(L)
Christian Rowse:

EXTENSIONS OF GRAPHS AND PROBLEMS OF HOMOGENEITY.
(Unl)ub}iskeal manvseript Oxferd University , 1929 )

Introduction. This part of our dissertation is devoted

to extending some results of Gardiner[?], Enomoto [%]
and Ronse Eéj.

Suppose that in a graph G, for every vertex subsets
U, V of G such that ¢ US Z (VD> and ¢ US> belongs to

some family Q? of graphs, the neighbourhoods <f//\ G(u);>
g ueU

and ‘(Jf\ G(v)> are relatively similar. What can then
be saigiigout G?

We will suppose simply that these neighbourhoods
contain the same number of vertices. We show that for
suitable familiesoﬁr, the property is hereditary, in the
sense that for any vertex v of G, <'G(v)> satisfies the
same property as G. This connects our question to the
problem of finding the extensions of a given graph H,
namely the graphs G such that for every vertex v of G,
{G(v) Y £H. We can classify those extensions for some
graphs H, and this allows us to solve our problem for
several classes € of graphs, generalizing Ei,?, éL

The author wishes to apologize for the rather un-
smooth presentations and proofs of some results in this
part of the dissertation, but this is due to lack of

time, since this work had to be done, from inception to

typing, in the space of three months.

Definitions. We use the notations of‘E%J. If G is a graph,
then for a ¢V(G) we put G(a):g.be V(G)( { a,b_}é}E(G)}'.
If U< V(G), then < U>>G is the graph with vertex—set U

and edge-set E(G) {2% . When no confusion is possible,
U



(< &)

we will simply write it <fU> .

We will define the graphs Kn’ Nn and tKn, Kt;n as
in Bbj and.[E] respectively.

We will consider as a graph the one with vertex-set

and edge-set equal to @. We will write it K. or N..

0 0
If G is a graph and U£V(G), then let G(U)=/") G(u).
ue U

All graphs considered in this work will be finite.



8I Homogeneity conditions

We will call a family any collection of graphs given
up to an isomorphism. Thus, ii:qais a family, if Ae ¢ and

B ¥ A, then we may write Be {".

Definitions. Let G be a graphjletcfsbe a family and let

A,B< V (GB) such that <B> 2 <A>eT,

(1) If for any such A,B, every isomorphism
<A> -+ <B> extends to an automorphism of G, then we

say that G isTD—ultrahomogeneous, or G is acf>—UH—graph.

(2) If for any such A,B, there is an automorphism
of G mapping A onto B, then we say that G iSQF-homogeneous,

or G is a ff—H-graph.

(3) If for any such A, every automorphism of <A>
extends to an automorphism of G, then we say that G is

locallycf—homogeneous, or G is a‘f-LH—graph.

(4) If for any such A,B, <G(A)>2 <G(B)>, then we say
that G is combinatorially%?—homogeneous, or G is a
7?—CH—graph.

(5) If for any such A, B, for any @ #X €A, there is an
isomorphism f: <{A> —» <{B) with <G(X)>% <c(x’y> , then
we say that G is strongly combinatorially7?—homogeneous,

or G is af7—SCH~graph.

(6) If for any such A, B,|G(A)| = |G(B)|, then we

say that G iscf—coherent, or G is a‘C -C-graph.



(7) If for any such A,B, for any isomorphism
£: <A> > sB> and X € A, X # gle0)]| = |exD)],
then we say that G is Stronglyif—coherent, or that G is a
T——SC—graph.

(8) If for any such A, for every automorphism f of

<A> and X £ A, X # @,]G(X)l= ’G(Xf)l , then we say that G

is locallyz?—coherent, or G is atfiLC—graph.

Notes. 1) If?? is the family of all graphs, then we
simply say that G is ultrahomogeneous or G is a UH-graph,

@ o

2) A graph G is ultrahomogeneous if and only if

it is both homogeneous and locally homogeneous.

We have the following implications:

—

If’?éis a family, the complement of T is the family ??

consisting of all graphs gl where Xe T,

Gardiner classified UH-graphs [3], LH-graphs and even

tf—Lngraphs, where C is the family of connected graphs [u4].

Rormse classified H-graphs [6]. Enomoto [2] classified CH-
graphs and?f—SCH—graphs. In this work, we will study

%’—C—:f—SC or%i—LC-graphs for several families(?i



In this section, we study some elementary properties

ofﬁfLC—graphs.

Proposition 1.1: Lettﬁpbe a family and G be a

T-sc-graph. If v, W V(e), if Te7, if £, is an
isomorphism T + <V> and f, an isomorphism T -+ <W>, then for
£ _ _f
any A, BSV(T) such that ANB = ¢ and AUB # 0,|G(AL )/) G(B 1)]|=

£, . f
|G(A 2)NG(B 2)|.

Proof. We use induction on |B|. If |B| = 0, then the

result holds by hypothesis. Suppose that |B| > 0 and that
the result holds for any B' such that |B'f = |B| -1.
Then take beB and put B' = B \{b} and A' = AU{b}. Then
for i = 1, 2, |G(Affi)ﬂ(‘3(3’f‘i)| '
= leca™Hnenhaam th| + jenfiygsniiig ami iy
= learfiyp e fiy| + |eafiynaefi).

By induction hypothesis, |G(Afi)né(8’fi)| and
|G(A'fi)f1@(B'fi)| do not depend on i, and the result

follows then.

If G is aﬂ%O—C—graph and Te%i then we write G(T)
for |G(Tf)1, where T is any isomorphism T + <U>, where

0 £ U SvV(a).

If @ is a {° -SC-graph, if Te T, A,B £ V(G),AuB # ® and
ANB = @, then we write G(T,A,B) for |G(AT)p&(BT)|, where
f is any isomorphism T + <U>, where U SV(B). We have

G(T,V(T),®) = G(T). Let then G'(T) = G(T,H,V(T)).



.
Note that if beB, then G(T,A,B\b}) = G(T,AU{b}, B\{b})
+ G(T,A,B). Clearly, if feAut(T), then G(T,A,B) =

act,af, sl

Proposition 1.2. Let G be a graph and Q? a family.

Then G is a ?D—SC—graph if and only if G is a‘f -SC-graph.

Then we have for any Tqu:

(i) 6'"(T) = &(T)

(ii) If A,BCV(G), AUB # @ and ANB = @, then G(T,A,B)
= G(T,B,A).

The proof is elementary and is left to the reader.

Definition. Let ?ébe a family. If for any Te T and

O # ASV(G), <A> 67?, then we say thatqﬁ is a strong

family.

Proposition 1.3. Let G be a graph andizoa strong family.

If G iSQ?—coherent, then G is stronglycticoherent.

Proof. Let A,B < V(G) such that <A> £ <B> ¢ ?7

If f is an isomorphism <A> + %B> and if @ #U £ V(A),

then <U> = <Uf>. As Tis strong, <U> E(fand so |[G(UW)]| =

IG(Uf)|. Hence G is acfy—SC—graph.



If G is a graph and A £ V(G), then we write

G- <A> for XV(G)\ A>.

If G and H are two graphs such that V(G)A V(H) = 0@,

then we define the following graphs:

(i) GuH is the graph with vertex-set V(G) uV(H)

and edge-set E(G)VE(H).

(ii1) G + H is the graph with vertext-set V(G)VV(H)

and edge-=set E(G)VE(H)U{{a,b}| aeV(G) and b eV(H)}.

Then we have the following properties: If G, H, K are
three graphs such that V(GIAV(H) = V(H)a V(K) = V(G) A V(K),

then we have:

(1) GUH = G + H

(2) G +H=GVH

(3) (GuH)UK Gu(HUK)
(4 (G +H) + X = G + (H) + K
(5) If A £V(G), B <€ V(H), then <AUB>GuH

= = + %
<A>G U<B>H and <AUB>G+H <A@ <B>H

In particular, (G - <A> ) uH = (GUH) - <A> and

(G- <A>) + H = (G +H) - <A>.

Definition. Letoﬁ)be a family.

(1) If for any Te{, T +}ﬁg:%, then we say that<T? is

closed.

(2) If for any TeTl Tk/KlsT: then we say that ?ais

open.



6.
(3) If ¥ is open and closed, then we say that Q?

is extensible.

We give here an example. Letg{ be the family of

] %
graphs of the form Ky, Kiu Ky Ky o+ Ky ee (...((Kl Kl) Kl)

*Kl), where each * is either a + of a VY . It is the

extensible family generated by K We will show here

1
that g{is strong. Indeed, if Te %i and @ # YeV(T),

then there is some X&V(T) such that Y £X and |X| = |V(T)| -1
Let Z = V(T)‘\ X. As Te X, we can write T = V *# W, where
lvewy [=]ver) | -1, vel, [Vv(W)|= 1 and * is either a + or a V
Now <X> = T - <Z> = (V*W) - <Z>, If Z = V(W), then

¢
<X> = VH(W-<Z>) = V;%, while if Z # V(W), then ZS V(V) and
so <X> = (V - <Z>)*W. Using induction we can see that

V - <Z> E){ and so <X>€Hﬁin this case. Using induction

again, we get <Y> é&{

In §ITI we will study j{ -C-graphs.

Proposition 1.4: Letégpbe a family. Thenfggis open if

and only if € is closed. In particular, T is extensible

if and only %% is extensible.

This result follows immediately from the properties

(1) and (2) of V and +.

Froposition 1.5: Let zpbe a closed family, 1let G be

a graph and a €eV(G)

(1) If G isZ?-coherent, then <g(a)> is?féoherent.



(ii) If G is strongly gmcoherent, then <G(a)> is

strongly ?' -coherent.

Proof. Let H = (G(a)> . Let U, V£G(a) such that
<u> T <y D€ Let X £ U and let f be an isomorphism
CU>V> . Then faf V U> % afurp & x+ <v) €T

If g is the map <{aj v U>s{fal v V> defined by a & = a
f

and x% = xI forp x €U, then g is an isomorphism. If G

isdf—coherent, then (H(U)[ = IG( fagU U )| = ’ G(ﬁa}UV)I
=[H(V)I and so H is T—coherent. If G is strongly f’—coherent,
then l.H(X)‘ = [G({al( vX) | = {G(({aT v.x)8) | = l G(f'afu_Xf)l

= (H(Xf)[ and so H is strongly T - coherent.

Proposition 1.6: Let c{abe an open family, let G be a strongly

‘(7— coherent graph and let a ¢V(G). Then [(_S_(a))é_ is strongly
DE ~Gghierents

Procf ; As 020 is open, T is closed by Proposition 1.4.
Then G is strongly T —coherent by Proposition 1.2. By
Preposition 1.5, (E(a)}-é- is strongly ?a— coherent and so

<§(a)>G is strongly sz—coherent by Proposition 1.2.

Corollary 1.7. Let q&be an extensible family, let G
be a strongly (Co— coherent graph and let a€¢V(G).  Then

<G(a)?> and ((E(a)){_ are strongly za-coherent.

~



We will now characterize some classes of graphs

as Zicoherent graphs for some families %ﬁ.

Proposition 1.8. Let Q? = {Knl n;ZI} and let

©
G be a F -coherent graph. Then

(1) If |v(e)|=n and 6(X;) = 0, then 6 ¥ N_.
(ii) If |v(®)|=tn (t21, n >1) and G(K;) = n-i for

. Fa'd
i1=1, ..., n, then G = t Kn.

(iii) If G(Kl) = 2 and G(Kz) = 0, then G 1is
isomorphic to a union of cycles, each of length
at least 4.

(iv) If|v(e)|= s, G(K ) = 2 and G(K,) = 0, then

A

G &

5 .
(v)  If [V(6)| = tn (where t 2 2), if GH(Ky) = n - 1
and G”(Kz) = 0, then G = Kt;n'

The proof of this result is left to the reader. From

this we get the following:

Corocllary 1.9: Letof = gNn\n 2.1?' and let G be a

?f*coherent—graph. Then:

(1) I£|v(e)| = n and 6"(N;) = 0, then 6 T K_

(ii) If lV(G)| =n >»1 and G’(Ni) =n -1 fori=1,

~
then G = N
n

(iii) If |V(G)| = th (where t » 1 and n > 1) and G'(N;) = n

for d8ls «s» Ts Then G%l%%n.



(iv) If ]V(G)l = 5, G‘(Nl) = 2 and G*(Nz) = 0, then
G = C5.
(v) TF ]V(G)‘ = th (where t 2 2), if G(Nf = n-1 and

G(Nz) = 0, then 6= L

This result follows from the fact thatﬁ% is strong and

—

from Propositions 1.2 and 1.3, since Kyq = N, » tKn = Kt;n
(for t 2 2) and C.= C.

Proposition 1.10: Let T:= )ijIm Z.lg and let G be a
graph such that [V(G)l = n2, where n 2 3. Then the

following are equivalent:

[i2

(1) G L .

n,n
(ii) 6 is T-coherent, G(K;) = 2(n-1) and G(K;) =

n=i forr & & 29 ssws s

(a9 ) <G(a)>{§ 2 K for any a€v(g).

n-1

Proof ; It is clear that (i) implies (ii). Suppose that

(ii) holds and let a&vV{(G). Then H =¢<G(ﬂ)> is 1° -coherent

with\V(H)\ = 2(n-1) and H(Ki) = n-1-i for i =1, ..., n - 1.

(8%
By Proposition 1.8(ii), H = 2Kn and so (iii) holds.

-1
Suppose now that (iii) holds. Let N be the set of
A
subsets X of G such that (X)>= Kﬁ. Then lNl.n = the

number of pairs (K,x) such that K&N and x€K = n?.2.
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Thus |N] = 2 n. If K, K'4N and XAK' # @, then there

is some x¢KnK' and so { KuK > = {G(x)U x> ?le + 2Kn—1'

Let aévV(G). Then {a% UG () = Xlqu, where ZXL> N

<Yi>g K, and <(X1U Yl)\éaﬁ> = £GCa)> = 2K ;- We can

write Xl = fa, Xos e Xn% and Y1 = {a,yz, sy n? .

Then for i = 2,..,fn)PQ§UGhﬂ: X VY, where<:Yi>'?'K and

1 n

XpNY; = 5Xi% s while{yﬁucbﬁ}:YluXi, where (Xi> < Kn
and Y;n X; = %yi&. Bop A & &4 &35 Ko, XA K = ?.
Indéed, if x & Xiﬂ Xj, then x & Yl and so yi,ij(S&_);
but yiEXi\{xﬁ and ij‘Xj\{ X &and yinYyo which

contradicts the fact that { G(x)> £b2k£_l. Similarly,

Yi/\ Yj = . Therefore X, s X and Y, ey Y
are both partitions of V(G), since ‘V(G)J = n?, Now, for
any d.,J€ {l, ...,n% Xs # Yj, otherwise {yi, xj% - Xs

and so Y, v Xj which contradicts the fact that {G(a)> ¥
2K ., TFor any zgV(G ), thére¢ is some X; and some Yj
such that z ¢ Xi{\Yj, and they are unique. Conversely, if

z 'e V(@) and z' £/ 7. then z'e&Xi N Yj, since Xi # Yj.

Thus we can label the elements of V(G) as ordered pairs

(i,1), where i,i € {1, ...n}, and we have x = (1)) if

. o .
and only if xé;XiﬂYj. It follows that G = Ln11and (i) holds;

3

Corollary l.ll. Let?f: { Nm\m?; \E and let G be a graph
such that \V(G)' = n2, where n 72 3. Then the following

are equivalent:

(i) G = Ln,rl'

(ii) G is(f—coherent, G“(Nl) = 2(n-1) and G'(Ni) = n-i for

1= 2, «oey N



131.

. & . == /L'
(iii) <G(a)>G = Ko for any a€év(G).
b
Let us end the section on a property of?ﬁicoherent
graphs, where %?is an open or closed family. The proof

is left to the reader.

Proposition 1.12: Let G be a %d—coherent graph, let aé&V(G)

H = {6(a)> and L = <§(a)7e. Then:
(1) If %?is closed, then for any'Téfi H(T) = G (T+K1)

(ii) If T’is closed and G is strongly!f—coherent, then
for any T € T and A, BCV(T) such that AN B = 0§ # AUB,

H(T,A,B) = G(T + Ky, AVV(K{)B).

11
(iii) Iff? is open and G is stronglyfg—coherent, then
for any T¢T and A,B £ V(T) such that AUB # & = ANB,

L(T, A, B) = G(TuKy, A, BuV(K{)).

l)
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IT. Extensions of graphs

Definition. The graph G is an extension of the graph H

if for any XEV(G)ﬁfG(X)> ¥ H. If G is connected then

we say that G is a connected extension of H.

It is clear that if G is an extension of H, then G

is the disjoint union of one or several connected extensions

of H.

Proposition 2.1. For any n 2 O, Kn+1 is the only connected
extension of K, Any extension of Kn is of the form

tK 41> Where t 2 1.

The proof of this result is elementary and is left to

the reader.

Proposition 2.2: Let G be a connected graph such that for

any zeV(G),{G(z)Y is a null graph or a complete
multipartite graph. If there is some x€V(G) such that
{&(x)> is not a null graph, then G is a complete

multipartite graph.

Proof. For any y€V(G), the relation a =b or a.b is an
equivalence on G(y). (%) Take x as in the statement of

the proposition. We have G(x) = Piu ... v i, where

k 2 2, and for a €P; and bEEPj, a~n b if and only i # j.
Take yec(x) such that [6(y) \G(x)|is minimal. If e(y)\&(x)
= 4x\ » then G(Zf\G(X) = {x& for any z €G(x), and it follows
that V(G) = %XH UG(x), in other words G is a complete

multipartite graph. If G(y)\G(x)=>9{x ¢, then put y ¢ P.
: i
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N

(where 1 £i$ X)), D =P, \yl, E= g\ vfx} )

and F = G(X)\\Pi. Then E # § # F. Take any M & E; if

E % {u\) ek u! éE\)’ufj' then{x, Wy u'l’ €G6(y) and uq x v u'.
This implies that udu' by (%) and so (¢ (y)\&(x)> is a

null graph. Take any.zéF; then {x, u,sz.G(y) and udx ~ z.
Thus (*) implies that umz and so G(y)\G(x)SG(z). If

D # @, then take any t&éD. As ﬂt, g u&,SG(z) and

t~ x dru, (%) implies that taM and so G(y)\a(x) < a(t).
We have thus proved that G(y)\G(x) € G(a) for any a¢G(x).

as le(a)\e(x)l ¢ le(y) \ 60| by definition of y, it
follows that G(y)\CG(x) = G(a)\e(x) and G(a) <G(yIVE(x).

If t)Eﬂﬁ\GhL then G(b) £ G(x)V G(y); dindeed, if CéG(b)\G(y),
then for any z¢F, we have fc, Y, fo?G(b) and z o vy 4c

but then (*) implies that z a c, in other words ceG(z) £
G(x)va(y). We conclude that V(G) = Gz G(y) = P.V...UP

1 k+1

where Pk+1 = G(y)\G(x), and for a¢P; and bEPj, a~ b if and

only if i:# j. Therefore G is a complete multipartitie

graph.
Corollary 2.3: (i) K > 2) has an extension
U SRE Ly wwd Myyesa,m,
if and only if myp = My = ... = M.
(ii) The only connected extension of Kt;m is Kt+l;m
(forr £ % 2},
Proposition 2.4 If (> is a nonconnected %Nz —-coherent
graph, then G = X _V ... VK for some r 2 2.
my m

Proof: Let Ll and L, be two connected components of G.
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TR <:LL> Qi_]KLLlI then there are some x, V,z éLl

such that x v yv A 2z Arx. Take u 6—L2. Then <x, u®
T (Cx,z> % N, and ]G(X)nG(})[?a/l > 0 = {G(x)f1 G(u)[,

which contradicts our hypothesis. Therefore <~Ll> =

Ky and the result holds.
\Ly |
Corollary 2.5. If t %22 and m > 2, then the only {NQG-—
coherent extension of Kt;m is Kf+1;m'
Proposition 2.6. The only connected extension of C

5

is the graph of theicosahedron, which is not {N2%~

coherent.

Proof. Let G be such an extension and let x€V(G). Let
C = 6(x); we can write C = {xl,xz,xg,xu,xsﬁ, where

X VR, (i is taken modula 5). For any i =1, ..., 5,

i+1

£ . C: : . .
{XJ x> X l+l} < G(§)° and as x N XN

i1 1410 there

3 1 1
exist y.,y iEG(xi) such that IR A AR VAR SUE

As xX. N X lGG(i)AG(Xi+1)|: 2, and it follows that

1 1+1°
y'i = Vi It is clear that Vi - Y341 for any 1i.
Moreover, y. # y.,,, otherwise %Xi’yi+l’ Xi+l% £6ly;),
with (Xi, Yie1® Xi+l7 = Ky, which is impossible. Therefore
the 5 points V1> +-->Yg are pairwise distinect. Noy for
i = 1ls sins Oy yig% V;49» Otherwise ;Xi’yi’yi+2’ Xi+l§£:
G(y;,1)> with<<xi,yi,yi+2, Xi+1> -4 Cy, which is impossible.

Therefore <yl, s B 5 y5> = C5 and if X = ;xl1U§Xl, e XS%

U <yl, cees ySb then (K> is uniquely determined.
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For i = 1, ..., 5, |@(y;)q K| = % and so |a(y;) \K]| = 1.
Let zQG(yz)\K. Then G(yz) = {yl,xl,xz, yg,z}, and

as <C(y2)> = C5, we must have YN Z N Yg- Therefore.{zﬁ
= G(yl)\\K : G(yz)\K = G(yg)\K. Repeating that

argument, we find that 42\ = G(yi)\K for i =1, ..., 5.

If L = KU%A , then (Lyis isomorphic to the graph of

the isocohedron, and as G is connected, L = V(G) and

G =({L> . As G has diameter 3, G is not fNé -coherent,

and the result holds.

Corollavy. 2.7 05 has no {Nég—coherent extension.
Proposition 2.8 [1] Let G be a connected extension
of L3 3 Then one of the following holds:
b
——
. ~ .
(i) G = quu

(iiy ¢ £ X(3), where X(3) is constructed as follows:
Take a set V such that [Vl = 6, take the 3-subset of V
as vertices of X(3) and write A~ B iflA/\Bi = 2.

Proof. If H =1 then V(H) may be identified with

3537
AG(2,3) and then E(H) is the set of pairs of points
parallel to one of two directionsﬁﬁl and 5%. Let

9 andf?‘ be the two other directions. We define the

oblique lines of H. These are the lines in the two

directionsﬁa and Sm.

Let G be a connected extension of H. Let xgV(5),

et M = G(x) and N = {er(G)[d(x,y) = 2%. As <MD

1
Y H, every vertex of M is joined to 4 vertices of N.
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There are thus 36 edges between M and N. Let y €N and
Y = G(xG(y). Then YEM and if zeY, then {G(z)n Y >

o <G(a)nG(bi> for a, b £€V(H} such that ar¢/b, since
{x,v{¢6(z) and xaky. Thus{G(z)n Yy >Y N, .

Therefore Y 1s a graph of valency 2 without triangles.
It is easy to see that such a set is either a sguare

(a set of the form MA atx), where x€M) or a hexagon (a

set of the form M\L, where L is an oblique line of (MY ).

If y,y'eN and if there exist zy, z,, Z3éf3(x)ﬁ G(y)ac(y")
such that z,n z, & zg, then {xay,y',zzg SG(zl)n C(zy)
and{x, y,y'& < G(zz), which impliés that yv = y', since
d(z,,24) = 2. It follows that for y:ﬁ y', G A 6(y) #
G() N G(y') and that if GMONG(y) is a hexagon and G(x) A G(y")
is a square, then lG(X)ﬂ G(y)ﬂ(?(y')',s 2. In fact, we
have the equality, because a square does not contain

more than 2 points of an oblique line.

Suppose that there exist y,y'éN such that S = 6(x)A G(y) is a
square and T = G(x) G(z) is a hexagon. Let 1 = M\PB-sr As any
other square of the form G(x)n G(z) (where z € N) contains
2 vertices of L and as 2 vertices of L are contained in only
one square, there are at most 3 such squares. As thereare
only 2 oblique lines intersecting 5 in 2 points, there
are at most 2 hexagons of the form G(x) N G(z) (where z € N).

As any hexagon gives 6 edges between M and N and any
square gives U, we get 36 f 3 x4 + 2 x 6 = 24, which

is impossible.
Therefore, for any x¢V(g), one of the following holds:

(a) If yeV(@) and d(xy ) = 2, then G(X)aG(y) is a square.
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(b) If y€&V(G) and d(x,y) = 2, then G(ANG(y) is a

hexagon.

Now, if a,béV(G) and amnb, then there exist c,d &
V(G) such thatceG(a)nG(b) (in other words fa,bl & G(c
and d¢G(c)\(c(a)nG(b)). But then d(a,d) = d(b,d) = 2,
and we deduce from it that for any two vertices x and y of
G, there are some A1y ey akéV(G) such that a; = x,

d(ai, a.

s4) 2@ =1, ..., k-1) and g = y. It follows

that G(alN\G(aQ)f = ... :‘G(ak_l)lﬁG(ak)l and we conclude
that either (a) holds for any x¢V(G) or (b) holds for

any xeV(a).

Suppose that (a) holds. Every vertex of M can be
written (i,j), where 1, jé€ fl,Q,Sf . A square S of M
corresponds to a unique vertex (i,j) of M, where

g = MGE((i,j)). We write then S = S... Now S.. =
1] 1]
G InG(y) for a unique y¢N, and we write y = (i,3)'
. <y o~ . A
If jJ # j', then (Sijn Sij'> ¥ K,; suppose that Sij(qsij’
- {a,b} . Then<e(a)n 6> T 2K, {6ta)n &(d)N(fx§ umd

% K, and so K, TBadn6MAN> = (i, N, (1,30'>
in other words (is3)'a, (153%2%: Similarly, (1',3)'as (i,3)°
for i % i'. HNow, if i ¢ i' and j # §', then let i"

¢ ))1,2,3% \Ji,i'{ ana 3" ¢ {1,2,3} X4 5537 ps

" Then (i",3j") €& Sij(W Sij,/\ Si’j N Si'j‘ and it follows
that 4(i,j)', (E,J' 3%y E4%¥,90, (i',j‘)% £ @leiT,a™)).
But G ((i",3")) n N Z L2,2 = Cy»> and as (i,3)'A
(7%, 02,000 (X, )% pg {d])", it follows that
(i,j)'ﬁ% (i',3')'. Therefore (N>ﬁ¥ H. But every

vertex of N is joined to 4 vertices of N and 4 of M.
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Therefore, if (i,j)'¢ N, then [6 (i, )\ fxu

MUN)' = 1 and let ZéG((i,j)’)\({X% UMuN). As

{6 ()0 6((1,1D"> T 2K, and 6((i ,§)")na(z) €W,

it follows that for i # i' and j # ', (i,i")'vz v
(133)'. Repeating the argument for (i,j')', we see-that
(i',3')' ™~ 2, and so N£€G(z). let L = {X,Z} UMUN.

Then (L)hasValen<y 9, and so L = WG) and 6 =L,
Consider the set V = {al, ays ag, bl,bz,bgj ;i LT

we make correspond X to {al, a2,a3%, z to {bl,bz,b3}-,
(i,3) to (Jaj, a,>as \da () U4byf and (i,3)" to
{a[k U ({1:\1,,132,.133 % \{bj&), then we see that G = X(3)

and (1i) holds.

Suppose now that (b) holds. Write N =
éal,az,ag,bl,bz,bs}, where G(x)N G(ai) = M\ L (L«iécg)

and G(X)K\G(bi) = M\L'i (Li'é(g') for i =1, 2,3.

If véM and ;y([ = L; n L'j, then G(y)A N = N \{ai,
bj} . As LGy T H, <N\{ai, bjt> is a square.
But this is true for any i,j 641,2,3} . Suppose that aiqb
b.. Then for Jz+i and €4 73, { aj,a5bs, b8> is
a square and it follows that a; af and a; be. But
then [G(ai)(\ NI Z- 4, and as [G(ai) nM [: 6) 'G(ai)( =10,
which is impossible. Thus a. v bj and for k 4 i, a; #,
a, » since lG(ai)q v €9 -leapam|=3.  1f
I 2 4}([( U MvN, then ¢L)is regular of degree 9 and so
L = V(6 and 6 =¢L%. Now |v(@)| =16 and
(G(x»a

and so G

“

1

L

- s 5 N S
(N} = 2K,. By proposition 1.10, G
3 4, h

L”s” and (i) holds.
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Corollary 2.9: L4 y is the only {Nz&—coherent extension
3

of L3’3.

This is due to the fact that X(3) has diameter 3.

Definition: The graph G is an antiextension of

the graph H if for any x€&V(G), <E(xl7G = H. In other
words, G is an antiextensionof H if and only if G is

—
an extension of H.

From Proposition 2.1 and Corollaries 2.5, 2.7 and

2.9, one derives the 4 following results:

Corollary 2.10 (i) The antiextensions of NO are the

graphs K_, where n 2 1.

(ii) If n 2 1, then any antiextension of N_ is

either Nn+l or Kt;n+l’ where t 2 2. !

Corollary 2.11. If t> 2 and m > 2, then the only {KZlI'
coherent antiextension of tKﬁ\is (t+l)Km.

Corollary 2.12, C5 has no ;KQQ-coherent antiextension.
Corollary 2.13: Lu,u is the only §K2&—coherent antiextension

3,3"
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Proposition 2.1k4: Let G be a gK;\—coherent anti-
. -? f;/

extension of Ln,n’ where n 2 4, Then G Ln+l’ n+l”

Proof. Take a€V({t)and let X = G(a) and Y = G(a).

For yeY, <G(y)>G = Ln,n and {(G(yn G(a))@ = Ln-l,w—I'

So there exist, A, B £X such that JA}= (B)Q'Kn_l

and AUB = G(y) NG(a). Now {{a}uAuBu(G(yInEa)> = Ly
We can write y = (1,1) and a(y)ﬂ G(a) = ;(a,b)l l1¢ a <n,
1<¢<b < nf. Take x ¢ A, we may suppose that x is joined to
the Points (a,2) such that 1 ¢ a<n, and not to the points

(a,b), where 1<a and 2<b.

For any z = (c,d) (where 1<¢< i and 2 < d £<n),
x ¢ 6(z) and ézz) A G(a) = é(e,f)[ e $c and f;.d}.
Now % must be joined to a line of G(z)a G(a). As
x 1s joined to the points (e,2) such that L2 8 k@
and as there are at least 2 such points (since n 2 4),
x is joined to the points (e, 2) such that & & cy &nd
not to the poinfs (e,f) such that ez c and 2 4 £ d.
As this is true for any (c,d) such that 1 < ¢ £ n

and 2 ¢« d £ nand as n 72 4, it follows that

G(x) N G(a) = g(e,2) \1Se,§ n } and so le<x)¢\‘6(a)] =" Tl

Let k = \X‘ ; then for any uéV(G),\G(u)l =

|v¢@f=1 - n? = k. TIf yeG(u) and zeG(u), then |G(w A G(z) |

=k - [BwAacz)| = k - 2(n-1), while lemme(yl

is a constant which does not depend on the choice of u and

y, since G is\Kércoherent: as lG(a)n G(x)] = k-1 —

‘E(a)ﬂ 6(x)| = k-1-n for x€A (see above))]G(u)n &y)| = ¥-1-n.

Therefore G is strongly regular and we have
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6,90 | xex, veY, xay } = kn = n? (c-2(n-D1)-

Hence k= 2n. Now if x, z€V(G) and x4z, then
[enez) (= x -2 (n-1) = 25 but as < ey, T

L. o there is some ué@(x)na(z), and as gx, z? € G(u)
b ]

and <é(u)>GN L n,(G(I)/\G(z)n Guw)>T N,. As

Iis 2
2, it follows that (GO A G(z)Y> T N

et n ezl 5
Now { X7 has valency k-1-n = n - 1, and if x,x'¢ X

and ¥4 X', then <G(xX) AG(X')> = N,. Asaé& 6(x)N 6(x'),

G(x)n G(x') = [a, y§, where y €Y. Therefore all

connected components of X are complete graphs

and so (X» = 2, By Propositon 1.10, GZ Ln+l, el 3

since [V(G)’ k- 210 sk n2:'..(n+1)2.

Corollary 2,15, Let G be a <N2&—coherent extension of
Ln,n’ where n Z 4. Then G"Ln+1,n+l'
Proposition 2.16. Let € = SleJn Z]_%, let €% 2

and n?; 1. If G is agf -coherent.extension of tKh, then

one of the following holds:

(i) t =yl W2 and 6= Ln+l,n+l'

(ii) n = 1, and 6 = KQSJC
(i43)n = 1, t = zandeé‘_’cS.
Proof. By Proposition 2.4, G is connected. Therefore

G has diameter 2. Let aéV(G), let X = G(a) and
Y = a(a), let Ul’ -++» U, be the connected components

of {X7.
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If y, x £V(G) and x &4 vy, then {G(x) A G(y)> is a
null graph. Indeed, if we had Z1;2, EG(X) N G(y) such that
i <
Zy 0 2 then we would have: {x, Zy 5 yé < G&l) and
XA Zy Vv o %, which contradicts the fact that
{6(z) > F K

.
Therefore if y £€Y, then G(y)A X containts at most

one element of each Ui'

Let gy = t and for i z 2, let g; ° G(N.) .

Then g; Z.gj

1% p A
(xl, cevs %3 > = N, then (G(xl)n AG(Xi)> = Ng

for 1.4 £ 3. Ifiz22 and

. )
1
since G(xl).ﬂ G(x,) does not contain two adjacent
vertices. Therefore, for j 2 1, g; is the size of a maximal
null graph contained in the neighbourhood of a null

subgraph of size j. From this we deduce the following:

(1) If i, j 2 1, then gi'z j if and only if gj?a i

Let }* = gys © = g4, 8= %le and r = | Y| . For
all 1 5.1y s Ty for eveny bé'Ui, B(B) ¥ =

(Us; \4b§) v Jaj and so |6 A v| = tn-n= (t-1) n.

The number of pairs (x,y) such that x¢X, yéY and
vasy 1s equal to rﬂ and also to nt.n(t-1) = t(t-l)nz.
Therefore:

(2) © M= EE-D) n?,
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Let us choose ["\ vertices [\ of X

S Pf*
each in a distinet U;. Then [Y n G ([kl)f\ .G ('{‘L/\,{)I

—gr&—lzs. By (1) we have s 21 since g, 3> M.

The number of sets {y{ VU (G(y)nX) such that

y &Y is equal to F and also to s(/:i) nﬁ . Hence:
t) ok

(3) r :4( )"r\ .
M

By eliminating r from (2) and (3), we get s‘ﬁ)nﬂ:

t(t—l)nz/r\ . As t 2 2 and M2 1, we get:

() gt"l)n}“2 =
}4-— 1
It follows that if M 2 2, then ;n’“uz 2. 1 and

so (tul) < t -1. But this implies that -1 = 0,1,
M-1
t-2 or t-1. Thus we have:

(5) /’l = 1,2,t-1 or t.

If gy =t 2. 3, then (1) implies that 6= g, 2 1.

If ye¥, then |YaGy)| =]yl -[yi] - |vacw]
=r -1~ (tn-w = t(t-1n’ - 1 - tn+p by (2).
,A

The number of couples (x,2z) such that xé¢X A G(y) and

zeG(x)f\Yr\a(y) is equal firstly to [Ya-a(y) .84

-G (t(t-1n® - tn +p- 1), secondly to |XaG(y) | .
33
le(x)n G(y)n Y| (with xeXnG(y)) , that is to M(t-2)n.,

Therefore:
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(6) If t23 , then B <t(“t—1)112 = En M —l> =M (t-2)n.
M

Tn other words Bt(t-1)n’ - ((6C+n)t-2m) n + 6.

(x-1) = O. -

Let A =@t(t-1)/x, B = - ((6+p)t -2)0 and

g =8(p—1). Then n is a solution of the equation

sz + Bx + C = 0. Let m be the other solution. As

A >0, BLOand C 2 0, we have m 2 0. Now nm = %

cBEE-1) & . Therefore m { 1 (since n > 1), and the
t(t-1)

equality holds if and only if A= t and n = 1. As %

= - (m+n), we get: A+ B + C=A (1-(m+tn)+mn) = A
(n-1)(m-1). As A >0, A+ B + C £0, and the equality
holds if and only if n = 1 and » = t. Hence:

(7) If t % 38, then Bt(t+1)-((f+p)t-2p) + G(u-1) £ 0,
}b\.

and the equality holds if and only if t =M and n = 1.

We have four cases:
(19 "1 =m < t-1
(2°) 2 =p < t-1
(3%) po= t-1,

(49 o=ty

Suppose that (1°) holds. Then t 723, and (1) implies
that 1 £ 8 < 2, in other words € = 1. By (7), we
get (t-1)(t-2) = t(t-1) - (2t-2)<L 0, which is impossible,

since t Z 3.
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If (2°) holds, then t 24 and €= 1 by (1).
Applying (7), we get:
%ﬁ(t—l) - (3t-4) + 1< 0, or simply
(t-2)(t=5) = t2 - 7t + 10 € 0, which implies that

3L t 5’4. As t » 4, we have £ =14 and (6) gives 0O =

)
Ft(t-1n% - (3t - #)n+l = 6n - 8n+l.

But this equation has discriminant 82 _ 4 x 6 = 4o,
which is not a square. Hence n is not an integer, and so

we have a contradiction.

Suppose now that (3°) holds. Ifn = 1, then for
vy €Y, there exists some z €G(y)an Y. Now G(y)nG (z) = D
and so t 2[(XAG(y) V®nG(z)| = 2} = 2 (t-1) and

we conclude that t= 2, r = 2 and so (iii) holds.

Therefore we may suppose that n > 1. By (4) we have
$n"-? = 1 and so M-2L €0, in other words t £ 3.
If t = 3, then (1) implies that €= 1 and applying (6),

we get 3n? - 5 n+1=0. But this equation has

discriminant 52 - 4 x 3 13, which is not a square.

Hence n is not an integer, and we have a contradiction.

If t = 2, then let K be the set of all subsets

M of V(G) such that <M> Y K Then the number of

n+l’
pairs (x,M) such that xéMéK is equal to |K|(n+1)

and also to |[V(G)|. t = 2 (l+tn+r) = 2 (l+tn + tn?).
Therefore n + 1 \2 (1+tn+tn2) and so n + 1|2, which

contradicts the fact that n » 1.
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Suppose lastly that (4°) holds. If n = 1, then

r = t-1 and every point of Y is joined to every point of X.

Thue (ii) holds. If n > 1, then (&) implies that $nt 2
= t1. Ift24, then nt~2 3 2?5 -1, which is
impossible. Therefore t = 2 or t = 3, and we see that

¢=1. If+t =23, then®=S+1 = 2 and n = 2. But we
see that (6) is not verified in this case. Hence t = 2
r = n? (by. (2)) and so [V(G)I = (1 + ). By

Proposition 1.10, G ELD and so (i) holds.

+1, nt+l

Corollary 2.17. Let € = ;Km\m?i l( and let £ 2 2.

(i) If G is a 7?—coherent antiextension of Ko then

~ 5 ¥ :
G = 2 Kt or T = 2 and G = C5,

(1i) If n > 2 and G is aff-coherent antiextension of

-

K , then t = 2 and G2 L

tyn n+l,n+l’

. > _
Proposition 2.18. If n 2 4, then Ln n has no {NQ,NB%

b

coherent extension.

Proof. Suppose that G is a {NQ,N3%—coherent extension of
Ln 0 By Proposition 2.4, G is connected. Moreover,
b
G has diameter 2.
Let aéV(B6), let X = G(a) and Y= G(a). Let
= 6N, and O= 6(Ny). If r =|Y!|, then

r M= \ {Gp,y)h<éX,er,><n,y} l = nz(n—l)z.

As nz 4, B 21, If ye¥Y, then ré(y)ﬂ Y!= r-1-
(n2 = ab i gz(n—l)2 - nz‘Ff*— 1. TFor each such y,
=
the number of ordered pairs & ,z) such that

X €(G(y)aX and zEG(x)ﬁEfy)/\Y is equal to G(y)/\Xl.(G(x)na(yL{é(aﬂ
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(x £€G6(yI)AG(a), in other words to f*.(n—Z)Q. But
it is also equal to [@(y)ﬂ Yl. e (Ny) =
3] nz(n—l)2 - n2 + M- l).
}&

2 2
Therefore G(E_iﬂlll_

- n? +Mm -1) = (n~2)2, (*J
v Mo-1) = p

As in the beginning of the proof of Proposition
2.8, we can show that for y£Y, {G(y)an Xy is a union
of cyclef of length at least U of <X> . Thus

o= ‘G(y)n X| is even and U4 é'}4 L 2n,

Let K be the set of subsets M of V(G) such that

(Pi)g’ K Then every vertex of G is contained in

n+l°’
2w elements of K. It follows that
(1 + n? + nz(n-l)zfy ). dn = IV(G)|.2n :l<(X,M){ ngéKF}

=U<L(n+1). Therefore n + 1 divides (1 + nZ + 112-(11—1)2/'}A)2'n
= (MK +}An2‘+ mz(n—l)z)n/g . As (n + 1, n) =1, it follows
that n + 1 divides A +fin2 + nz(n—l)z. But then n + ll

24+ 4, and as A < 2n, 2p4 + 4 <U(n+l). Therefore 2pm+ 4 =

n+ 1, 2(n+l), 3(n+l) or 4(n+l). Hence f4= E%E s, N =1,
3n-1
5 oY 2n.
Case 1: If}iz Eli, then D=3 44 even and ed n2(n—l)2.
—_— 2 2 2
We verify then that E%i l 36. If HJP\, then B{QM =n - 3
i 2 2 2.
and 4 |n+l . But then 4 + n-1, 8 + (n-1)° and so n“(n-1) /}4
is odd. As n? is odd, it "follows that 1 + n2 ¥ nz(n—l)2

).A

is odd and so may not be divisible by n + 1 (which is even)
Therefore 4'*y and so}*z 6 or 18. In both cases we

verify that .the equation (%) is not satisfied,
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and so we have a contradiction.

Case 2: If M= n-1, then (®) implies that
O (n?(n-1)-n? + n-2) = (n-1)(n-2)2, or
6 (n-2) (n? + 1) = (n-1) (n-232, or

©m? + 1) = (n-1)(n-2) =n® - 3n + 2 n? + 1.

But then < 1, which is impossible.

Case 3: If M= 32'1, then M(nz(nwl)Q. Now

Q*ﬂ\)‘(Sn—l, n) = 1 and so W&\(n—l)z, As (N,n—l)/(3n—l,n—l)/2,
+ = 3

we have}d(Q, As F 24, we get riz 4 and so n = gi%—i

which contradicts our hypothesis.

Case 4: If KW= 2n, then (*) implies that
90% n(n-1)% - n? + 2n-1) = 2n(n-2)2, or
0k ntn-1)2 - (1)) = 20 (@-2)2, or
€12 &5 = 2@m-02, or

B (n-1)2 = 4 n(n-2)

But (n-1,n) = (n-1, n-2) = 1 and so (n—l)2 4, in

other words n £3, which contradicts the hypothesis.

Therefore each case leads to a contradiction and so ©

does not exist.

Corollary 2.19: If n 2 4, then L.n N has no {KQ,K3>_

bl

coherent antiextension.
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Proposition 2.20 [5]. Let m, n ;—l and A, & Z2.

If the graph G is an extension of tKn and an antiextension of

KS,m then one of the following holds:
E)

2 and G 2 L

(j_) m:n:./):‘t 3’3

£ =1 and G = C

~~
'_l
|_l
=]
n
3
"
N
Oy
1l

5

| Let aE¥(®), let X = ¢ (a

ifnm ” i:hélﬁwé gog&}')b)ains no ;ériéagg;lefs (;n)ld\.\ 164 hat
s=2. As <Y> is of valﬁency m, we have”m <t-Ifbg.X then
(G(b)(\Y>ﬂ=(t-1)K4 and so t-1< m. Therefore m=t or m=t—1.
Every vertex of X is joined to t-1 vertices of Y and
every vertex of Y is joined to t-m vertices of X. Thus
t(t-1)=2m(t-m)= the number of pairs (x,¥) such that x ¢X,
y€Y and xary. It follows that t-1=m and t=2. Hence n=m=]
and t=s=2. Thus [V(G)| =5 and (ii) holds.

VIf m=1, then the same argument applied to G shows that
(ii) holds also in this case. Therefore we may suppose
that m >1 <n. If b¢X, then <G(b)\ T)2K . As (G(b))i‘Kn,
it follows that (G(b)g Y> ¥ (t=1)K - As n >, we must
have n{s and t-1=1 (since <« Y> does not contain any 2K2).
Applying the same argument to G, we find that m<+t and
s=1=1. Therefore s=t=m=n=2. Now ‘V(G)[=9 and so (i) holds
by Proposition 1.10.

dd LG e by e

1. <X\ ,8=1pen) (&v)
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III. Characterizations of7T—C—graphs

In this section, we will classify {O—C—graphs
for several families of graphs. Let us define first

a few families:

(1) %z{mn\nzof o {txftz 1 and mz 2 f

U%KP;SMZ 2 and S 2,2%‘ b {c5, L3,3§'

9{ is the family of all UH-graphs [3].

2y M-

N E U (th It 21 and m 2 2;

5 . 75 5
{Kr,g[r/Q and § %2 Ugth,n[n : 3%

C

b n'7 H}

]
n,n

%U{Lnnln/ugu{i;;\n;uf

(3) ]{_ is the family defined in page 6 .

(%) i:{lem'le u{Kn+Nm\n?,l and le)z.
L/‘{:J’Z}C:j%_ but i#Z

bl

Note: We have ?é=

e T
Also “il/i E')’(,

We will show that a %é—c—graph belongs to;%'ortjtwhen %f)

is suitably chos§eéen .
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Lemma 3.1 (i) If n 2}4, then Ln n

b]

is not {ZKQQ—coherent.

) > . j
(ii) If n 2 4, then Ln,n is not 4K2,2%coherent.

Proof. Take a = (1,1), b= {1,2), @ = (2,8), &= (3,8)
and e = (2,4) in V(G), Where g = Ln,n(n Z 4) . Then

{a , b, c, dD% Ca, bye,ep T 2K,, but [6({a, bye,ef)| =
0 and 1 = ]G[%Ta,b,c,d _})L Hence (i) holds.

——

For G = Ln - (n 4), take the same points a,b,c,d,e.
9

Then {a, b, c,dﬁ>gi<a,b,c,e‘>gq}% , but IG(Ya,b,c,ef)}
b

(n-4)(n-2) and (n-S)Q = lG({a,b,c,df)!. Hence (ii) holds.

Theorem 3.2. If G is a C-graph, then Ge X,

Proof: Suppose that the result is false and let G be a counter-
example with V(G) minimal. Let a,beV(G), let H = {arayp,Le
<fa(a)>G,Hf {G(b)yand Ly :<fa(b)>6. By Corollary 1.7 and Propositio:
1.12, H,H;, L and L, are C-graphs and we have H(%) = Hl(X)
and L(X) = Ll(X) for any graph X. Thus H, Hl, Ly Ll & x¢
by induction hypothesis, and Propositions 1.8 and 1.10 and
1 and .L = Ll'

Thus G is an extension of H and an antiextension of L.

Corollaries 1.9 and 1.11 imply that H T H

By Proposition 2.1, Corollaries 2.5, 2.7 and 2.9 and

~
Lemma 3.1, we may not have H = K_ (m 7,0), K (r> 2,52 2),

38

C5 or L3 3 By Corollaries 2.10, 2.11, 2.12 and 2.13 and
»3.

Lemma 3.1, we may not have L = N (h»0)tkm (tz 2, m 2 )5

05 or L ’ Therefore H = EtK (t 2 2, m=z 1) and
353 ™
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K (r 22, $321), which contradicts Proposition

Therefore our supposition was false and the

result must be true.

Theorem 3.3. If G is a ;\{_C-graph, then 6 ¢ M

Proof. Suppose that the result is false and that G

is counterexample with V(G) minimal. As in the
preceding theorem, G is an extension of H¢WM and an anti-
extension-of ngdﬁ since){ is strong and extensible.

By Propositions 2.14 and 2.18 and Corollaries 2.15 and

——

2.19, H and L may not be isomorphic to L or Ln N with
2 3

n 2 4. Therefore H,Léafand we get the same contradiction

as in Theorem 3.2.

Corollary 3..4. If G is a ){Ef{éKQ,KQ 2% -(-graph,

then GGM.

Our proof of Theorem 3.2 is similar to the proof
that we gave in [5] of Gardiner's classification of UH-
graphs [3]. The next result has been inspired by the

method we used to classify H-graphs [61]:

Theorem 3.5 If 6 is a i - C-graph, then G €& c/% .
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Proof. Suppose that the result is false and that G

is a counterexample with lV(G)l minimal. As ;ﬂ is

closed and contains the graphs K  and N (n 2 1), we

can show again that G is an extension &6f a graph H GL/%

By Propositions 2.1, 2.16 and 2.18 and Corollaries

2.5, 2.7, 2.9 and 2.15, H#U%, and so we have a contradiction

Therefore the result holds.

Corollary 3.6. If G is a i U§2K2,K2 2} —€-graph, then
2

ce M.

As L is strong, we deduce the following:?

Corollary 3.7. If G is a i -C-graph, then G €'Ll{

Corollary 3.8. If G is a e Y <2K2,K2 ’ }-CFgraph,
b

then Gé:a%-

It is easy to verify that!){ is the family of all
9{ -UH-graphs.

Enomoto EEJ classified f_—SCH—graphs, where E is
the family of connected graphs. In fact, we can prove
his " result with a weaker hypothesis (the proof is iden-

tical, apart from a few details):

Theorem 3.9. Let G be a (. —coherent graph. Suppose that

for every U, V& V(G) such that <UD £ (V> € ¢ and X €U

such that X is stabilized by Aut(< U > ), lG(X)/z{G(Xf)I
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for any isomorphism f: <UD o<V (Xf does not depend
on the choice of f); then G is the union of isomorphic
graphs, which are isomorphic to one of the following
graphs:
(1)K, (n?%1).
(1) ¢ (n24),
(i) Kivp (E2a.228Y).
(iv) Ln,n (n23).,
@) I3, (n3%3).
(vi) Petersen's graph.
(vii) Clebsch's graph (the graph obtained by identifying

antipodal points in the 5-dimensional cube.).

In particular, this classifies all Zf—SC—graphs.

What about € -LC-graphs? It is clear that if G is a
Yi -LC-graph, then its connected components are ZQ—LO-graphs.
Therefore we may suppose that G is connected. If aev(Gg),
the H= (G(a)> is a C-graph. Indeed, if U, V £G(a) and
US|, then ({a}, vU> E(,}a}l/v> and as {an U and
{af vV SJat uG(a) €€, we must have [H(UﬂEIG({a{tJU)[
a )G( gab V)| =|H(V)|. Thus H ¢ )¢,

It is not hard to show that for any b €¢V(G), < G(b)>
ZH (by induction on d(b,a) ). Thus G is a connected
extension of H.

It seems that the methods of Enomoto [a] could enable
us to classify U -LC-graphs, but the author had not the

time to do it.
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