser spatial resolution but a finer temporal one than corresponding ‘parvo’ neurons, so

that both combined realize multiresolution in the spatio-temporal domain. This is a simple

means for escaping the limitations of the uncertainty relations.

Subtler methods involve convolution by Gaussians at all possible scales and the study

of the effects of scale variations on detected edges [1,58,60]. It seems also that in humans

attention can modify the size and shape of the receptive field of neurons of the visual cortex
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(see [18], Section 5.4); this corresponds somewhat to adaptive modifications of scale in edge

detection, called ‘edge focusing’ [1].

3.2. The importance of phase in images

Apart from the above criticism of using the (global) Fourier transform, it is also important to

stress some errors concerning what is the most important information contained in it. Indeed,

by some kind of analogy with the method of spectrometry used to analyse the contents of

light waves (for example in radioastronomy), many people think that the information in

a signal is mainly contained in the amplitude spectrum of the Fourier transform, not in

its phase spectrum. While it is clear that such an assumption is reasonable for light (the

frequency of a photon is related to its energy, but its phase is meaningless or unmeasurable),

this is not true for acoustic or pictorial signals. As shown in [37], for practical purposes, in

the Fourier spectrum the phase is more important than the amplitude!

A typical experiment consisted in taking two photographs and building from them

two hybrid images having each the amplitude spectrum from one of them and the phase

spectrum from the other one. Then each hybrid contained the details of the original picture

having the same phase spectrum, and not those of the other one whith which it shared the

amplitude spectrum. The same experiment was performed with spoken sentences. To a

sentence one associates its spectrogram, a two-dimensional signal giving the amplitude at

each time t of each frequency ω. One knows [45] that our audition detects frequencies and

is sensitive mainly to the local amplitudes of frequencies, and very weakly to their local

phases, and so a spectrogram is a good encoding of a sound. By interverting phases in the

Fourier spectrum of two sentences, each of the new hybrid acoustic signals resembled more

(both acoustically and in its spectrogram) to the original sentence with which it shared its

phase spectrum than to the other one having the same amplitude spectrum.

Similar experiments (with images only) were also made in [39]. In other words it was

shown in practice that meaningful features, including local frequency amplitudes, depend

more on global phases than on global frequency amplitudes.

In the specific case of visual signals, the importance of phase can be understood by

the fact that blurring a picture by a convolution with an even-symmetric function (say, a

Gaussian) preserves the phases, but not the amplitudes, in the Fourier spectrum.

There have been studies of the meaning of phase for features in an image. In [34] sharp

edges and Mach bands were analysed in trapezoid periodic vertical gratings, that is images

with the grey-level g(x, y) of a point (x, y) given by

g(x, y) =

∞
∑

k=0

a2k+1 sin
(

2π(2k + 1)x/T
)

,

where a1 > 0 and T is the period of the grating. When all perceptible harmonics were in

phase concordance, in other words the portion in the series consisting of all terms having

a2k+1 < 0 represented an imperceptible signal, a sharp edge was seen between dark and

bright bands at positions where terms of the series with a2k+1 > 0 aligned all either in the

0◦ or in the 180◦ phase (corresponding to positive and negative edges respectively). On
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the other hand when there were perceptible harmonics in phase opposition, a Mach band

appeared at junctions of ramps and plateaux, around positions where all terms of the series

had a ±90◦ phase. Sharp edges and Mach bands excluded each other.

Further experiments were made with periodic vertical gratings [35] to show that per-

ceptible features (edges, peaks, Mach bands, etc.) correspond to points of ‘maximum phase

congruency’ in the Fourier decomposition of the signal (in other words points (x, y) where

the Fourier terms ak cos(ωkx + ϕk), with ak ≥ 0, are such that all phases ωkx + ϕk are

maximally concentrated about some value).

As remarked in [34], the coincidence of a sharp edge with points were all sines of

the series are aligned either in 0◦ or in 180◦ phase is consistent with the proposal in [30]

to take as edges the curves consisting of points where gradient maxima are detected in

all ‘frequency channels’. However when the match between gradient maxima in distinct

‘frequency channels’ is not exact, or equivalently the phases of the Fourier spectrum are

not perfectly aligned, the method of [30] fails, but the feature can still be detected, thanks

to a measure of ‘phase congruency’ given by the sum of the squares of the signal and its

Hilbert transform (the signal having the same Fourier amplitudes, but with a 90◦ phase

shift): the feature corresponds to a ‘maximum phase congruency’, and occurs at a point

where that sum of squares has a local maximum. This leads to a practical method for edge

and feature detection using pairs of ‘matched filters’ (convolution of the image with two

functions forming a Hilbert transform pair, the first one even-symmetric, and the second

one odd-symmetric). See [35] for more details.

As these two studies [34,35] dealt with periodic gratings, global phases were considered.

However since features (edges, Mach bands, etc.) can be seen in localized portions of an

image, one can suppose that the above analysis can be extended to local phases.

Therefore, while for acoustic signals global phases but local amplitudes count, it seems

that for visual signals, phases count both globally and locally.

3.3. What can linear filtering do in images?

It is generally acknowledged that early human visual processing of images involves linear

filtering, and even that there are distinct (and relatively independent) ‘frequency channels’,

where various processings are made (see [29], Chapters 2 and 3), such as feature extraction.

Note that by the uncertainty relations these ‘frequency channels’ do not correspond to sharp

band-pass filters, because they must retain some spatial localization of features (and this

is why we put the expression under inverted commas). The proper term would rather be

‘spatial/frequency channels’.

It would be näıve to consider that low resolution ‘spatial/frequency channels’ corre-

spond to global features while high resolution ‘spatial/frequency channels’ represent local

details. This was for example the case in [5], where these ‘channels’ were also identified with

band-pass filters. As pointed out by Marr (see Figure 2.2 of [29]), herringbone textures have

perceptible global spatial structures of stripes which cannot be detected from low frequencies

in the Fourier spectrum. Let us examine this example in more detail. Consider the texture

shown in Figure 1, consisting of an succession of vertical stripes of width W having two
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alternating textures made of high-frequency periodic stripes in the two diagonal directions

respectively. We assume that the average grey-level in both textures is a. Thus the grey-level

is given by g(x, y) = a+ F (ω(x + y)) in even stripes and g(x, y) = a+G(ω(x − y)) in odd

stripes, where F and G are periodic functions (of period 2π) with zero mean (in other words

whose Fourier series do not contain a constant term). On the lines separating the stripes

we take the average between the two, that is g(x, y) = a + 1

2

[

F (ω(x + y)) +G(ω(x − y))
]

.

Consider the periodic function SQ corresponding to a square wave of amplitude ±1 and

period 2π, that is

SQ(t) =
4

π

∞
∑

n=0

1

2n+ 1
sin((2n+ 1)t).

Thus SQ(t) = 0 if t/π is an integer, and −1⌊t/π⌋ otherwise. Then the grey-level of points in

the image is given by

g(x, y) = a+
1

2

[

F (ω(x+ y)) +G(ω(x− y))
]

+
1

2
SQ(

π

W
x) ·

[

F (ω(x+ y))−G(ω(x− y))
]

.

As F and G have zero mean (that is, no constant term in their Fourier series), the Fourier

series of the grey-level function g(x, y) will have as non-constant terms sine and cosine

functions with the following arguments only:

mω(x+ y)± n
π

W
x and mω(x− y)± n

π

W
x where

m = 1, 2, 3, 4, 5, . . .

n = 0, 1, 3, 5, 7, . . .

Now the texture within stripes is taken with high frequency compared with that of the

stripes, that is ω >> π/W . In other words the Fourier series will contain only high fre-

quencies! This implies that no linear filtering (classical low pass, by Gabor functions, or

anything else) will make low frequencies (of the order of 1/W ) appear. Hence we have shown

that perceptible global features can exist without corresponding low frequencies. Note how-

ever that these global features (stripes of width W ) appear explicitly on the amplitude and

orientation spectrogram of local high frequencies in the image.

A simpler example is given by low-frequency amplitude modulation of sounds in music

(‘tremolo’). If a pure 440Hz sound is modulated in amplitude by a 5Hz sine, the resulting

sound will be the superposition of two pure sounds at 435 and 445Hz. The 5Hz modulation

does not appear by linear filtering of the sound, but is clearly present in the amplitude

spectrogram of local frequencies around 440Hz.

Hence it is clear that a distinction must be made between global features, including

periodic ones, and low frequencies and ‘spatial/frequency’channels. A simple linear filtering

is not enough to make apparent the global organization of a signal.

On the other hand one can assume that conspicuous local features imply the existence of

local high frequencies (in other words the convolution with Gabor functions with a narrow

Gaussian enveloppe and a high frequency modulation must give a strong result for some

frequency bands); extrapolating from the above example, these frequencies can perhaps be

much higher than what we would expect from the size of the features. Marr again has shown

that in some cases the dependence of the perception of a texture on its Fourier spectrum
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increases when the resolution becomes finer. For example the chessboard (see Figure 2.2

of [29]), being the product of a horizontal square wave by a vertical one, has a Fourier

spectrum whose power is concentrated near the diagonal directions, and totally absent in

the horizontal and vertical ones. When the squares are large enough, we see the horizontal

and vertical organization in the chessboard, as well as the diagonal one. As the squares get

smaller, the diagonal organization becomes slightly more prominent.

Experiments have also been made on the relations between the human discrimination of

periodic textures and their Fourier spectrum [32]. Given textures made by the superposition

of at most 3 sine gratings whose orientations differ mutually by 60◦, differences in the widths

of gratings are well perceived, but this is not the case for differences of orientations. As

pointed out by the authors, these results are difficult to reconcile with a linear filtering

approach to perception, but they are consistent with the approach proposed by Marr [27,29]

of extracting features from an image and building from them a ‘primal sketch’ (some sort

of symbolic pencil drawing).

What can linear filtering do in image analysis? Certainly no miracles. Probably much

less than for the analysis of sound signals. It is not unwise to consider such a technique, as

it is often the case in recent works, as a ‘preprocessing’, which prepares the image for more

interesting operations.

4. Concurrent Processing of Complementary Informations

Perception does not limit itself to the transmission of sensory data to the brain. These

data are analysed and interpreted in order to understand the physical reality which gives

rise to them. The information contained in a sensory signal must be assimilated by us.

Thus, as said Serra [46], “to perceive an image, is to transform it”. The Nobel laureate

F. Crick explained very well the problem involved in the opposite conception of perception

as a passive reception of sense data [6]:

“Is there any idea we should avoid? I think there is at least one: the fallacy

of the homunculus. Recently I was trying to explain to an intelligent woman

the problem of understanding how it is we perceive anything at all, and I was

not having any success. She could not see why there was a problem. Finally in

despair I asked her how she herself thought she saw the world. She replied that

she probably had somewhere in her head something like a little television set. “So

who”, I asked, “is looking at it?” She now saw the problem immediately.”

Serra is also aware of the problem [48]: “The brain does not add a third ‘eye’, which

would then look at the visual zones and be observed itself.” Thus perception involves a

transformation of the sense data, and he elaborates on the question by considering the

algebraic and information processing aspects of such a transformation, in particular the

algebraic property of reversibility.

4.1. Irreversibility and morphological filtering

Serra distinguishes between reversible operations used in the transmission and preprocessing

of information, and irreversible ones involved in its understanding [48]:
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“In computer vision, what are we seeking—to transmit information or rather

to assimilate it? Reversibility is acceptable when we improve the images that

provide the input to a system, as with the case of spectacles for shortsighted

people.”

However, the recognition of objects, that is the assimilation of information, implies an

irreversible process. As there is no ‘homunculus’ in our brain, “the chain stops there, and

with it the notion of reversibility.”

How is this irreversible process envisaged? The tradition of mathematical morphology

is heavily influenced by the ‘filtering’ approach, where the word must be interpreted in its

litteral sense of removing anything that is unwanted but preserving everything else. In [48]

we read: “Recognition of an object simply means that all the rest has been eliminated from

the scene. This is a definitive irreversible operation.” In the preface of [46] the use of basic

tools called ‘structuring elements’ was already presented in this perspective: “Chosen by the

morphologist, they interact with the object under study, modifying its shape and reducing

it to a sort of caricature which is more expressive than the actual initial phenomenon.” In

particular such a transformation involves a loss of information: we eliminate the information

which is irrelevant from our point of view (for example the noise in an image).

In [48] Serra gives several practical examples of visual tasks (such as recognition of

features or objects in an image) solved by morphological methods. They generally verify

the following scheme:

(i) Recognition is achieved by subjecting the image to a sequence of transformations

ψ1, . . . , ψn, which constitute the distinct stages of the processing.

(ii) For i = 2, . . . , n, the input of ψi is the output of ψi−1.

(iii) Each ψi (i = 1, . . . , n) is a map L → L for some object space L (for example the set of

grey-level images); the range of ψi need not be the whole of L, it can be a a subspace

M of L (for example the set of binary images), and then ψi is a map L → M (for

example a thresholding).

(iv) Each ψi (i = 1, . . . , n) is idempotent, that is ψi · ψi = ψi.

We illustrate this scheme on Figure 2 (a). Note that (iv) is meaningful only thanks to

(iii). Indeed, if ψi is a map L → K, where K is completely different from L, the map ψi is

not necessarily defined on K, and then ψi · ψi is undefined, in other words idempotence is

meaningless. This is the case when we transform a binary or grey-level image into something

more elaborate, such as a description of features or objects to which attributes are associated.

In the examples given by Serra, point (i) of the scheme is always verified, and whenever

(iii) holds, point (iv) is also true, except in some relatively trivial cases. When (iii) does

not hold, it is in general for ‘natural’ reasons, when the goal of the processing is not the

same type of object as the input (for example in segmentation, where we derive from an

image a partition of space). We will consider violations of point (ii) later.

The signification of idempotence is strongly stressed. First, it acts as a buffer to

the propensity for the transformation ψi to lose information. Second, it characterizes that

transformation as a stage in the processing. Indeed, if an operation is idempotent, then

there is no point repeating it, and so we must do something else, go to another stage.
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Conversely, a stage must produce a clear result, and not stop halfway (as a ‘filter’ which

would eliminate only a part of the noise, and would need to be iterated), and this corresponds

to an idempotent operation.

In Section 5 of [48], five heuristic rules are given for the proper choice and sequencing

of operators ψi, in order to control the loss of information. It is interesting to note that

Serra’s fifth rule is violated in an example where precisely point (ii) above is not verified.

The problem was to segment a grey-level image representing distinct neighbouring cells (see

[48], Figure 8); the solution involved the binarization of the image (ψ1), then the extraction

of the components of that binary image (ψ2), and finally these binary components were used

as masks to separate the components of the original grey-level image (ψ3). In other words

we have 3 stages, and the input of ψ3 consists of both the input of ψ1 and the output of

ψ2. Such a method is called by Serra ‘backtracking’; he states that it is quite common in

mathematical morphology.

Serra’s general scheme is acceptable for a special purpose image analysis system. How-

ever the several allusions made in [48] to human perception, artificial intelligence, computer

vision, and their relations with the methodology proposed there, require the consideration

of a wider scope for the terms ‘vision’ and ‘recognition’. If we compare Serra’s scheme with

what we generally mean by ‘perception’, several criticisms based on ‘everyday psychology’

and ‘computational common sense’ can be raised.

First, do we always eliminate what is unwanted when perceiving something? While

reading, we recognize the characters, but also the fonts used. In a noisy image, we see the

underlying picture, but also the noise; we can even distinguish several distinct noises. When

listening to someone, we recognize the speech, but also the speaker’s voice, its intonation,

etc.. Thus elimination of unwanted information is not so much a matter of sensory and

perceptual ‘filtering’, but rather one of conscious attention. This is to expect from an

advanced general purpose perceptual system, in contrast with a primitive one, such as the

frog’s eye [23] which ‘sees’ food only if it is of the appropriate size and moving. Single

task algorithms in Serra’s examples cannot be compared to human perception; in fact, most

image analysis systems built today are rather on the level of the frog’s eye and brain.

Second, do we lose much information? If we examine the human eye, we note that the

retina has more than 100 million photoreceptors, but the optic nerve contains only about

one million fibers. This looks like an important reduction in information content. What

happens in fact is that there is a ‘deliberate’ increasing loss of optic resolution as one moves

from the fovea to the periphery; but we do not see a blurred image with a sharp center

because we are constantly moving our eyes throughout the scene. Thus the complexity of a

visual stimulus is partially transformed from a spatial magnitude to a temporal one. One

of the roles of conscious attention is to drive our eyes towards features of interest (see [18],

Chapter 7). We have at our disposal the possibility to realize the desired trade-off between

time and information. With enough time and attention, we can retain and use a great part

of the information contained in a static scene (this is the case, for example, with painters).

When looking at something, our perception is not restricted to the final product of

visual analysis. We see the points, the local features, the objects, and the spatial relations
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all together. On account of such an elementary fact E. Kent [18] proposed a processing

paradigm where the result of each processing stage is added to a ‘perceptual data bus’,

which gives an ever richer representation of the input data; each processing stage has access

to the whole of that ‘data bus’ as it has already been obtained through the previous stages.

We illustrate this scheme in Figure 2 (b). If we formalize this, we can replace points (ii, iii, iv)

above by:

(ii′) For i = 2, . . . , n, the input of ψi has access to the outputs of all ψj , for j = 1, . . . , i− 1,

and eventually the original signal (the input of ψ1). The perceptual output of the

whole process is given by the successive addition to the original signal of the outputs

of ψ1, . . . , ψn.

(iii′) The initial data belong to an object space L0, the output of each ψi (i = 1, . . . , n)

belongs to an object space Li, and ψi is a map L0 × · · · × Li−1 → Li; the final output

belongs to the object space L0 × · · · × Ln. The object spaces L0, . . . ,Ln need not be

similar.

Here the method of ‘backtracking’, which was presented by Serra as a violation of his fifth

rule, appears instead as the rule. Thus we have not to worry at all if one processor ψi loses

necessary information. An advantage of such a scheme is that in case of failure of one of the

processing stages (because of damage or of a too difficult task), the remaining ones can still

manage to get the best out of the results of previous stages. On the other hand, in Serra’s

scheme, failure in any processing stage leads to the absence of output. Kent’s scheme seems

confirmed in the case of human vision. As pointed out in [18], damage to the primary visual

cortex leads to blindness (in the corresponding portion of visual space), while damage to the

secondary visual cortex leads to several deficits in scene recognition, but not to blindness.

If we recall our above discussion of point (iii) in Serra’s scheme, here idempotence is

generally meaningless, since we are discussing maps from one object space to another one.

This can happen in practice. For example in [27] symbolic representations of features such

as edges, expressed as lists of parameters, are derived from a grey-level image in order to

form a ‘primal sketch’; moreover perceptual groups (what one calls ‘gestalts’) are defined

there in a recursive way as geometrical arrangements of elements which are themselves either

simple primitives (line, blob, etc.) or such (smaller) perceptual groups; clearly the operator

which produces such a symbolic description from a grey-level image cannot be applied to its

output, since the latter is not a grey-level image.

Hence restriction of processing to a single object space (say, that of grey-level images)

means in practice that we remain in low-level image analysis, since we exclude any other

forms of data, such as symbolic attributes, syntactic structures, etc.. We said at the end of

the previous section that linear filtering of images can be considered as a ‘preprocessing’.

We can now suggest that operations transforming images into other images of the same

kind, and having various interesting algebraic properties (such as idempotence, or the other

ones mentioned in [48]), can be considered as a ‘secondary processing’, at the beginning

of visual perception. A general purpose vision system must be able to produce symbolic

representations, and needs thus a wider set of object spaces and operations.

A problem concerning both Serra’s and Kent’s schemes (and many paradigms, such as
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Marr’s [29]), is the possibility of feedback between processing stages. It is known [53] that

most connections between distinct visual areas of the brain are reciprocal. We mentioned

above that in human vision, attention can modify the size and shape of the receptive field

of neurons in the visual cortex; this is possible by the reciprocal connections between the

primary visual cortex and cortical areas devoted to higher level functions (see again [18],

Section 5.4). In image analysis algorithms based on morphological methods, many operators

depend on certain parameters whose actual values often vary with the type of image one

deals with: for example the size and shape of structuring elements, the threshold for a

thresholding, etc.. The fixation of these parameters is possible by a feedback from processing

modules higher in the hierarchy. In practice the feedback is often provided by the human

experimenter who selects best values according to their result. Once these best values are

determined, they become fixed and the algorithm is then restricted to only a certain type

of images. However for an autonomous general purpose vision system, one must not rely on

human feedback, but rather implement feedback inside it.

In the design of an automatic programming system using morphological operations,

Schmitt [44] defines the extraction of a type of feature as an algebraic operation having

(possibly several) images and features as arguments. In particular point (ii) is Serra’s

scheme is not verified (and point (iv) is not even considered). Between the processing stages

are inserted evaluation procedures which, in case of failure, lead to a ‘backtracking’ and

the modification of the previous stage. This is a particular form of feedback between the

different stages of the analysis. However the data resulting from this system seem to remain

in the same object space (grey-level or binary images), which is clearly a limitation of such

a system.

4.2. Complementary informations

The above criticism deals rather with matters of efficiency and good engineering. We will now

consider more fundamental problems related to the multiform and sometimes contradictory

nature of the extraction of visual information. A prime example of what we intend to discuss

has been encountered above with the uncertainty relations which limit the joint resolution

of linear operators in the spatiotemporal and Fourier domains. We saw that a way out of

this dilemma was multiresolution image processing, that is to apply in parallel several linear

operators having different resolutions, and to follow each by a non-linear operator. Linear

operators with a fine spatial or temporal resolution allow the location of features in space or

time, while those with a coarse resolution allow the estimation of their spatial or temporal

extent.

This complementarity between the description of features or objects and their location,

or to put it more briefly [18], between the ‘what’ and ‘where’, is apparent in the anatomy

and physiology of the human (or primate) visual system. Experimental damage to the brain

of monkeys suggest that the primary visual cortex is the source of two distinct pathways [33].

One is directed towards the inferior temporal areas, and enables the visual identification of

objects. The other goes to inferior parietal areas, and allows the visual location of objects.

In the parietal lobes, visual spatial information combines with spatial information from

18



other senses (in particular touch) in order to give a unified perception of space (see [18],

Chapter 6).

We mentioned above ‘magno’ and ‘parvo’ neurons studied by Livingstone and Hubel

[24,25] in the monkey visual system, with their opposite spatial and temporal resolutions.

‘Magno’ neurons have generally a coarse spatial resolution, a fine temporal resolution, a

high contrast sensitivity, and are nearly colour-blind. On the other hand ‘parvo’ neurons

have generally the opposite features: a fine spatial resolution, a coarse temporal resolution,

a low contrast sensitivity, and they are colour-sensitive. In fact, these two types of neurons

form relatively distinct pathways in the brain. The ‘magno’ pathway is responsible for

figure-ground discrimination, motion detection, and the perception of three-dimensional

spatial relations, in particular depth. ‘Parvo’ neurons generate two pathways. First the

‘parvo-interblob’ pathway, which handles the static recognition of form, in particular a

high-resolution analysis of details. Second the ‘blob’ pathway, although consisting mainly of

‘parvo’ cells, has some inputs from ‘magno’ cells, and it deals with colour perception. See

[24,25] for more details.

This subdivision is rather schematic: cells in a pathway do not all have the above-

mentioned features, and there is some cross-talk between the pathways. It is better to

understand these pathways as concurrent functional streams, which are distinguished not

so much by their anatomic connections, but by their goals and computational strategies

[8]. A neuron which has some features can be ‘naturally’ associated to a particular task,

but it can also contribute to another one. For example a cell sensitive to the velocity of

points is ‘obviously’ involved in motion detection (this is ‘short-range’ or ‘low-level’ motion);

however the disparity between the velocities of different groups of points allow us to segment

the scene into separate moving objects. Conversely, a cell sensitive to grey-level gradients

‘clearly’ intervenes in edge detection and scene segmentation; but if distinct edges change

their location through time, they lead to a perception of motion (this is ‘long-range’ or

‘high-level’ motion). Other examples are given in [8]. Thus the three functional streams

(‘magno’, ‘parvo-interblob’, and ‘blob’) correspond to three distinct tasks in vision, having

each different computational strategies.

Although the evidence presented is purely biological, this distinction between the iden-

tification and location of objects may well correspond to a computational necessity, and

one should envisage its possibility in artificial systems. In any case we will see in the next

section that the methods of mathematical morphology are more suited to the recognition of

two-dimensional form than to the analysis of three-dimensional spatial relations.

5. The Possibilities and Limitations of Mathematical Morphology

We now come to a more detailed consideration of what mathematical morphology can or

can’t do. This requires first a discussion of the physical formation and meaning of grey-

levels in pictures, as well as a consideration of the mathematical problems involved in the

extraction of information from image intensities.

5.1. Image grey-levels and their meaning

Given a point on a picture corresponding to a location on the surface of an object, the
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grey-level of that point depends on many factors, mainly the material properties of the

surface at that location (colour, specularity, etc.), its orientation, the spatial distribution

of light sources, and the viewpoint (not to mention the pattern of transmission of light by

air). A detailed analysis of the relations between these four factors, and of the formation

of image grey-level intensities, can be found in [16] (a shortened exposition is given in [29],

Section 3.8).

In the psychophysics litterature, the pattern of reflection of light by a surface (de-

pending on its material structure) is called its reflectance, while the combination of spatial

distribution of light sources, surface orientation, and viewpoint, is summarized under the

word illumination. In Horn’s terminology [16], the latter word has a more restricted mean-

ing, namely the light energy flux per unit area perpendicular to it, independently of surface

orientation and viewpoint; in order to avoid confusion, we will adopt Horn’s definition, and

will say ‘illumination/orientation’ when the broader meaning of the term ‘illumination’ is

intended. Since Helmholtz, it is well-known that the luminous intensity of a surface element

depends on both its reflectance and illumination/orientation, and that the human visual

system can up to a certain point separate these two factors. It has long been a chicken-and-

egg problem of determining which one of these two factors is compensated first in order to

evaluate the other one. In general, none of them can be simply eliminated, and there is some

ambiguity in images: the same pattern of intensities can arise from changes of reflectance

or from changes of orientation in a surface (for example film actors use makeup to produce

depth effects on their face). The human visual distinction between changes in illumina-

tion/orientation and changes in reflectance uses global context as well as several constraints

corresponding to simple physical assumptions: we will discuss this in Subsection 5.3.

This has an important consequence for low-level image analysis. Many operators are

supposed to extract information from local patterns of grey-levels in an image, without

distinction between those arising from illumination/orientation features or from reflectance

features (as we will explain in Section 5.3, this distinction is generally impossible without

global context). This works in two cases:

(1) This information is significant, regardless of its origin in illumination/orientation or in

reflectance. For example edges, lines.

(2) The illumination/orientation has no effect on image grey-levels. Two subcases are

possible:

(a) The surface is flat, subjected to a constant illumination, in a fronto-parallel plane

and viewed at a long enough distance (so that the rules of orthographic projections

can be applied). For example: tomographic images, flat sections of materials in

petrography, mineralogy, cytology, etc..

(b) The illumination is constant, objects are not really opaque, but their degree of

transparency depends on their depth and material composition. For example:

X-ray angiography.

Other subcases of (2) are possible.

It should be noted that almost all successful applications of mathematical morphology

have been in images arising from situations in case (2). Indeed, this discipline uses as basic
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tools structuring functions whose interaction with an image should reveal some aspects of the

material structure of the underlying object which are sought for. Thus local configurations of

grey-levels are implicitly assumed to correspond to material properties of the object pictured.

The question of the origin of image intensities, in particular problems of illumination and

surface orientation, are not considered. For the analysis of three-dimensional scenes, they

must however be taken into account.

5.2. Some tools used in mathematical morphology

Certain types of operations are widely used in this discipline, generally because they have

certain particular mathematical properties. We will criticize these operations, or at least

the justifications given for their importance.

5.2.1. Grey-level structuring functions and invariance under grey-level transformations.

In both orthographic and perspective projections, a translation in a fronto-parallel plane

induces a translation in the image plane. This is the physical basis for the invariance of

image transformations under spatial translations.

What about invariance by certain grey-level transformations? The only possible phys-

ical principle underlying it is that a uniform modification of the intensity of light sources

does not change the nature of the scene. We must explicit the notion of ‘uniform modifica-

tion’. As the reflectance of surfaces intervenes as a multiplicative factor in their perceived

luminosity, this means that for a single light source, a multiplication of light intensity by

a factor leads to a multiplication of all luminosities by that factor. Thus for several light

sources, a uniform modification must be a multiplication of each light intensity by the same

factor. Hence the invariance of an image transformation must be under a multiplication of

all luminous intensities by the same factor. If the grey-level g of a point is related to its

luminous intensity i by a function f , that is g = f(i), then operators on grey-level images

should be invariant under grey-level transformations corresponding to scalar multiplications

of luminous intensities, that is maps g 7→ f
(

c · f−1(g)
)

for c > 0.

In mathematical morphology, dilations or erosions by (additive) grey-level structuring

functions are invariant under grey-level translations, which implies the assumption that

grey-levels are related to luminous intensities by a logarithmic function. For multiplicative

structuring functions [15], the underlying assumption is that grey-levels are proportional to

luminous intensities. However these assumptions are not explicitly stated. The underlying

error is to consider the three-dimensional profile formed on a subset of an image by the

points and their grey-levels, as a three-dimensional shape, generalizing two-dimensional

shapes found in binary images. However, this does not correspond to shapes of objects in

three-dimensional space, since the luminosity of points is not the same as their depth. As we

explained in the previous subsection, changes in luminous intensity of points can originate

from different factors (reflectance, orientation, illumination, etc.).

One generally feels that an image remains the same if its contrast is enhanced by a

strictly increasing linear transformation of grey-levels: g 7→ a · g + b, where a > 0. Now

morphological operations by a grey-level structuring function are invariant under such trans-

formations only if that structuring function is flat. This explains why most practical appli-
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cations of grey-level morphology use flat structuring elements. Non-flat structuring elements

have been used by Sternberg [50] (for example spherical ones, in the ‘rolling ball algorithm’);

reasons for such a choice include: a smoother grey-level profile in the resulting image, or the

assumption that the grey-level profile (improperly called ‘shape’) of the structuring function

is related to that of the feature or object which must be enhanced in the image. Note also

that some numerical transformations of binary images can be implemented as grey-level

morphological operations, for example the distance transform through dilations and ero-

sions by conical structuring elements [50], but then the grey-level profile of the structuring

element has a clear objective meaning.

5.2.2. Increasing operators. Increasing operators have a prominent place in mathematical

morphology. For example morphological filters (see Chapters 5 and 6 of [49]) are defined

as idempotent increasing operators. Here the word ‘filter’ is used by analogy with band-

pass filters of linear signal processing, and the increasingness of morphological operators is

counterposed to the linearity of classical operations in Fourier analysis (see Section 5.2 of

[49]). What justification is given for increasing operators?

In [19] Lantuéjoul and Serra explain that for an operator ψ, the relations ψ(f ∨ g) ≥

ψ(f) ∨ ψ(g) and ψ(f ∧ g) ≤ ψ(f) ∧ ψ(g), both equivalent to the fact that ψ is increasing,

simply mean that “when f is a stage and g is an actor in the proscenium (i.e. who masks

a part of f), then the transform ψ(g) also masks the parts of the transform ψ(f) which are

behind it.”

This is plain nonsense. First, occlusion (or masking) in three-dimensional space is

not equivalent to inclusion in the image. We already touched this point at the end of

Subsection 2.3. For example if A masks a part of B which is behind it, then the portion of

the contour of B masked by A will not be seen, we will see instead the corresponding portion

of the contour of A, but the operation of taking the contour is not increasing. The projection

of Boolean objects into a Boolean image preserves the union (and so is increasing), but if

the projection of A is contained in the projection of B, this does not tell whether A is in

front of, or behind B. For grey-level images, nothing of the sort remains: a dark object can

hide a light one, and so the grey-level image formed by the two objects is not the grey-level

supremum of the two images formed separately by each of them.

In Section 5.2 of [49] this argument is summarized by stating that the notion of inclusion

is used to express the fundamental law of occlusion in three-dimensional space. This is also

placed in the framework of the arguments about different modes of combination for acoustical

and visual signals which we criticized in Subsection 2.3.

In [26] increasing operators are justified by the principle of psychophysical isomor-

phism of Gestalt psychology, quoting Köhler’s assertion that “experienced order in space is

always structurally identical with a functional order in the distribution of underlying brain

processes”. Apart from the fact that ‘order in space’ (occlusion) is not the same as inclu-

sion, the notion of ‘psychophysical isomorphism’ is rather mythical, and without empirical

justification. We explained in Subsection 4.1 that perception involves a transformation of

data allowing their interpretation, and not an ‘isomorphic’ reproduction (which would pre-

sumably be looked upon by a ‘mind’s eye’ or ‘homunculus’). Vision is a process (involving
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‘computations’) of representing objects and spatial relations, and not a physical reproduc-

tion of them in the brain (see [29] for a criticism of the näıve conceptions of the Gestalt

school).

There is thus no a priori justification for using increasing operators. It all depends

on what properties are necessary. For example a ‘sieve-type’ filter (such as an opening or

closing) is related to size criteria (see [46], Chapter X): if a feature is removed, any smaller

one should also be removed; here the increasingness of the operator naturally comes in.

5.2.3. Thresholding and gradient. An operation often encountered in practical applica-

tions of mathematical morphology is thresholding: given a threshold t, mark all points of

the image as white if their grey-level is ≥ t, and as black otherwise. This is supposed to give

a binary silhouette of the object represented.

An obvious question is to determine where the threshold should be set. In other words

this operation is not invariant under grey-level translations. A simple remedy is adaptive

thresholding, where the threshold is computed either globally from the histogram of the

image, or locally, from the grey-level profile in the neighbourhood of each pixel. But there

is a more fundamental problem: the grey-level of a point results from a combination of

several factors in the scene (reflectance, illumination, orientation, etc.), and as we will see

in Subsection 5.3, they intervene at a global scale. This means that grey-levels of individual

pixels or even of small groups of pixels, taken into isolation, have generally no significance.

The exception is the case (2) mentioned in the previous section, namely when grey-levels do

not depend on illumination/orientation. We said that most applications of mathematical

morphology belong to that case, so fortunately thresholding can be useful there. But for

scene analysis, where the distinction between reflectance and illumination/orientation is

crucial, this technique is bound to fail.

In mathematical morphology, authors are fond of defining morphological versions of

operations in other methodologies. For example Sternberg’s shading and shadowing algo-

rithm [50] for representing the effect of oblique illumination on a three-dimensional terrain,

which is based on Minkowski set operations, in contrast with the study of shading by Horn

[16], which is based on the quantitative laws of optical reflection of materials.

One well-known operation for which morphological analogues have been defined several

times is the gradient. Let us list some examples here. They are base on the two operations

∇⊕ and ∇⊖ which can be defined in the continuous case by

∇⊕(F ) = lim
λ→0

(F ⊕ λB)− F

λ

and ∇⊖(F ) = lim
λ→0

F − (F ⊖ λB)

λ
,

where B is the compact unit disk centered at the origin, and in the digital case by

∇⊕(F ) = (F ⊕N)− F

and ∇⊖(F ) = F − (F ⊖N),

where N is the 4- or 8-neighbourhood of the origin. Then at least three operators have been

considered:
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— The Beucher gradient (see [46], p. 441): (∇⊕ +∇⊖)/2.

— The Lee gradient [21]: min(∇⊕,∇⊖).

— The ‘nonlinear Laplace filter’ [54]: ∇⊕ −∇⊖.

Which one is the best from a morphological point of view? We leave the choice to the reader.

A well-known problem concerning the usual (linear) gradient is that differentiation is

an ill-posed problem (w.r.t. the usual Lp norm, 1 ≤ p < ∞) [52]. Given two metric spaces

(U, ρU ) and (F, ρF ), suppose that we have the problem of finding a ‘solution’ f ∈ F from

‘initial data’ u ∈ U ; one says that this problem is well-posed on the pair of metric spaces

(F,U) [51] if and only if:

(a) for every u ∈ U there exists a solution f ∈ F ;

(b) the solution is unique;

(c) the problem is stable on the pair (F,U), in other words a small enough variation in

the data must lead to an arbitrarily small variation in the solution; more precisely for

every ε > 0 there is some δ > 0 such that for data u1, u2 ∈ U leading to solutions

f1, f2 ∈ F , ρU (u1, u2) < δ implies ρF (f1, f2) < ε.

If we consider the functions in the space Lp(IR) with the Lp norm ‖f‖p =
(∫

IR
|f(x)|

p
dx

)1/p
,

where 1 ≤ p <∞, differentiation is ill-posed, because for two functions u1, u2 with u2(x) =

u1(x) + η sin(ωx) we have u′2(x) = u′1(x) + ηω cos(ωx), and by taking η very small and

ω arbitrarily large, ‖u1 − u2‖p can be as small as one wants while ‖u′1 − u′2‖p is arbitrarily

large. One technique for dealing with ill-posed problems is regularization [51], which consists

in finding an approximate solution which is close to the exact one and at the same time

stable. In particular, differentiation is replaced by integration, which is stable. For example

we can approximate differentiation by the convolution with the derivative of a Gaussian,

which means in fact smoothing the original signal by a convolution with a Gaussion before

differentiating it. A precise study of optimal regularization to the problem of differentiation

in edge detection is given in [52]. Other methods for edge detection have been proposed,

based on convolution with functions which are optimal w.r.t. some constraints.

It is easy to see that the morphological gradient is also ill-posed. In the case of one-

dimensional signals, for f(x) = η sin(ωx), we have ∇⊕(f)(x) = ∇⊖(f)(x) = ηω |cos(ωx)|.

However no ‘morphological regularization’ technique has been invented. Quite to the con-

trary, morphological gradients remain to the primitive level of the ‘difference of boxes’ meth-

ods used in early papers on edge detection.

5.2.4. Exact or approximate structuring elements? In mathematical morphology, the

shape of sets is probed by their interaction with structuring elements. These are considered

as exact templates. It is thus a yes-or-no procedure, where only exact ‘matching’ (i.e.,

inclusion, containment, equality, etc.) is considered. Now it is clear that perception can use

elementary shape units, for example the textons proposed by Julesz [17] as basic primitives

of texture, which have simple shapes: a bar, a cross, a T-juntion, an L, etc.. However they

are not proposed in the form of exact templates: anything ‘looking like’ a T is a T, it is more

a symbolic construction with bars than a group of points forming a given set. How does

one recognize such an approximate or even ‘symbolic’ shape in mathematical morphology?
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To consider each valid template approximating the shape of the structuring element is too

costly. Other techniques involve replacing dilations and erosions by percentile operations

(for example [42,59]), but this is not a complete solution to the problem.

5.3. Spatial relations and global image analysis

We will show here by a few concrete examples from the psychophysics literature that the

analysis of spatial relations in a three-dimensional scene must be done at a global scale:

local grey-level features taken outside context are unsufficient to determine these relations.

We mentioned at the beginning of Section 2 the first figure of [12]. Its upper part shows

a scene illuminated from one side, with seveal planar surfaces having different orientations,

and hence strongly contrasting luminous intensities; we do not see them as black and white

patches, but as surfaces with different illuminations/orientations. The lower part shows

a small portion of the image along the edge between two such surfaces, magnified in size

and taken out of context; we see here a flat surface divided into a black patch and a white

one. Thus the grey-level profile of an edge, taken into isolation, does not tell us if it is

due to a change in reflectance or a change in illumination/orientation. Other examples

showing the influence of global context in the discrimination between reflectance edges and

illumination/orientation edges can be found in [12,13].

In [14] an astonishing demonstration was made. Two identical miniature rooms were

made, one painted matte white, and the other matte black. Both were subjected to the

same distribution of light sources, but in the black one the intensity of the light sources was

stronger. Observers perceived the white one as white, and the black one as middle grey,

even when its luminous intensity was higher than that of the white one. This is strange,

because both scenes had the same orientations, a constant reflectance, and proportional

illuminations. One would thus expect that by adjusting the intensity of light sources, both

would give the same image. However there is a difference due to secondary illuminations:

light can be reflected from a surface portion to illuminate a second one, and here the re-

sulting intensity is proportional to the square of the reflectance. In other words, secondary

illuminations effects are stronger in the white scene than in the black one. The result is that

the global intensity profile is less contrasted in the image of the white room than in that of

the black one. Of course this is a global effect, which cannot be detected from the analysis

of an isolated local portion of the image.

How does one make sense from the intrication of effects of illumination, orientation

and reflectance in an image? Gilchrist [13] proposes that the visual systems discriminates

edges into two classes (due respectively to changes in illumination/orientation or to changes

in reflectance), and then builds two images of the scene, one for orientations, and one for

reflectances; in each of them all values are computed by integrating the changes along the

edges. One must also take advantage of usual physical constraints to solve cases having

ambiguous interpretations. For example in [40] it is shown that the human distinction

between shadows and reflectance changes, or between concave and convex shaded surfaces,

uses the implicit assumption that the illumination comes from one side only, and from

above rather than from below. Similarly in [41], the apparent motion of groups of dots is

interpreted under the assumption that points tend to have similar displacements.
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As we said above, most applications of mathematical morphology deal with scenes

where illumination/orientation does not matter (the case (2) above): flat sections of material

under constant illumination, or X-ray images. For such restricted situations, the limitations

of techniques based on local configurations of points and grey-levels (structuring functions,

thresholding, etc.) are not evident. But for the analysis of three-dimensional scenes, this

will be a serious problem. In fact other methodologies have been used for this purpose:

see the numerous papers giving computational approaches to stereopsis, motion detection,

extraction of structure for motion, three-dimensional shape from shading, perspective, etc..

Not much has been done on these subjects from the point of view of mathematical morphol-

ogy. Some practical work is developed at the ‘Centre de Morphologie Mathématique’ on the

detection of motion of cars on highways or ring roads. This situation is highly constrained

by the constant perspective of road tracks, the uniform shape of cars, but even then many

problems arise related to: the segmentation of some objects in low illumination possible only

by optic flow, occlusions, shadows, specularities, etc. (S. Beucher, personal communication);

each such problem is treated by ‘ad hoc’ techniques.

5.4. Concluding remarks

In Section 4 we pointed out the limitations inherent in operations which remain inside the

same object space, and suggested that concurrent processing is necessary to circumvent

the lack of universality of any operator, in particular w.r.t. the duality of the ‘what’ and

‘where’. As seen in this section, mathematical morphology deals more with the ‘what’ than

the ‘where’, and even with a purely two-dimensional ‘what’: its techniques are not suited to

three-dimensional scenes, with their intricated global optical features. In fact this discipline

does not base its analysis on quantitative optical properties of objects, and the only three-

dimensional effect it mentions is occlusion and the ordering that it induces between objects.

This allows the reduction of a scene to a set of flat figurines ordered by occlusion. We

summarize these facts by the aphorism:

Mathematical morphology is flat.

We mentioned above the problem of structuring elements forming exact templates. Mathe-

matical morphology deals more with minute details of shape than with its symbolic repre-

sentations (for example, what is a T?), in particular groupings of symbolic tokens (see [27]).

A question it has not taken up is figure-background discrimination. This fact, combined

with its unsuitability to depth and motion analysis, allows us to say, in relation with the

exposition in Subsection 4.2 of the functional streams in the anatomy of the human visual

system:

Mathematical morphology is a ‘parvo-interblob’ system.

In other words, this discipline is one-legged, we need other legs (in particular a ‘magno’

system). It cannot be considered as a panacea, not even as the basic framework for exploring

computer vision.
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