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Abstract: Openings (and dually closings) are an important class of transformations used in
image analysis. We review their main algebraic properties, in particular their characteriza-
tion in terms of the invariance domain, and give several methods for constructing them. A
particular emphasis is laid on inf-overfilters as a class of operators generating new types of
openings. In conformity with the new algebraic framework for mathematical morphology,
we assume that the object space under study is any complete lattice, optionally provided
with an arbitrary group of automorphisms.

1. OPENING AND CLOSING: TwoO SIMPLE BUT USEFUL NOTIONS

Suppose that we have an object space £ whose elements (written A, B,...,Y, Z, etc.) can
be compared thanks to a partial order relation <. For example £ can be:
(a) The set P(£) of all subsets of a Euclidean or digital space &, or the set Conv(E) of all
convex subsets of £; here < is the inclusion relation C.
(b) The set of grey-level images on &£, where for two images X and Y, X <Y if for any
point p € &, its respective grey-levels X (p) and Y (p) satisty X (p) < Y (p).
(¢) The set of all partitions of £, or the set of those partitions whose classes are connected;
they arise in particular when one attempts to segment an image on £ into meaningful
components; for two partitions X and Y of £, X <Y means that every class of X is
contained in a class of Y, and we say then that Y is coarser than X, or that X is finer
than Y. See also [22], pp. 15, 32, and 94-98 for more details.
Many other choices for £ can be envisaged. The reader is referred in particular to [6,19,22].

Assume that we want to filter an object X € L in order to remove from it some
aspects that we don’t need, or to extract from X some particular type of information. For
this purpose we apply some “filtering” operator i to X. Let us examine some desirable
properties for 1):

(i) Idempotence: ¥? = 1), that is ¥(¢(X)) = ¥(X) for any X € L.

This corresponds to the usual notion of a perfect filter: it removes completely what is
unwanted, and so needs not be applied a second time. This is for example the case with
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ideal band-pass filters in signal processing. In contrast the median filter is not idempotent,
and it is not even guaranteed that a repeated application of it to an image converges to a
stable result. It has been shown [26] that the repetition of a median filter with symmetric
windows on a digital image having a finite number of pixels with non-zero grey-level, leads
after a finite number of steps either to a stable solution, or to an oscillation of period 2.
Such an oscillation between two images is illustrated for example in Figure 8.1 on p. 160 of
[22].

In [12] considerations about human low-level vision lead to the postulate that edge
detection must be idempotent. It has similarly been argued in [21] that idempotence is a
normal requirement of each stage in a sequence of operations in image analysis. See also
Subsection 1.1 of [19].

Now let us relate the behaviour of 9 to the partial ordering of £ by <. We require that
if 9 removes something, then it removes anything smaller. In particular if X <Y < Z and
Y(X) = ¢(Z) (v removes the difference between X and Z), then we have also ¥(X) = (Y)
(1 removes the difference between X and Y, and that between Yand Z). A sufficient
condition for this is:

(#3) Growth: For any X,Y € £, X <Y implies ¢(X) < ¢(Y).

We say then that ¢ is increasing. An increasing idempotent operator is called a morpholog-
ical filter. In the case where (£, <) is a complete lattice, the properties of such operators
have been analysed by Matheron and Serra in Chapters 5 to 10 of [22]. We recall in the
Appendix some of Matheron’s results. It appears that an analytic decomposition of mor-
phological filters into simple building blocks is a very hard task, even in the particular case
where £ consists of the set of parts of a digital space £. However, this is easily achieved if
we assume one of the following two constraints, which are dual w.r.t. the partial order <:
(131) Extensivity: For any X € L, (X)) > X.
(#i7") Anti-extensivity: For any X € L, (X)) < X.

An extensive morphological filter is called a closing, while an anti-extensive morphological
filter is called an opening. In the case of images, an opening will usually remove small positive
features, such as peaks and narrow ridges, while a closing will remove small negative features,
such as holes and narrow valleys. As explained in Chapter 10 of [20], openings are related
to size distributions: given A > 0, the operator 1) extracting from a population the subset
consisting of all elements of size at least A must clearly be an opening (for example, in an
army take all soldiers at least six feet tall).

We end with an optional property: invariance under a symmetry group. In Euclidean
morphology [20], operators are generally required to be translation-invariant, which means
that they commute with any Fuclidean translation. Some studies in image analysis consider
the stronger assumption of isotropy, that is invariance under both translations and rotations.
Note that these symmetries preserve the inclusion relation on sets. We generalize symmetries
by automorphisms. An automorphism of (£, <) is a permutation 7 of £ which preserves
the partial order <, in other words such that for X,V € £, X <Y <« 7(X) < 7(Y).
We consider a group T (that is, T is closed under composition and inversion), consisting
of some automorphisms of £; in fact T is an arbitrary subgroup of the group Aut(L) of all
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automorphisms of £. We assume then:

(tv) T-invariance: For any 7 € T, ¢ = ¢7.

We will use the prefix “T-” for “T-invariant”; we will speak thus of T-operators, T-dilations,
T-erosions, T-openings, T-closings, etc. (see Section 3 of [6]). As we said above, the require-
ment of T-invariance is optional, for example it is absent from the characterizations given in
[22]. All results that we will give in the framework of T-invariance can directly be applied
to the case where it is not assumed: one has just to take T consisting of only the identity
operator id.

Conditions () to (iv) were presented for a set £ provided with a partial order relation
<. In order to give a decompositions of T-openings and T-closings in terms of this structure,
L itself must admit decompositions related to that partial order. In other words we will
assume that (£, <) is a complete lattice, which means that every non-void subset K of £ has
a least upper bound in £ or supremum, as well as a greatest lower bound in £ or infimum;
the supremum and infimum of I are necessarily unique, and we write them respectively
supK or VK, and inf K or AK. As we will see in Section 2, T-openings and T-closings
on a complete lattice are easily characterized by their domain of invariance, and can be
decomposed in terms of elementary operators called structural T-openings and T-closings.

Clearly opening and closing are dual concepts w.r.t. the partial order <. Therefore
every statement concerning openings can be translated into a similar statement concerning
closings by interverting < and >, \/ and /\, extensivity and anti-extensivity, dilations and
erosions, etc. We may thus to a great extent restrict ourselves to openings.

Most practitioners of mathematical morphology know the opening by a structuring
element, defined on subsets of a Euclidean or digital space £, which can be built as a
composition of the erosion and dilation by that structuring element. They know sometimes
the opening by a grey-level structuring function, defined on grey-level images on that space
E. Both are examples of structural T-openings (for sets, T is the group of translations of
&, while for grey-level functions, it includes also grey-level translations). However there are
many other openings besides these. In the remainder of this section, we will describe a
few unconventional openings on some well-known complete lattices. Then Section 2 will be
devoted to recalling the algebraic theory of T-openings [19]. Finally Section 3 will describe
inf-overfilters, a class of operators containing openings as particular cases, and which allow
the construction of new families of openings.

1.1. Connectivity classes

Much of what we will say here is based on [22], Section 2.6. Connectivity is defined in

the Euclidean space IR? in terms of the topology, but in the digital space Z® it is defined

in terms of paths built from neighbouring pixels. In both cases the family C of connected

subsets of the space &£ satisfies the following two requirements: the empty set and a point are

connected, and a union of connected sets containing a given point is connected. Formally:
(i) 0 € C and for any x € €, {z} € C.

(it) For any subset B of C, (B # () implies that |JB € C

These two conditions characterize any family C of sets as a connectivity class on P(E) (the
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set of parts of £). Now connectivity can also be defined in terms of the operator associating
to each set and each point the connected component of that set containing that point; for a
fixed point, it acts as an opening on sets. We postulate thus the existence for each x € £ of
an opening 7, on the complete lattice (P (&), C) of subsets of £, such that:
(t4i) For any x € &, vz({z}) = {z}.

(iv) For any x,y € € and A C &, vx(A) Ny (A) =0 or vz(A) = v, (A).

(v) Foranyxz € £ and ACE, x € A or v, (A) = (.
Clearly these properties are verified when ~,(A) is the connected component of A containing
x, in the usual Euclidean or digital sense. We call a family of openings v,, z € £, satisfying
these three conditions a system of connectivity openings on P(E). It is shown in Theorem 2.8
of [22] that the above two definitions of connectivity are equivalent:

PROPOSITION 1.1. There is a one-to-one correspondence between connectivity classes on
P(&) given by (i) and (ii), and systems of connectivity openings on P(E) satisfying (iii),
(iv), and (v). A connectivity class C and the corresponding family of connectivity openings
v, define each other by the following two equivalent relations:
— For A C &, v,(A) is the union of all C € C such that x € C C A; in other words, it is
() for x ¢ A, while for x € A it is the greatest C € C such that z € C C A.
— C is the set of all v, (A) for x € £ and A C €.

It is also possible to characterize connectivity classes in terms of an opening on the complete
lattice of partitions of £ described in the example (¢) on the first page of this chapter: to
the connectivity class C correponds the opening which associates to each partition P a finer
one made by splitting each class of P into its connected components. Note finally that for a
group T of permutations of £, C is T-invariant if and only if 77y, = ;)7 for every 7 € T.

Thanks to that general definition, one can define new types of connectivity from the
known digital and Euclidean ones. Two examples are given on pp. 54-56 of [22]; the second
one is particularly interesting, since it allows to regroup together any two connected com-
ponents which are close to one another, leading to a formalization of the concept of “nearly
connected” (as illustrated in Figure 2.8 there). It is based on Serra’s Proposition 2.9, which
we state here in a slightly more detailed form:

PROPOSITION 1.2. Let 7., x € £, be a system of connectivity openings on P(E) correspond-
ing to a connectivity class C. Consider a map W : & — P(E) such that x € W(x) € C for
each x € &, and let dw be the dilation given by 0w (A) = J,c 4 W(x). For each x € £ define
the operator v, on P(E) by:

AN dw(A) ifx e A;
L (A) = z ’
vo(4) { 0 ifx ¢ A.
Then v,, x € &, is a a system of connectivity openings on P(E), and the corresponding
connectivity class N consists of all subsets A of € such that dy (A) € C. We have C C N.

The characterization of the connectivity class A is new. Note that this result cannot be
improved by generalizing the dilation dy to an extensive and increasing operator 1 such that
Y({z}) € C for every z € £. A counterexample can be found for € = R? by taking the usual
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connectivity, an increasing operator 9 satisfying (X ) = X for any set X included in a line,
but such that there is a non-collinear triple z,y, z of points with ¥({z,y, z}) = [z, y] N {z},
where [z,y] is the closed segment spanned by z and y; then for X = {z,y, 2} we have
va(X) = X Nay(X) = XN [z,y] = {z,y}, and as ¥({z,y}) = {z,y}, we get v7(X) =
ve({z,y}) = {z,y} Ny ({z,y}) = {z,y} N {z} = {z}, so that v, is not idempotent.

No proof of Proposition 1.2 was given in [22]: the growth and anti-extensivity of each
vy, as well as conditions (i4i), (iv), and (v) are straightforward, but for the idempotence of
v, the reader was referred to another source. We will thus show here the idempotence of
v, and the characterization of N:

PROOF. Note that as p € W(p) for each p € &, di is extensive. Take a non-void A C &
and z € A. We will first prove that for any a € A such that W(a) N y,0w (A) # 0, we have
W(a) C 0w (A). Indeed, v,0w (A) and W (a) are both in C, and as W (a) N v,0w (A) # 0,
YzOow (A) UW (a) € C by (i1). As W(a) C dw(A), we get

T € 120w (A) C 720w (A) UW (a) C dw (A).

But ;0w (A) is by definition the greatest element of C which contains = and is contained
in dw (A), and as v,0w (A) UW (a) € C, we must have v, 0w (4) UW (a) C v,0w (A), that is
W(a) € vzow(A).

Let us now show that Sy v, (A) = v.0w(A). Take first p € vy, 0w (A). As 7, is anti-
extensive, we have p € dy(A), and by definition of dy we get p € W(q) for some ¢ € A.
As p € W(q) N v.0w(A), the preceding paragraph gives W(q) C v,0w(A). Now g € A
and ¢ € W(q), so that we get ¢ € ANW(q) C AN 0w (A) = v, (A). As p € W(q) and
q € vz (A), we obtain p € Sy (v (A4)). Thus v,0w (A4) C dwr,(A). Take next p € Sy, (A).
By definition of dyw, p € W(q) for some ¢ € v, (A). Now v,(A) = AN~y 0w (A4) C v:0w (A);
hence ¢ € v,0w (A), and as ¢ € W(q), the preceding paragraph gives W(q) C v,0w (4). As
p € W(q), we get p € v40w (A), and so dwry(A) C v,0w (A). The equality follows.

We can now prove that each v, is idempotent. Take A C £ and z € €. If © ¢ A,
we have v;(A) = 0, and as v, is anti-extensive, we get v,v,(4) = 0. If = € A, then
vy (A) = AN~v.0w(A). Applying v, to both sides of dw v, (A) = 70w (A), the fact that v,
is idempotent gives v, 0w Ve (A) = YoYa 0w (A) = 70w (A). As x € v, (A4), we get

VaVz(A) = 13(A) N 720w v (A) = (AN 720w (A)) Nedw (A) = AN ow (A) = vy (A).

Let us finally characterize the connectivity class N. Take first a non-void A C &
and x € A. If A € N, then A = v,(A), and so dw(A) = dwrz(A) = 70w (A), so
that dw(A) € C. Conversely, if dw(A) € C, then dw(A) = 720w (A), so that v, (A) =
AN 0w (A) = ANdw(A); but have A C dw(A), and so v, (A) = A and A € M. Second,
) € N and 6w (D) =0 € C. Thus forany ACE, Ae N < dw(A) €C.

Finally C C N, because for a non-void C' € C and x € C, we have C = 7,(C) and
C C ow(C), so that C = C N ~,(C) € CNyow(C) = v,(C), that is C = v,(C) and
CeN.1



We illustrate this result in the case where & = Z* (the digital plane), C is the set of
4-connected subsets of £, and dyy is the translation-invariant dilation dp by a connected
structuring element B centered about the origin (that is, each W(p) is the translate B, of
B by p). We derive from C the new connectivity class N consisting of all sets which are
4-connected or which join in a 4-connected set under the dilation dy. We show in Figure 1.1
the decomposition of a digital set into its N -connected components when B is the 5-pixel

Cross.
B 1 2 2

B B B 11 2 2 2

B 1 2 2

FIGURE 1.1. The N -connected components of the set are numbered 1 and 2, they consist
of maximal unions of 4-connected sets which join under dilation by B.

We will now give a second method for constructing a new connectivity class from an
old one, which derives from a suggestion by H. Heijmans. Anticipating on Section 2, for
any operator ¢ on P(£), we call an invariant of ¢ any X C & such that ¢(X) = X,
and write Inv(¢) for the set of invariants of ¥. Given an opening « on P(€), we will say
that « is connected for the connectivity class C if for every invariant A of «, all connected
components of A for C are also invariants of . Clearly this is equivalent to the requirement
that ay,a = v, for every x € &, where all v,, x € £, form the sytem of connectivity
openings associated to C. It is easy to show that for any two openings ap and a; we have
aoa1ag = arap = ajapa; = ajag <= (a1ap)? = ajap. We have thus three
equivalent formulations for « being connected for C: for every = € &,

QYO = Yo <= YpQYy = Yo < (%504)2 = Q. (1.1)

For example, given B C &, the operator o : X — X N B on P(£) is an opening connected
for any connectivity class, because the invariants of « are the subsets of B.

For any subset B of P(£), write A(B) for the operator mapping any X C & to the
union of all elements of B included in X. It is straightforward (see again Section 2) that
A(B) is an opening. We have the following characterization:

LEMMA 1.3. An operator « is an opening connected for the connectivity class C if and only
if there is a subset B of C such that o = A(B). The set of such openings is closed under

arbitrary union.

PROOF. Suppose that « is connected for C, and let B = C NInv(a). Let X C £. For any
x € a(X), let B be the connected component of «a(X) containing z; as a(X) € Inv(«a)
(by idempotence) and « is connected, B € Inv(a), and as B € C, we have B € B; thus
x € B C a(X) C X for B € B, and hence z € A(B)(X). Thus a(X) C A(B)(X).
Conversely for any B € B such that B C X, as « is increasing we have B = a(B) C a(X),
and so A(B)(X) C a(X). The equality a« = A(B) follows.

Suppose now that « = A(B) for some B C C. Let A € Inv(A(B)), and let B be a
connected component of A for C. For any ¢ € B, as x € A = A(B)(A), there is some
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B’ € B such that x € B’ C A; as B’ € C and B is the connected component of x in A, this
means that B’ C B, and so « € A(B)(B). Hence B C A(B)(B), and as A(B)(B) C B (by
anti-extensivity), we get B = A(B)(B). Therefore « is connected for C.

e A(B;) = A(UjeJ B;) (see
Section 2). Thus the set of openings connected for C is closed under union. i

For any family B;,j € J of subsets of C, we have |

The openings A(B), where B C P(£), will play an important role in Section 2 for the
structural analysis of openings, but that time we will consider any complete lattice, not only
P(E). Now we give the method for constructing a new connectivity class from an existing
one and a connected opening:

PROPOSITION 1.4. Let C be a connectivity class and « an opening connected for C. Let S
the subset of C consisting of (), all singletons {x} for x € £, and all C € C NInv(c). Then S
is a connectivity class. If v, (x € £) is the system of connectivity openings associated to C,
then o, (x € £), the one corresponding to S, is defined as follows for any x € £ and A C E:

Yz (A) ifx € a(A);
0:(A) = ¢ {x} ifxe A\ a(A);
Ye(A) =0 ifz ¢ A

PROOF. We show that S satisfies conditions (i) and (4i). It verifies (i) by definition. Given
a subset B of S such that (B # 0, let = € () B; then {z} is the only possible singleton in
B. Either |JB = {z} € S or B = |J B, where B’ is the set of elements of B which are not
singletons. In that case, B’ C C NInv(«); by property (i¢) for C we have | JB € C; as we will
see in Section 2, Inv(«) is closed under union, so |JB’ € Inv(a); hence |JB =B’ € S and
S satisfies (it).

Let x € Eand ACE. If z ¢ A, then © ¢ a(A), and so by (v) (for both C and S) we
must have 0, (A) = 0 = y,a(A). If z € A\ a(A), then 0,(A) C A gives ac,(A) C «(A), and
so x ¢ ao,(A); as x € 0,(A), we get 0,(A) # ao,(A), that is 0,(A) ¢ C NInv(a), and as
z € 0,(A) € 8, 0,(A) is a singleton, in other words ¢,(A4) = {z}. If z € a(A), then o, (A) is
the greatest S € S such that x € S C A; now z € y,a(A) and y,a(A) € CNInv(a) (since o
is connected for C'); hence = € y,a(A4) C A with y,a(A) € S, which implies that v,a(A) C
o:(A); if o, (A) is a singleton, we have 0, (A) = y,a(A) = {x}, otherwise o, (A4) € CNInv(«)
and x € 0;(A), that is y,0,(A4) = 04 (A) = ao,(A); but then 0,(A4) = vza0,(A) C y,a(4),
and as v,a(A) C o, (A), we get 0,(A) = y.a(A). 1

Note that the first part of the proof (that S is a connectivity class) does not use the fact
that « is connected for C. However when « is not connected, we can replace o by A(B),
where B = C NInv(«a), and by Lemma 1.3, A(B) is connected for C. Indeed, C N Inv(a) =
B C Inv(A(B)); on the other hand, as B C Inv(«), it follows from the general theory in
Section 2 that A(B) < a and so Inv(A(B)) C Inv(«); from the double inequality CNInv(a) C
Inv(A(B)) C Inv(a) we deduce C NInv(a) = CNInv(A(B)), so that o and A(B) lead to the
same connectivity class S.

Note also that not every connectivity class S included in C arises in this way. For
example if C is the set of 8-connected subsets of the digital plane & = Z?, and S the set
of 4-connected subsets of £, there is no opening « such that S consists of ), the singletons,
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and the elements of C NInv(a). Indeed, if A and B are two 4-connected sets of size 2 which
are diagonally adjacent, then A,B € S, AUB €C, AUB ¢ S, and if we had A4, B € Inv(«),
we would have AU B € Inv(a), a contradiction.

Let us illustrate Proposition 1.4 in the two-dimensional digital case with C the set
of 4-connected subsets of £, and where « is the translation-invariant opening ap by a 4-
connected structuring element B. Clearly ap takes the form described in Lemma 1.3 with
B being the set of translates of B, and so it is connected for C. We derive from C the new
connectivity class S consisting of the empty set, the singletons, and all 4-connected sets
invariant under ap. We show in Figure 1.2 how a digital set is divided into its S-connected
components when B is the 5-pixel cross. Notice how narrow portions of 4-connected sets
disconnect them in S.

B 111 8 - 2 4
B B B 1111167222
B 31 11 - 25

FI1GURE 1.2. The S-connected components of the set are numbered 1 to 8, they consist of
maximal 4-connected sets open by B, otherwise of singletons.

Connectivity classes of the above form can be used to segment digital sets. First the
set X is divided into its S-connected components. Next, all such components which are
singletons are regrouped into C-connected components. We illustrate in Figure 1.3 what
this gives for Figure 1.2.

[=2BeN

11
11
11

— = =
—
D
[N}

N NN

TN

1
3
FIGURE 1.3. The segmentation of Figure 1.2 obtained by regrouping singletons into 4-

connected components.

Such an operation can also be applied in the complete lattice £ of partitions of a digital
space £. Given a partition P, first all classes are split into S-connected components. Next,
all new classes which are singletons are regrouped into C-connected components.

Other manipulations on connectivity classes can be envisaged. For example a non-
void intersection of connectivity classes is again a connectivity class. Thus the family of
connectivity classes, ordered by inclusion, forms a complete lattice; the least one consists of
() and the singletons, while the greatest one is P(E), the set of all subsets of £.

We have studied openings « connected for C, that is satisfying ay,a = v, for all
x € £. One can also consider openings « such that v,av, = avy, for every z € £. This
means in fact that for every X connected, either a(X) = X or o(X) = 0. Asin (1.1), we
have the following equivalence:

VeV = QY = QY,q = Y, << (oz%c)2 = avy. (1.2)

In particular let o be any increasing operator such that for X C & we have a(X) = X or
a(X) = 0. Then it is easily seen that « is anti-extensive and idempotent, and that for any
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X C€&andz €&, vpav,(X) = ay,:(X). For example we can choose a(X) = X if the size
of X exceeds some threshold, or as in [24], p. 27, a(X) = X if ap(X) # 0, where ag is the
translation-invariant opening by a structuring element B. Clearly such a type of opening is
not necessarily connected.

An interesting study to be done is that of the wider class of openings « that preserve
connectivity: for X connected, a(X) is connected. This can be expressed as follows: for
every X C £ and © € &, 1p07:(X) = a7:(X) (if z € av.(X)) or ypav,(X) = 0 (if
r & av.(X)). A necessary (but not sufficient) condition is that (av,)? = Yz, for all
xel.

Given an anti-extensive operator ¢ on P(€), let us consider the operator ¢¢ resulting
from applying 3 separately to each connected component of a set in a connectivity class
C. For example in [24], p. 27, ¢ is the above-mentioned opening which preserves X if
ap(X) # 0, and removes it otherwise, and ¢ removes all connected components too small
or narrow to contain a translate of B. For X C £ we have

ve(X) = | ¥ra(X). (1.3)
el
As 1) is anti-extensive, so is ¥)¢. When is 9¢ increasing and idempotent, in other words an
opening?
PRrROPOSITION 1.5. Let C be a connectivity class with system of connectivity openings -,

(x € £). Let ¢ be an anti-extensive operator on P(E), and let ¢ given by (1.3). Then for
X C & we have

Q/JC(X) = U %W%(X)a (14)
ze€

PE(X) = | (1) (X). (1.5)
el

Moreover:

(a) ¢ is increasing if and only if the restriction of v to C is increasing.

(b) e is idempotent if and only if (1y;)? = ~yzby. for every x € £.

(¢) e = if and only if v, 9y, = V¢ for every © € £.
In particular ¢ is an opening when 1) is an opening preserving connectivity in C, and ¥¢ = 1)
when 1) is an opening connected for C.
PROOF. Note first that for Y C X and « € £ we have 7,(Y) = 7, (Y N, (X)). Indeed, as v,
is an opening, 7,(Y) C Y and 7, (Y) C 7,(X), so that v,(Y) C Y N4,(X) CY; applying
v, to each term of the inequality, we get

'YI(Y) = ’7171(}/) c 'YI(Y N 'YI(X)) - 'YE(Y)a
and the equality follows. For any X C £ we have (for Y = ¢¢(X)):

Yo (P (X)) = 7a (Yo (X) N 72(X)) = %((U wvz(X)) ﬁvz(X)>

ze€&

= ’795(U (w'YZ(X) N Vm(X))) = 'YI(w'YI(X) N Vm(X)) = %w%(X),

ze€&



because for every z € &, either v,(X) = 7,(X) or ¥7,(X) N7 (X) C 7.(X) Ny.(X) = 0.
This gives finally
U sz 1/10 U "/)7967/)796 )

el el
that is (1.5).

Let x € 1¢(X). For any z such that v, (X) # 7, (X), we have v, (X )Ny, (X) = 0, hence
x ¢ v.(X), and as ¢ is anti-extensive, x ¢ 1, (X). By (1.3), we have thus = € ¢v,(X), and
50 & € Y2y.(X). Therefore ¥e(X) C U, ce ¥2¥72(X), and as each +, is anti-extensive, we
obtain from (1.3) the equality (1.4).

For X € C, ¢¢(X) = ¥(X) and so for ¢¢ to be increasing, the restriction of ¢ to C
must be increasing. This condition is also sufficient, because for any X C £ and = € €&,
v:(X) € C, and for X <Y we have 7,4(X) < 7,(Y) and so ¢7,(X) < ¢7,(Y). Thus (a)
holds.

By (1.4) and (1.5), ¥2(X) = vc(X) is equivalent to

U 7/)'71 U Yo h¥z (X

ze€ el

Now (¥72)2(X) C 7217, (X) for each = € & (since v is anti-extensive); moreover for z, z € £
Yotbyz (X) M 21072(X) # 0 implies that 7, (X) N v:(X) # 0, so that 7,(X) = 7.(X) and
Yo0ye (X) = v,07.(X). Therefore the above equality holds if and only if (¢7,)*(X) =
Yy (X) for every € £. This gives (b). As seen previously, this condition is satisfied in
particular when 1 is an opening which preserves connectivity in C.

As P(X) = U, ce 12¥(X), we have 1(X) = ¢¢(X) if and only if

U 7m1/}(X) = U Vszz(X)

ze€ el

As Y7, (X) C (X)) for each z € £, and for z, 2z € £ we have v, (X) N,y (X) =0 or
Y2 (X) = 7.4(X), the above equality holds if and only if v, (X) = v,¥(X) for every
x € €. Thus we get (¢). From (1.1) this condition is verified in particular when ¢ is an
opening connected for C. il

We illustrate this result in the two-dimensional digital case with 4-connectivity, and ¢ defined
by
X if | X| > 12,
¥(X) = {aB(X) otLeleise,

where ap is the translation-invariant opening by a 4-connected structuring element B (again,
the 5-pixel cross). It is easily shown that 1 is an opening. Moreover, as ap is connected,
from (1.1) we can obtain (ap7.)? = Y.ap7. for every z € £, from which we derive (17, )? =
Y2 ¥yz. Thus ¢¢ is an opening. Note that v is not connected, does not preserve connectivity,
and is distinct from ¢¢c. We show in Figure 1.4 the behaviour of ¥¢ on a digital set. Large
connected components are preserved, small ones are diminished, and can even disappear.

Chapter 7 of [22] considers closings ¢ such that ¢v,¢ = v, for every x € £, which
means that for every invariant F of ¢, all connected components of F for C are also invariants
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FIGURE 1.4. The points of X which are deleted by ¢ are written o, those which are

preserved are written e.

of ¢ (this is the analogue for closings of the openings connected for C considered above). Now
©Ye® = Yap is equivalent to V.Y, = @Y., which means that ¢ preserves connectivity (for
X connected, ¢(X) is connected). A subclass of this family consists of all closings which do
not create connected components. An interesting fact proved there is that these two classes
of closings form complete lattices for the ordering by inclusion. Hence for any closing ¢
on P(E), there is a greatest closing . preserving connectivity (or not creating connected
components) such that ¢.(X) C ¢(X) for all X C £. For example from the convex hull
(obviously a closing) we derive the “connectivity preserving convex hull” or “convex hull
which does not create connected components”.

The author has considered with H. Heijmans the possibility of defining connectivity
classes on other object spaces than P(E), for example on the space of grey-level images on
€. In fact this is possible by translating conditions (¢) to (v) into any complete lattice £
where instead of points or singletons we have a sup-generating family, that is a subset ¢ of L
such that any element of £ is the supremum of a subset of ¢. This applies thus to grey-level
images by taking £ to be the set of impulse functions (see [6], Section 4.). However such
notions of connectivity are generally useless, since they consist mainly of statements of the
form “the umbra of the image is connected”.

1.2.  Annular openings

On p. 107 of [22] Serra defines a new class of translation-invariant openings on the complete
lattice P(€) of parts of a digital or Euclidean space £. He shows that for every non-
empty symmetric structuring element B (that is z € B implies —x € B), the operator
v :P(E) = P(€): X — XN (X & B) is an opening. Normally one takes B not containing
the origin o, otherwise yp reduces to the identity X — X; if B is a ring centered about o,
such an opening will remove isolated particles from a set (see Figure 5.2 on p. 108 of [22]).
This example leads to the denomination of annular opening for vp.

Such an opening can also be defined without translation-invariance. As in Proposi-
tion 1.2, consider a map W : € — P(£), and let dw be the dilation given by dw(A4) =
Uzea W(z). The symmetry condition on B generalizes to W as follows: for p,q € £ we
have p € W(q) < ¢ € W(p). Then the operator vy : P(£) = P(£) : X = X Ny (X)
is an opening. For any X C &, yw (X) is the union of all pairs {z,y} such that z,y € X
and y € W(x) (or equivalently « € W(y)). Usually one takes W such that « ¢ W (x) for all
xef.

In Section 3 of [19] this construction has been generalized to a wide class of complete
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lattices satisfying the following infinite supremum distributivity law:

YA\ X)) =\ ArX)). (ISD)
JjeJ JjeJ

This excludes in particular the complete lattice of convex sets (which is not distributive).

Let for example £ be the complete lattice of grey-level functions £ — G, where the
space € is either Z?% or IR?, and the set G of grey-levels is either Z = Z U {+00, —0o} or
R = R U {400, —0co}. Then the Minkowski addition F @ G of two grey-level functions F'
and G is defined by setting

(F & G)(x) = sup[F(z — h) + G(h)]
he&
for any =z € £, with the further convention, in cases of ambiguous expressions of the form
+00 — o0, that F(x — h) + G(h) = —oo when F(z — h) = —o0 or G(h) = —oo (see [6],
Section 4). For any grey-level structuring function G : £ — G, we define the support of G,
supp(@), as the set of points h € R? for which G(h) > —oc. Now assume that:
(7) supp(G) is symmetric;

(i1) G(h) + G(=h) > 0 for every h € supp(G).
Then the operator v¢ : L = L : F — FN(F @® Q) is an opening. In general one chooses G
such that supp(G) does not contain the the origin o, otherwise v reduces to the identity
F — F. When G is a flat structuring function (G(h) = 0 for h € supp(G)), the behaviour
of 7¢ is analogous to that of the corresponding annular opening vsupp(c) for sets.

In Section 5 of [5] this example has been extended to grey-level functions with a finite
set of grey-levels, say {0,..., N}.

1.3. Iteration of anti-extensive operators

We will see in Section 2 that a supremum of openings (on a given complete lattice £) is again
an opening. On the other hand an infimum of openings is generally not an opening: it is
anti-extensive, increasing, but usually not idempotent. In fact any anti-extensive increasing

operator can arise in this way:

PRropPOSITION 1.6. Every anti-extensive and increasing operator on a complete lattice L is

an infimum of openings on L.

PROOF. Let ¥ be anti-extensive and increasing. For any B € L define the operator 5 as
follows: BYAX X <B
i )
¥u(X) = {ﬁ( ! it X £ B.
We will show that each ¥p is an opening, and that 1 is the infimum of all ¥ 5.
It is clear that ¥p is anti-extensive. To verify that it is increasing, let X < Y if
X < B, then ¢p(X) =¢(B)AX <¢(B)AY <¢p(Y); on the other hand if X £ B, then
Y £ Band so ¥p(X) =X <Y =¢p(Y); therefore ¢5(X) < ¢p(Y) in any case. Next we
show that 1p is idempotent; if X < B, then ¢¥5(X) =¢(B) A X < X < B, and so

VE(X) = 9(B) Avp(X) = ¥(B) A (V(B) A X) = $(B) A X = ¢p(X);
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on the other hand if X £ B, then ¢5(X) = X and so ¢%(X) = X. Thus ¢%(X) = ¢¥p(X)
in any case, and 1p is an opening.

Now for any X € L, ¥(X) < ¢p(X); indeed, if X < B, then ¢/(X) < ¢(B) and
P(X) < X, so that ¥(X) < ¢(B) A X = ¢p(X); on the other hand if X £ B, then
P(X) < X =¢p(X). Moreover, we have ¥x(X) = (X)) A X = ¢(X). As P(X) < ¢p(X)
for each B € L, but ¢x(X) = ¢(X), we get (X) = Agc,¥p(X), that is ¥ = Agc,¥B. I

Note that this result does not extend to the case where T-invariance is required. As coun-
terexample, take £ = Z = 7Z U {+00, —oo}, ordered in the usual way, and T = Z acting by
translation; there are only two T-openings, the identity and constant —oo mappings, but
there are infinitely many anti-extensive and increasing T-operators between them, namely
all negative translations.

As an illustration of strange results that can be obtained by combining only two very
simple openings, Example 5.1 in Section 5 of [19] takes in the digital plane Z* a (2 x 2)-
square A and a 5-pixel cross B, and considers the two translation-invariant morphological
openings a4 and ag by A and B on the complete lattice ’P(ZQ). Then asap, agay, and
aaNapg are not openings. They share the same set of invariants, namely Inv(as) NInv(ap),
some elements of which are illustrated in Figure 5 (¢) there. Choosing an operator ¢ among
these three, and iterating it indefinitely: 1, 2,3, .., for n — oo the sequence of powers
1™ converges to an opening «, the greatest opening which is less than both a4 and ap.
Although the behaviour of a4 and ap is easily described in terms of translates of A and
B respectively, this is not the case for a: we were unable to characterize geometrically the
family of structuring elements in terms of which it can be decomposed (and in fact this
family is infinite).

In general terms, the problem considered in Section 5 of [19] is whether the infinite
iteration v, 92,13, ..., of an anti-extensive and increasing operator ¢ on a complete lattice
L, converges to an opening, even after an infinite number of steps. This convergence is
defined as follows. Clearly ... < ™ < ¢"~! < ... < ; thus ¢" is a decreasing sequence of
T-operators and we define its “limit” > by

v =\ v

n>1

Then ¥ is an increasing and anti-extensive operator. For ©¥)>° to be idempotent, it is
necessary and sufficient to have 1) - ¢°° = 1)°°. It is important to notice that this equality
does not necessarily hold. Two examples where ¥(¢>° (X)) # ¢¥°°(X) for some X € L can
be found: on p. 113 of [22] for £ = P(H), where H is a closed half-line in IR, and in [4] for
L = P(ZL); the latter is particularly instructive, since 1) takes the form X — (X @ A)N X
for some infinite subset A of 7Z.

There are then two possible orientations for obtaining an opening by iteration of .
The first one [10] is to admit higher powers of ¢ than than integers or infinity, using the
concept of ordinals from Zermelo-Fraenkel set theory. For any ordinal v, 9" is defined by
transfinite induction as follows: if v is a successor, that is v = p + 1 of another ordinal p,
then we set ¢¥ = 1 -*; otherwise v is a limit, and we set ¢¥* = /\0<#<U YH. As L is smaller
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than the class of ordinals, it is guaranteed that for some ordinal v we will have ¥” = ¥*#
for every ordinal g > v, and so ¥" is idempotent. This approach is useless for practical
applications, but has some theoretical interest.

The second orientation is to find sufficient conditions for having v - > = °°. This
problem is studied in [4] for sets in a digital or Euclidean space, and in Section 5 of [19]
for arbitrary complete lattices (see also [23]). In particular it is shown that this equality is
always verified for “local” operators on sets, whose behaviour at a point p depends on the
configuration of points in a finite neighbourhhod of p. This is the case for openings by a
finite structuring element that we considered in the example above. Possible applications of
this approach in digital geometry include the construction of an opening from a local median
filter [4], or the well-known computation of the distance transform of a set by iteration of
a local neighbourhood transform, which is in fact an erosion [19]. This question is further
developped in Section 7 of [5] for grey-level functions with a finite set of grey-levels. A
general theoretical study of this subject is in preparation [7].

1.4. Miscellany

We mentioned at the beginning the relation between openings and size distributions, follow-
ing Chapter 10 of [20]: for A > 0, the operator 1) extracting from a population the subset
consisting of all elements having size at least A must clearly be an opening. This concept can
be generalized to a situation where size is not quantified, but we speak of “large enough”
instead of “having size at least A”. We have only to specify the class B of elements which are
“large enough”, from which we require only that “larger than large enough is large enough”,
that is B € B and B < C implies C € B.

This idea is at the basis of the recently found class of “rank-max” and related openings
[15], which generalize the translation-invariant opening ap by a structuring element B in a
digital or Euclidean space: instead of taking the union of all translates of B contained in
a set X, we take the union of all subsets of X which consist of “large enough” portion of
a translate of B. This type of openings will be discussed in Section 3, where we will study
inf-overfilters.

Given a complete lattice £ with least element O and an increasing operator 1 on L,
we can define X to be “large enough” if ¢(X) # O; indeed ¥(X) # O and X <Y implies
P(Y) # O. We derive then the operator G[t] which preserves all “large enough” elements
of £ and removes all others:

(X i(X) £0;
GWX){O if (X) = O.

It is easily checked that this is an opening, and that it is invariant under the same auto-
morphisms of £ as ¢. When £ = P(£), we have already met such a type of opening in
Subsection 1.1 (before Proposition 1.5).

For grey-level functions € — G (where & is the space Z¢ or RY, and G is the set of
grey-levels Z = 7 U {+oc0, —oo} or R = IRU{+00, —o0}), we can also remove all grey-levels
which are below a given threshold g € G. This gives the threshold opening o, defined by
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setting for every function F' and point p € &:

_[F(p) ifF(p)>g;
ag(F)(p)—{_oZ ifF(Z)<g-

Openings and closings often intervene in computational geometry, particularly when
one studies convexity in relation to shape. In fact the convex hull operation, as well as
most of its variants (see [16]), is a translation-invariant closing. Sometimes morphological
operators are applied in this field without the authors being aware of it. For example in [2]
shape is discussed in relation to “a-hull” operators on Euclidean planar subsets, which are
defined as follows for any « € IR; given a set X C IR?, its a-hull is:

— for a = 0, its convex hull;
— for & > 0, the intersection of all closed disks of radius 1/« containing X;
— for a < 0, the intersection of all sets containing X which are complements of an open

disk of radius —1/a.

The authors derive from this construction some mathematical features related to the Delau-
nay triangulation of a finite cluster of points. See also [9] for an extension of this analysis. In
fact, the a-hull is a translation-invariant closing, and for « # 0 it is an example of structural
T-closing, a concept that we will introduce in Section 2.

The reader should consult Chapter 4 of [20] (and optionally Chapters 17 and 18 of [22])
for a detailed analysis of the role of convexity in Euclidean mathematical morphology. This
background can be fruitful when one studies the wide literature on convexity and shape (see
in particular [16], especially Section D).

Finally let us refer to the other chapters of this book (in particular [5]) for further
examples of openings.

2. ALGEBRAIC THEORY OF OPENINGS

Contemporary mathematical morphology studies the algebraic properties of image transfor-
mations in a very general framework: the object space (that is, the set of all pictures on
which some types of operations are defined) is any complete lattice. Only in certain circum-
stances do we need to make some assumptions on it (cfr. the Basic Assumption below) in
order to obtain more precise characterizations.

In Section 1 we have met several examples of complete lattices, in particular the set
P(E) of parts of a space &, ordered by inclusion. The basic concepts related to complete
lattices were introduced in Subsection 1.3 of [6]. The reader should be acquainted with it.
A more detailed exposition is to be found in Chapters 1 and 5 of [1]. Let us recall briefly
our notation.

We have a complete lattice £ with the order relation <, a supremum operation written
\/ or sup, an infimum operation written A or inf, both defined on any non-void subset of
L, and two universal bounds, the least element O and the greatest element I, defined by
I =sup £ and O = inf L. Note that the supremum and infimum operations are also defined
for the empty set:

0= \/(Z) and = /\(Z). (2.1)
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(Cfr. the convention setting an empty sum equal to zero and an empty product equal to
one). Other elements of £ are written by capital letters X,Y, Z, etc. We consider O = £*,
the set of all maps ¢ : £ — L, and elements of O are called operators; O is naturally ordered
by setting ¢ < & if and only if ¥(X) < {(X) for all X € £. Then O inherits the complete
lattice structure of £, with O : X — O and I : X — I as least and greatest elements
respectively, and the supremum and infimum operations given by setting for any X € £ and
any family ¢; (j € J) of operators:

(V)X =\ () and (A v)x) = A (@)

JjeJ Jje€J JjeJ Jj€J

The identity operator X +— X is written id. Other operators are written by lowercase greek
letters 3, v, etc., with the letters «, 6, €, ¢, T being reserved to openings, dilations, erosions,
closings, and “translations” (that is, automorphisms of £). The composition ¥ of the
operator 6 by the operator ¢ is defined by ¥0(X) = w(G(X)) for X € L. In particular, we
write 12 for ¢1), and more generally ¢™ for the composition of ¢ repeated n times (n > 0).

The range of an operator 1) is the set Ran(vy) of all ¢(X) for X € £; an invariant of v
is some X € L such that (X) = X; the domain of invariance of v is the set Inv(¢)) of all
invariants of ¢. Clearly Inv(¢)) C Ran(v); moreover we have the following characterization
of the idempotence of 1:

v? =9 <<= Ran(y) CInv(y) <= Ran(y) = Inv(z)). (2.2)

The operators in which we are interested are generally supposed to be invariant under
a certain group of automorphisms of the complete lattice £ (for example the group of
translations when L is the set of parts of a Euclidean space). We take thus any group T of
automorphisms of £. Given 7 € T and an operator ¢ € O, we will say that v commutes
with T, or that ¢ is T-invariant, if 1»7 = 7. Moreover, we will say that ¢ is T-invariant if v
commutes with every 7 € T. We will use the prefix “T-” for “T-invariant”. We will speak
thus of T-operators, T-dilations, T-erosions, T-openings, T-closings, etc. (see Section 3 of
[6]). Note that when the operator ¢ is not T-invariant, the least T-operator > 1 and the
greatest T-operator < 1) are

ot and ot
\/ v AL

T7€T 7T

respectively. We recall Proposition 3.1 of [6]: the set of T-operators is closed under the
operations of composition, supremum, infimum, and it contains id, O, I. When T-invariance
is not necessary, we can take T = {id}, and then a result concerning T-operators for
an arbitrary T can be particularized into a similar one for operators without translation-
invariance.

Given a subset B of £ and 7 € T, let 7(B) = {7(X) | X € B}. We will say that B
is T-invariant if for every 7 € T, B = 7(B). As T is a group, it is sufficient to show that
7(B) C B for any 7 € T, because we have then 77'(B) C B and so B = 7(77*(B)) C 7(B).
If B is not T-invariant, then the T-invariant set generated by B is BT = J, .p 7(B). We
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say that a subset B of L is sup-closed if supC € B for any C C B (in particular O € B by
(2.1)); an inf-closed subset of L is defined similarly. By Proposition 1.1 of [6], a sup-closed
subset B of L is itself a complete lattice, with universal bounds O and sup B, the same
supremum operation as in £, but an infimum operation infz not necessarily equal to the
one in L: for K C £, infp(K) is equal to the greatest element of B which is a lower bound of
K. We write Bgsyp and Biys for the sup-closed and inf-closed subsets generated by B. They
consist of all suprema \/H and infima A H respectively of subsets H of B. Note that the
sup-closed subset of £ generated by a T-invariant set is itself a T-invariant set; when B is
not a T-invariant set, the sup-closed T-invariant set generated by B is BE,, = (BT )sup. The
same is true for inf-closed sets.

2.1. Adjunctions, dilations, and erosions

One of the main contributions of [6] is the thorough study of adjunctions as a general
principle for pairing dilations and erosions.

We recall from [22], Chapter 1, and [6], Subsection 2.1, that a dilation and an erosion
are operators commuting with the supremum and infimum operations respectively, in other

words ¢ is a dilation if

s(\/ X5 =\ a(x;)

jeJ jeJ
and ¢ is an erosion if
(N X)) = \eX))
jeJ jeJ

for any subset {X; | j € J} of L. In particular by (2.1) we have §(O) = O and () = I. This
definition includes as special case the well-known translation-invariant dilation X — X & B
and erosion X — X © B of a set X by a structuring element B in a Euclidean or digital
space.

Note that any dilation or erosion is an increasing operator, and that any automorphism
of £ is both a dilation and an erosion.

Although idempotence, extensivity, and anti-extensivity have a meaning only for op-
erators mapping an object space L into itself, this is not the case for increasing operators,
dilations, and erosions. They can be defined also as operators £1 — Lo, where £ and Lo
are two complete lattices. This is not a futile abstraction. Operators between distinct object
spaces have been considered in the following situations:

— Distance transforms: given a digital space £, the distance transform is a map P(&) —
Fun(&), where Fun(€) is the set of grey-level functions & — Z; it involves a dilation
or an erosion, according to the convention used to express the transform. See [25] and
Subsection 5.3 of [19].

— Decomposition of morphological operations on power lattices: see Subsection 2.4 of [6],
where several practical examples are given.

— Transformation of dilations and erosions for grey-level functions € — G, where G = 7Z
or IR, into similar ones for grey-level functions & — G , where G is a bounded closed
subset of G: see [18], Section 4.
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— Sampling and reconstruction: given the set G = Z or IR of grey-levels, a space £ and
a subspace D C &, the two object spaces Fun(€) and Fun(D) of grey-level functions
£ — G and D — G respectively can be linked by two maps, namely a sampling
o : Fun(€) — Fun(D) and a reconstruction p : Fun(D) — Fun(€). H. Heijmans and
A. Toet [8] considered such operators in the case where £ is a digital space and D
a subspace with coarser resolution, and proposed to take a dilation for o, and the
adjoint erosion for p. This principle is also valid when £ = R? and D = Z¢, in the
context of digitization. Moreover it can be applied to the sampling and reconstruction
of sets, with o : P(£) — P(D) and p : P(D) — P(E) (cfr. the well-known square box
quantization of sets).

Now given two operators n : L3 — £1 and ¢ : £1 — Lo, we call the pair (n, ) an adjunction
between Lo and Lq if and only if for any X € £; and Y € L5 we have

(X)<Y = X <n). (2.3)

When ¢ and 7 are both £ — L, we say that (n, () is an adjunction on £. Adjunctions on £
were considered by Serra in Chapter 1 of [22] under the name of “morphological duality”.
However this concept is much older than mathematical morphology; it is linked to the
classical mathematical notion of Galois connection (see [6], Subsection 2.3), and to category
theory [3].

Examples of adjunctions include: the erosion and dilation by a structuring element
B for Euclidean or digital sets, the reconstruction and sampling mappings of [8] that we
mentioned above.

Adjunctions between distinct complete lattices are very interesting from a theoretical
point of view. For example they are used by Roerdink [14] in order to define Minkowski
operations @ and © in the case of a space with a non-abelian group of symmetries in place
of translations. In [5] an adjunction between grey-level functions and sets is defined from
thresholding (see the equations (4.2) and (4.5) there), and it is used to extend set operators
to “flat” operators on grey-level images. A further application of this general framework
will be given in the next subsection for the structural characterization of openings. We will
thus consider two or even three complete lattices, which may or may not be distinct, and
adjunctions between them.

A detailed study of adjunctions is made in Subsections 2.3 and 3.1 of [6], and Subsec-
tion 2.2 of [19]. We will summarize these results here. First, adjunctions are restricted to

dilations and erosions with the same invariant automorphisms:

LEMMA 2.1. Given an adjunction (n,() between two complete lattices Lo and L1 and a
group T of automorphisms of both £y and L,

(i) ¢ is a dilation and 7 is an erosion;

(#4) ¢ is T-invariant if and only if n is T-invariant.
(Note that when T acts as a group of automorphisms of both £; and L5 it is meaningful to
speak of T-invariance for operators £; — L2 and L5 — £4.) For a proof, see Propositions 2.5
and 3.2 of [6]. An adjunction (), () where ¢ and n are T-invariant is called a T-adjunction.
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Now let § be a T-dilation £1 — La. If (,6) is a T-adjunction for some T-erosion
€: Lo — L1, then for any Y € Lo, e(Y) is by definition the greatest Z € £; such that
Z <e(Y). Now by (2.3) Z <e(Y) < 0(Z) <Y, so that:

For every Y € Lo, ¢(Y) is the greatest Z € £ such that §(Z) <Y. (2.4)
But the greatest element of a set is its supremum, and hence (2.4) implies:
Forevery Y €Ly, e(Y)=\/{ZeL1]6(2)<Y}. (2.5)

Finally if (2.5) holds, it is easy to show (see in [6] the proofs of Proposition 2.6 and point (%)
of Theorem 2.7), using the fact that 6 commutes with supremum, that (g, d) is an adjunction,
and so ¢ is a T-erosion. Therefore the three statements: (e,d) is a T-adjunction, (2.4), and
(2.5), are equivalent. Similarly, given a T-erosion ¢ : Lo — L1, the fact that (e,d) is a
T-adjunction is equivalent to each of the following two statements:

For every X € Ly, §(X) is the least Z € L5 such that X < e(Z). (2.6)

Forevery X €Ly, 0(X)=/N\{ZecLy|X <e(2)}. (2.7)
We conclude:

PROPOSITION 2.2. Given a group T of automorphisms of two complete lattices £, and
Lo, the set of T-adjunctions between Lo and Ly constitutes a bijection between the set of
T-dilations £, — Lo and the set of T-erosions Lo — L1; in other words:
(i) Given a T-dilation § : L1 — Lo, there is a unique T-erosion ¢ : Lo — L1 such that
(,0) is an adjunction; € is defined by (2.4) or equivalently (2.5).
(i¢) Given a T-erosion € : Lo — L4, there is a unique T-dilation § : L1 — Lo such that
(,0) is an adjunction; ¢ is defined by (2.6) or equivalently (2.7).

In an adjunction (g,4), we say that ¢ is the upper adjoint of §, while § is the lower adjoint
of &; accordingly we write e = § and § = & in order to mean (2.5) and (2.7). The following
result is easily proved from (2.3):

LEMMA 2.3. Given a group T of automorphisms of three complete lattices L1, Lo, and L3:
(i) If (g5, 0;) is a T-adjunction between Lo and Ly for every j € J, then (N c;€5, Ve s ;)
is a T-adjunction between Lo and L.
(#3) Given two T-adjunctions (e,d) between Lo and L; and (¢',8’) between L3 and L,
then (g€, §'0) is a T-adjunction between L3 and L;.
Following [1], one calls a dual isomorphism between two lattices a bijection 8 which reverses
the partial order relation: X <Y <« 0(X) > 6(Y). A bijection which transforms

suprema into infima is a dual isomorphism, because we have then:
X<Y &Y=XVY ©0Y)=0XVY) & 0Y)=0X)N0(Y) & 0(X) >0(Y).
From Proposition 2.2 and Lemma 2.3 we derive then the following immediate consequence:
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COROLLARY 2.4. Given a group T of automorphisms of three complete lattices L1, L2, and
L3:

(i) The set of T-dilations L1 — Lo is sup-closed, the set of T-erosions Lo — Ly is inf-
closed; both are thus complete lattices. The set of T-adjunctions between Lo and L4
is a dual isomorphism between these two complete lattices.

(i4) The composition of two T-dilations £1 — Lo and Lo — L3 is a T-dilation £1 — L3,
and the same holds for T-erosions. T-adjunctions induce an anti-automorphism for
the law of composition, in other words for three dilations ¢, 91,02 we have 6 = §109 if
and only if§ = 5251.

In particular when we restrict ourselves to one complete lattice £, the set of T-dilations (or
T-erosions) is a monoid, in the sense that it is closed under composition and contains the
identity id. We end with the following result coming from the Propositions 2.8 of [6] and

[19], except the third point, whose proof is left to the reader:

PROPOSITION 2.5. Given a group T of automorphisms of two complete lattices £1 and La,

and a T-adjunction (e,d) between Lo and L1,

(i) ded =0, ede = ¢, d¢ is a T-opening on Lo, and b is a T-closing on L.

(79) Inv(de) = Ran(de) = Ran(d) and Inv(¢d) = Ran(ed) = Ran(e).

(731) Ran(0) is sup-closed, Ran(e) is inf-closed, and both are T-invariant; they are isomor-
phic complete lattices, where D € Ran(d) and E € Ran(e) correspond under this
isomorphism by the equivalent relations E = ¢(D) and D = §(E).

We can use (2.5) and (2.7) in order to describe the behaviour of de and 5. Applying § to

both sides of (2.5), the fact that § commutes with the supremum operation gives for any

Y € Lo:

0e(Y)=\/{6(2)| Z € Ly, 6(Z) <Y} (2.8)
On the other hand (2.7) with X = e(Y") gives:
5e(V)= \{Z € L2 ] e(Y) <e(2)}. (2.9)
Similarly for any X € £; we obtain:
e8(X)=N\{e(2)| Z € L2, X <e(2)}; (2.10)
=\{ZeL1]62) <sX)}. (2.11)

If we use (2.4) and (2.6) instead of (2.5) and (2.7), then in the above four equations we may
replace \/ by “the greatest element of” and A by “the least element of”.

2.2.  Structural characterization of openings

Now we stay within a single complete lattice £ with a group T of automorphisms. Let us call
a contraction an increasing and anti-extensive operator. Thus an opening is an idempotent
contraction. Write CT for the set of T-contractions. We will exhibit an adjunction between
CT and P(L) which induces an isomorphism between the set of T-openings and the set of
sup-closed T-invariant subsets of L.

We first exhibit the structure of CT as complete lattice and monoid. The following
result is easily proved (part of it comes from Propositions 2.2 and 3.1 of [6]):
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LEMMA 2.6. C7T is closed under composition, arbitrary suprema, and non-empty infima,
and its has O and id as least and greatest element.

Thus CT is a complete lattice, with the same supremum and infimum operations as in the
set O of operators, except that the empty infimum is id in CT and I in O (cfr. (2.1)).

Now let us see how the partial order on CT is translated into the domain of invariance
of its elements. Given 1,v’ € CT, ) <’ implies Inv(z)) C Inv(¢)); indeed, for X € Inv(z))
we have X = ¢(X) < ¢/(X) < X and so X € Inv(¢'). For ¢1,...,%, € CT (n > 1) we have

Inv(e)r -+ n) = Inv(epr) N - - N Inv(ehy). (2.12)

Indeed, as 1 -9, < ¢, for j =1,...,n, we get Inv(¢1 --- ¢,) C Inv(¢p;); on the other
hand it is trivial that for X € Inv(y1) N---NInv(,) we have ¢ - -, (X) = X. A similar
argument shows that for a non-empty family v; (j € J) of T-contractions,

Inv(/\ wj) = () Inv(ey) (J #0). (2.13)

jed jeJ

Now let P(L) be the complete lattice of parts of £, ordered by inclusion. We obtain the
following:

PROPOSITION 2.7. The map CT — P(L) : 1 +— Inv(1)) is an erosion. It has a lower adjoint
dilation P(L) — CT : B — AT(B) defined as follows: for any B C L, AT(B) is the least
T-contraction £ such that B C Inv(¢). Conversely, for any T-contraction ), Inv(v) is the
greatest X C L such that AT(X) <.

PROOF. By (2.13) the map ¥ — Inv(¢)) commutes with non-empty infima. As the empty
infimum is id in CT and £ in P(L), since we have Inv(id) = £, that map commutes also
with the empty infimum, and it is an erosion. Given the lower adjoint dilation B+ AT(B),
applying (2.6) and (2.4) to them gives the expression of AT(B) and Inv(¢) respectively. i

Following [22], in Subsection 2.2 of [19] we called AT (B) the least T-extension of the identity
on B, which means that it is the least increasing T-operator having B in its domain of
invariance. As the map B — AT (B) is a dilation P(£) — CT, for any family B; (j € J) of
subsets of £ (even an empty one) we have

AT(U Bj) =\/ AT(B)). (2.14)

jeJ jeJ
The following result describes AT (B) in more detail:

ProrosiTION 2.8. Given B C L,
(i) AT(B) is a T-opening.
(ii) For any X € £, AT(B)(X) = \V{B € BT | B < X}, and AT(B)(X) is the greatest
Y € BY  such that Y < X.

sup

(iii) Inv(AT(B)) = BE

sup*
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PROOF. By definition, AT (B) is the least & € CT such that B C Inv(¢); but then B C Inv(£2)
and ¢2 < ¢, from which we deduce ¢2 = ¢, that is AT (B) is idempotent, and (i) holds.

Let ¢ be defined by ¢(X) = \/{B € BT | B < X}. Obviously ¢(X) € BY,, and
Y(X) < X. Given A € B, with A < X, then either A = O < ¢(X), or A = sup X for
some non-empty X C BT, and for each B € X we have B < A < X, so that X enters in
the decomposition of ¢)(X) and A < ¢(X). Thus ¢(X) is the greatest Y € BE, such that
Y < X. It is then easy to show that 1 is a T-contraction and Inv(¢)) = BSTup.

Let £ be a T-contraction such that B C Inv(£). The T-invariance of £ implies that
BT C Inv(¢). For every B € BT such that B < X, we have B = £(B) < £(X), and so
Y(X) < &(X) by definition of ¢. Thus 1 is the least T-contraction having B in its domain
of invariance, and so ¢ = AT(B) and Inv(AT(B)) = Inv(y)) = B,

aup- Hence (i7) and (i74)
hold.
The next result is Proposition 2.3 of [19]:

PRrROPOSITION 2.9. Let o be an opening and v a contraction. Then the following four

statements are equivalent:

(1) a <.
(i) ar) = .
(1i1) Ya = a.

(iv) Inv(a) C Inv(e)).
Consider for example size distributions: for each A > 0, there is an opening «) extracting
from a population the subset consisting of all elements of size at least A; then for A > p > 0
we have obviously a) < o, and ooy, = a0 = an.

Now the above results allow us to formulate the structural characterization of T-
openings in terms of sup-closed T-invariant subsets of L:

THEOREM 2.10.
(i) For any T-contraction v, 1 is a T-opening if and only if 1p = AT(B) for some subset
Bof L.
(i) The set of T-openings is sup-closed, with universal bounds O and id.
(iii) For any T-contraction v, AT (Inv(v)) is the greatest T-opening < 1.
(tv) For any subset B of L, B is sup-closed and T-invariant if and only B = Inv(v) for some
T-contraction .
(v) The set of sup-closed T-invariant subsets of L is closed under intersection, with uni-
versal bounds () and L.
(vi) For any subset B of £, Inv(AT(B)) = BT

sups the least sup-closed T-invariant subset of

L containing B.

(vii) The set of T-openings, ordered by <, and the set of sup-closed T-invariant subsets of
L, ordered by inclusion, are isomorphic complete lattices. A T-opening « and a sup-
closed T-invariant set B correspond under this isomorphism by the equivalent relations
B =Inv(a) and a = AT(B).

PRrROOF. We will use freely Proposition 2.5 with 6 : P(£) — CT : B~ AT(B) and ¢ : CT —

P(L) : v Inv(e).
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(i): By Proposition 2.8 (i), AT(B) is a T-opening. Conversely, given a T-opening «,
AT (Inv(a)) is by definition the least T-contraction ¢ such that Inv(a) C Inv(€) (see Propo-
sition 2.7). Now by Proposition 2.9, Inv(a) C Inv(§) is equivalent to o < &, and so this least
¢ must be «, that is a = AT (Inv(a)).

(73): By () the range of 0 is the set of T-openings, and Ran(d) is sup-closed. See also (2.14).
(iii): AT(Inv(¢))) is a T-opening (see (7)), and as d¢ is anti-extensive, AT (Inv(¢))) < 9.
Given any other T-opening a < 1, by Proposition 2.9 we have Inv(e) C Inv(¢); now
as ede = ¢, we have Inv(AT(Inv(¢)))) = Inv(y), so that Inv(a) C Inv(AT(Inv(v))); by
Proposition 2.9 this gives a < AT(Inv(¢))). Thus AT (Inv(z)) is the greatest such a.

(tv): Given a T-contraction 9 and B = Inv(%)), by Proposition 2.8 (iii) and the fact that
e = & we obtain BY ) = Inv(AT(B)) = Inv(AT(Inv(¢)))) = Inv(¢)) = B, that is B is sup-
closed and T-invariant. Conversely if B is sup-closed and T-invariant, Proposition 2.8 (ii%)
again gives B = BY, = Inv(AT(B)).

(v): By (iv) the range of ¢ is the set of sup-closed T-invariant subsets of £, and Ran(e) is
inf-closed. See also (2.13).

(vi) follows from Proposition 2.8 (iii), given the obvious fact that BL,

sup 18 the least sup-closed
T-invariant subset of £ containing B.

(vii): We have shown that Ran(d) is the set of T-openings, while Ran(e) is the set of sup-
closed T-invariant subsets of £. Both complete lattice are isomorphic, the isomorphism

being given by the restriction of ¢ to Ran(e) or conversely the restriction of € to Ran(d). il

Given B € L, let us write AT for AT({B}); we call it the structural T-opening by B, and
for each X € £ we have

ARX)=\/{r(B)|T €T, 7(B) < X}.

Clearly AT = AE( B) for every 7 € T. For example in the case where £ = P(€) for a digital
or Euclidean space £ and T is the group of translations of £, for B C £ the structural
T-opening AT by B is equal to §pep, the composition of the erosion and dilation by B.

we have a = AT(B)
by the above theorem, and (2.14) gives AT(B) = suppcz AE. Thus every T-opening is a

Given a T-opening « and any B C L such that Inv(a) = BST]‘JP,
supremum of structural T-openings, something which is well-known in the case of P(£) with
translations.

There are two remarks to be made now. First, the results given here can be obtained
in a more “down-to-earth” way, without recourse to the adjunction between CT and P(L);
this is indeed the approach followed in [19], Section 2; however the abstract proofs given
here are much shorter.

Second, the above theory can be translated to closings by duality, interverting dual
notions such as supremum and infimum, dilation and erosion, etc. Call an expansion an
increasing and extensive operator. The map 1 — Inv(¢)) is a dilation from the complete
lattice of T-expansions to (P(L),2), the dual of (P(L),C); alternately, it is an erosion
from the dual of the complete lattice of T-expansions to (P(£), C). Its adjoint B — FT(B)
associates to each B C L the greatest T-extension of identity on B, that is the greates T-
expansion having B in its domain of invariance. Under this adjunction, T-closings correspond
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by dual isomorphism to inf-closed T-invariant subsets of £. We define also FL = FT({B}),
the structural T-closing by B, and then every T-closing is an infimum of structural T-
closings.

2.3. Basic Assumption and duality under inversion

In the case of sets or grey-level functions on a Euclidean or digital space with translation-
invariance, a structural T-opening or T-closing can be obtained by the composition of a
T-dilation and its adjoint T-erosion. We will give here the conditions which guarantee this
property; they are of course satisfied in the above two cases.

Given ¢ C L, we say that ¢ is sup-generating if every X € L is the supremum of a
subset of £. Elements in ¢ will be written as lower-case letters x, vy, z, etc. For X € L we
define £(X) = {z € £ | x < X}. The fact that ¢ is sup-generating means that X = \/ (X).
In Subsection 3.2 of [6] we introduced the following:

Basic AssuMpTION. T is commutative and £ has a sup-generating subset £ such that:
(i) ¢ is T-invariant, in other words for every 7 € T and x € ¢, T7(x) € {;
(i¢) T is transitive on ¢, in other words for every x,y € £, there exists 7 € T such that
T(z) =y.

As explained in Subsection 3.2 of [6], the Basic Assumption implies that T acts regularly
on /£, in other words that for every z,y € ¢, there is a unique 7 € T such that 7(z) = y.
Let o be some fixed element of ¢ which we call the origin. For every x € ¢ there is a unique
Tz € T such that 7,(0o) = x. This bijection between ¢ and T allows us to endow ¢ with
the commutative group structure of T. For z,y € ¢ we define z +y = 7y(x) = 7(y),
—x =7,1(0), and x — y = x + (—y). This makes ¢ an additive group isomorphic to T. For
X € L and h € ¢, we define X}, = 7,(X). Then in Subsection 3.2 of [6] we proved that every
T-adjunction on L is of the form (£4,04) for some A € L, where

AX)=XpA= \/ X,,
a€cl(A)

eaX)=Xo0A= /\ X_,.
a€cl(A)

Note that for a € ¢, §, = 7, and ¢, = 7, . Moreover, the map A + 64 is an isomor-
phism between £ and the complete lattice of T-dilations, while the map A +— €4 is a dual
isomorphism between £ and the complete lattice of T-erosions, that is

B<(C <+« I{p<iéc <— e >ec

for any B,C € L. This implies in particular that for A; € £ (j € J),

5supj6, Aj = \/ 514] a‘nd Einfjej A]‘ = /\ EA]"
JjeJ JjeJ

More properties of T-adjunctions under the Basic Assumption are given in [6], Subsec-
tion 3.2. In particular we obtained Matheron’s theorem, which states that an increasing
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T-operator is a supremum of T-erosions. Then in Subsection 2.3 of [19] we proved that
under the Basic Assumption:

(1) Given a T-opening « and a T-dilation §, Inv(c) is invariant under ¢, in other words

ada = da.

(ii) For any B € L, AT = §pep.
The Basic Assumption is obviously satisfied in the case of sets or grey-level functions (see [6],
Section 4). This shows that the opening by a structuring element (a structural T-opening)
can be obtained as the composition of the erosion and dilation by that element.

But what about the closing by that structuring element? The Basic Assumption is not
sufficient for this purpose. We will see two examples of a structural T-closing which cannot
be obtained from a T-adjunction.

Let £ be a complete lattice and ¢ a T-closing for which there is some X € Inv(yp) with
X # I, such that for every A € L, §4 > ¢ implies d4(X) = I. Then ¢ is not an infimum
(either empty or non-empty) of T-dilations, because this would give o(X) = I. Thus the
dual version of Matheron’s theorem does not hold. It follows moreover that ¢ is not an
infimum of T-closings of the form €404, because each €404 is an infimum of T-dilations:

EA(SA: /\ T_a(SAZ /\ (5,47@.

a€l(A) a€l(A)
In fact this situation arises in the following two cases:

(a) L is the complete lattice of all topologically closed subsets of ]Rd, and ¢ = FE, where
B is a closed set whose complement is bounded but non-empty.

(b) L is the complete lattice of all convex subsets of IRd, and ¢ = FL, where B is a convex
set such that there exists a bounded convex set C' with B & C = () (B contains no
translate of C); for example B can be a segment or a half-line (it contains no translate
of a disk).

Thus structural T-closings do generally not coincide with closings arising from T-adjunctions
on L. For this we need the dual of the Basic Assumption. In practice, it will be easier
to obtain it from an operation similar to the complementation for sets, or the grey-level
inversion for grey-level function, which turns the complete lattice upside down.

Let us call an inversion an operator # on £ such that: §2 = id and 0 is decreasing, that
is X <Y = 0(X)>0(Y) forall X,Y € L. As 6% = id, 6 is a bijection and we have in
fact X <Y <= 60(X) > 0(Y), in other words an inversion is a dual automorphism of L.

An inversion 6 transforms an operator v into 68, the dual by 6 of v. For example
in the case of sets, the complementation 6 : X — X¢ gives 08 : X — (X¢)¢, the dual
by complementation of 1. Now for an inversion 6 on L, the map ¢ — 00 is itself an
inversion of the complete lattice O of operators, which preserves the law of composition,
interverts openings and closings, dilations and erosions, and reverses adjunctions in the
sense that for an adjunction (g,d) on L, (660, 00) is again an adjunction. Moreover if we
put §(B) = {0(B) | B € B} for B C L, we get for any v € O: Inv(0yf) = 6(Inv(y))) and
Ran(0v0) = 6(Ran(v))).

If we set 0T0 = {070 | 7 € T}, then the fact that > = id implies the equivalence
between T = 6T6, T C T60, and T DO 0TH. We say then that 0 preserves T. When the
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inversion 6 preserves T, then an operator ¢ is T-invariant if and only if 60 is T-invariant;
moreover for any B C £, we will have 0AT(B)§ = FT(0(B)).
Let us see what happen when L satisfies the Basic Assumption and has an inversion
6 which preserves T. Given B € L, we have first §ATo = FeT(B)- Second, as (ep,dp) is
a T-adjunction, (0dp0,0cp0) is also a T-adjunction, and there is some B € £ such that
060 = €5 and fepgl = 55. Third, we have A}g = dpep. Combining these three facts, we
get
F;F(B) =0ATH = 05geph = E505. (2.15)

Thus every structural T-closing arises from a T-adjunction on L.

Let us examine in more detail the map B +— B. As 02 = id, we have B = B, and so
this map is a bijection; now for B,C € L we have

~ = ESC,

B<C < 6 <dc < 060 > 06c0 = eg=eg

and it is thus an automorphism of the complete lattice £. In particular B = SUPpe g B)E.
Moreover, for any b € ¢ we have

01,0 = 06,0 = & = 7‘{1. (2.16)

For example in the case of subsets of a digital or Euclidean space £, the complemen-
tation is an inversion which commutes with any automorphism of P(£), in particular with

translations. Here (2.16) gives 7, = Tz_ ! for any point b, so that b = —b and we get thus

B = {—b | b € B}. Note that since B — B is an automorphism and complementation
commutes with automorphisms, we have (B)¢ = B¢ and we write it B°. Now (2.15) gives
FT = £5.05.. In the literature B = {=b | b € B} is usually written B. See also [6],
Subsection 4.1, and [19], Subsection 2.4 for more details on this particular case.

In the case of grey-level functions on &, ¢ consists of all impulse functions f;,, having
value v at point h and —oo elsewhere, while 6 is given by 0(F)(x) = —F (z) for any grey-level
function F (grey-level inversion). It is easily seen that 07, ,60 = 75—, and so (2.16) gives
]"’V;w = f_p; hence F is given by F(z) = F(—x) (inversion in the spatial domain). Here we
have also 0(F) = Hf(ﬁ) For more details on this complete lattice, see also [6], Subsection 4.4.

2.4. The case without translation-invariance, and some generalizations

We said at the beginning of this section that all our general results concerning T-operators
can be applied to the case where T-invariance is not required, by simply taking T = {id};
indeed, any operator is invariant under id. This is essentially the point of view adopted by
Serra and his followers in [22] and other works.

For T = {id} the operators AT(B), FT(B), AT, and F% are written A(B), F(B),
Ap, and Fp. Tt is easily seen from Proposition 2.8 that AT(B) = A(BT) and similarly
FT(B) = F(BT). In particular if B is T-invariant (which is for example the case when
B = Inv() or B = Ran(¢) for a T-operator ¢), then AT(B) = A(B) and FT(B) = F(B).

There are some additional results which hold in this special case. We have already
seen Proposition 1.6, which states that any contraction is an infimum of openings, and we
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gave a counterexample to this result when T-invariance is needed by taking £ = Z =
Z U {400, —oc0} and T = Z; note that here £ satisfies the Basic Assumption and has an
inversion preserving T. There is also Matheron’s theorem, whose expression by Serra on
complete lattices is as follows (see [6], Theorem 2.4, and [22], Theorem 1.2):

An operator 1 is a non-empty supremum of erosions if and only if 1) is increasing and

¥(I) = I. Dually, ¢ is a non-empty infimum of dilations if and only if v is increasing

and ¥ (0) = O.

The corresponding statements for T-operators require respectively the Basic Assumption
and its dual (cfr. the two counterexamples we mentioned with the family of closed sets and
the one of convex sets).

There is a third property peculiar to the case T = {id} (see [19], Proposition 2.9).
Given an adjunction (¢,6) on L, we call the opening de a morphological opening, and the
closing 6 a morphological closing. Then:

A structural opening Ap is a morphological opening; every opening is a supremum

of morphological openings. Dually, a structural closing F g is a morphological closing;

every closing is an infimum of morphological closings.
Again the corresponding statements for T-operators require respectively the Basic Assump-
tion and its dual (cfr. the same two counterexamples). This contradicts the suggestion made
in [24], Theorem 2.4 p. 24, that they are generally valid under translation-invariance.

This distinction explains our choice of structural T-openings (resp. T-closings), rather
than morphological ones, as the basic blocks for the decomposition of T-openings (resp. T-
closings). Note however that if we do not restrict adjunctions to £, but take them between
two complete lattices, then every T-opening becomes trivially “morphological”:

PROPOSITION 2.11. Given a T-opening «, there is a T-adjunction (g,0) between L and
Inv(e) such that a = de.

(This result is proved in Proposition 3.10 of Chapter 0 of [3] in the case without T-
invariance). Indeed, Inv(«) is a T-invariant complete lattice, and we have only to take
d:Inv(e) > L: X — Xande: L = Inv(a) : Y — a(Y); both § and e are T-invariant and
for X € Inv(e) and Y € L we have §(X) =X <Y «— X < oY) =¢(Y).

3. INF-OVERFILTERS

Despite their forbidding name, inf-overfilters are very useful in practice, because they allow
the construction of new types of openings. Indeed, although any opening can be decomposed
as a supremum of structural openings, this is not always the most economical way to define
a new opening. For example in Subsection 1.2 we defined from a symmetric structuring
element B in a space £ with translation group T, the annular T-opening id Adp; its minimal
decomposition in terms of structural T-openings would be \/,_ 5 A'{rm b} which is clearly more
complicated than id A §p. Here we will again consider openings of the form id A n for an
increasing operator 77; now 7 will not be a dilation, but an inf-overfilter: the terminology
stems from Matheron (see [22], Chapter 6). It will generally have a decomposition as an
infimum of suprema of terms of the form de, where § is a T-dilation, € a T-erosion, and
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d > € (or equivalently ¢ > 5) Again, this decomposition will generally be easier than the
one as a supremum of structural T-openings.

In Section 6.3 of [22] Matheron made the following definition: An inf-overfilter is an
increasing operator n such that n(id A n) = n. Dually, a sup-underfilter is an increasing
operator ¢ such that ¢(id V () = ¢. By duality, we can restrict our analysis to inf-overfilters
and openings, the corresponding results for sup-underfilters and closings following immedi-
ately. Note that for an increasing operator 1 we always have n(id A n) < nid = n; hence 7
will be an inf-overfilter if n(id An) > n. We call a T-inf-overfilter a T-invariant inf-overfilter.
When T-invariance is not necessary, one can set T = {id} and drop the prefix “T-”.

The following elementary result (see [19], Proposition 4.1) highlights the meaning of
the concept of an inf-overfilter:

PROPOSITION 3.1. Given an inf-overfilter 1, then n < n? and id A 7 is an opening.

An operator v such that 92 > 1 is called by Matheron an overfilter, and this explains
the origin of the term “inf-overfilter”. Any opening is an inf-overfilter as it corresponds to
the particular case where n = id A 7. An inf-overfilter can be interpreted as an increasing
operator 7 applying to X € £ an opening id A 1, but adding to it something more (the
difference between n(X) and (id A n)(X)), which does not depend on X, but only on the
result (id A n)(X) of that opening.

Inf-overfilters were studied from a purely algebraic point of view by Matheron in Chap-
ter 6 of [22], especially in Sections 6.3 and 6.4. Independently of this work, we introduced the
so-called “rank-max” openings on sets or grey-level functions (see [15]) as a generalization of
the opening by a structuring element A. Given a rank filter p¥ associated to a rank k and a
structuring element A, and the dilation §4 by A (in other words the max filter associated to
the reflected structuring element A), the operator id A d4p% is an opening; more generally,
given a family C7 (j € J) of subsets of A, the operator

a=idAda(\/ ecy) (3.1)
jedJ
mapping a set X onto
a(X):Xﬂ((U(X@C’j))@A), (3.2)
jed
is an opening. As explained in Subsection 4.2 of [19], this opening can be interpreted as
follows: it transforms a binary image X into the supremum of all portions of it which
consist of a “sufficiently large” subset of a translate of A; the subsets C7 of A are precisely
the minimal ones which can be considered as “sufficiently large”. When the family of C’
reduces to A, the opening « reduces to the usual T-opening dae4 by A.

Serra pointed out that the operator 6a(V;c;eci) = Vjey0accs is an infoverfilter,

j€J
linking thus this abstract concept to practical considerations? This remark was expanded
in Section 9.9 of [22], where a characterization of inf-overfilters was given. Further results
were obtained in Section 4 of [19], with the assumption of T-invariance.

The purpose of this section is to deepen this study. In Subsection 3.1 we recall some

of elementary results from [22] and [19]. Subsection 3.2 studies the complete lattice of inf-
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overfilters associated to any given opening. Finally in Subsection 3.3 we give decomposition
formulas for such inf-overfilters, generalizing some similar characterizations from [19].

But beforehand we will briefly illustrate the interest of this family of operators. Given
L = P(E), the set of parts of the digital plane & = Z?, let B be the 5-pixel cross (as in
Figure 1.2), and let A be the (3 x 3)-square, both centered about the origin. Then d4ep is a
T-inf-overfilter and id Ad a5 is a T-opening which can be decomposed as the supremum of
the structural T-openings by B,C, D, E, F', where C, D, E, F are the four subsets obtained
by adding to B one of the four corners of A (see Figure 3.1). This opening will preserve in a
set X all 5-pixel crosses and all pixels 4-adjacent to two pixels of such a cross. Now if in the
segmentation of Figures 1.2 and 1.3 we had taken id A d se 5 instead of ap, the components
labelled 3, 4, and 5 would have been merged with the neighbouring components labelled 1
and 2 respectively, a better result.

A A A B C C D D E F
A A A B B B c cc D D D E FEFE rrFF
A A A B C D E E rr

FIGURE 3.1. The domain of invariance of the T-opening id A § acp is sup-generated by the
translates of B,C, D, E, F.

3.1. Basic properties of inf-overfilters

The results stated below are proved in Subsection 4.1 of [19], and generalize some earlier
findings of Matheron and Serra (without T-invariance).

The converse of Proposition 3.1 is not true: if ¥ is increasing and id A ¢ is an opening,
then v is not necessarily an inf-overfilter, even when 2 > 7). Consider for example £ =
’P(ZQ), the complete lattice of parts of the digital plane Z?, take B to be the set of 8
neighbours of the origin o, and let ¢ = dz. As B is symmetric (B = B), id A dp is an
annular opening; as B C B & B, we get 0% = dpgp > 0p; however we have dp({o}) = B,
so that (id A 65)({o}) = {o} N B = ), and hence d(id A d5)({o}) = dp(0) = 0, that is
65({0}) # dp(id A d5)({o}).

Nevertheless, an opening of the form id A ¢, where v is increasing, arises in fact from

an inf-overfilter:

ProposITION 3.2. Let ¢ be an increasing operator such that id A ¢ is an opening. Let
n=(id A ). Then 7 is an inf-overfilter and id A n = id A 9.

The following result is essentially due to Matheron, and it should be compared to Theo-
rem 2.10 (i%):

PRroPOSITION 3.3. The set of T-inf-overfilters is sup-closed, with universal bounds O and
I

Our next result is a generalization of properties found by Serra and Matheron:

PROPOSITION 3.4. Let n be a T-inf-overfilter, « a T-opening, (,d) a T-adjunction, and v
an increasing T-operator. Then the following operators are T-inf-overfilters:
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An example of the form (iv) was given in Figure 3.1 with n = d4ep, where A O B. Let
us now illustrate (¢) with that same n = d4ep and with ¢ = epdp (¢ is a closing, so that
1 >id > id A ). We show in Figure 3.2 how the two openings id A 1 and id A 11 behave
differently.

A A A B - * *
A A A B B B ¥ x k% ok kX
A A A B * . *
¥ % % * % % * % % ¥ % %
¥ % % * % % * % % ok ok k%
* % % % %k * % % * % %
* % * * % *
¥ % k- ok k% % % ok ok ok k%
*...*. .*...*

FIGURE 3.2. On top we have the structuring elements A and B (both centered about the
origin), and the original set X. In the middle are shown daep(X) and egdpdacp(X). At
bottom we get (id A d4ep)(X) and (id A epdpdacp)(X), two distinct results.

Note that any constant operator v4 : X — A is an inf-overfilter. It is T-invariant if A
is fixed by T.

Given a T-inf-overfilter 7, then id A 7 is the greatest T-opening < 7. From Proposi-
tion 3.4 (ii7) we deduce the following characterization due to Matheron:

COROLLARY 3.5. Given an increasing T-operator n, the following three statements are
equivalent:

(i) n is a T-inf-overfilter.

(13) If o is the greatest T-opening < n, then na, = 1.

(7i1) There is a T-opening « and an increasing T-operator 6 such that 0 > « and 1 = fa.

3.2.  The complete lattice of T-inf-overfilters associated to a T-opening

From Corollary 3.5 we know that T-inf-overfilters can be characterized as operators of the
form O« for a T-opening « and an increasing T-operator > «. We make thus the following
definition. Given a T-opening «, write Hr(«) for the set of all T-inf-overfilters fa, where 6
is an increasing T-operator > «, and Ar(«) for the set of all T-openings of the form id A7,
where 1 € Hr(a). For any T-inf-overfilter  we have n € Hr(id An), and for any T-opening
a we have o € Hr(a) and o € Ar(a). Let now « be a fixed T-opening.

30



LEMMA 3.6. Given a T-operator n, n € Hr(«) if and only if n is increasing, n > «, and
no=m.

PRrOOF. If n € Hr(a), that is n = fa for an increasing § > «, then 7 is increasing,
n =0a > aa = a, and na = faa = O = 7. If 7 is increasing, n > «, and na = 7, then we
take 6 = n. 1

COROLLARY 3.7. « is the unique T-opening in Hr ().

PROOF. For a T-opening o € Hr(a), by Lemma 3.6 we have ¢ > a and ¢’a = o/; now
the latter equality implies o < « (by Proposition 2.9), so that o/ = «. I

THEOREM 3.8. Hr(«) is inf-closed and closed under non-empty suprema.

PROOF. Consider a non-empty family of elements 7; of Hr(«) (j € J # 0). Asn; > « and
njo = o for each j € J (by Lemma 3.6), we get A ;. ;n; > o and (A;c;ni)a = ;e (nja) =
Njes s now A\ 5 m; is T-invariant, hence it belongs to Hr(«). Similarly ;. ;n; € Hr(a).
Thus Hr(a) is closed under non-empty suprema and infima. Now I = A @) € Hr(«a), and so
Hr(e) is inf-closed.

It follows that Hr(a) U {O} is a complete sublattice of O. Note that Hr(a) is itself a
complete lattice, with the same supremum and infimum operations as in O, except that
sup ) = « instead of O (see (2.1)).

PROPOSITION 3.9. Given an increasing T-operator § > « and n € Hr(a), we have On €
Hr(a). In particular Hr(«) is closed under composition.

ProOF. By Lemma 3.6 we have na = n and n > «, so that na = 6y and n > aa = a,
that is Oy € Hr(«). For any ' € Hr(a), n' > a, so we can take § =/, and n'n € Hr(a).
LEMMA 3.10. Let o be a T-opening such that o/ > «. Then na’ = n for every n € Hr(«a);
in particular when n > o' we have n € Hr(a/).

PROOF. As id > o’ > a and na = 7, we get n > na’ > na =1, that isna/ =n. If n > o/,
then n € Hr(a') by Lemma 3.6. 11

COROLLARY 3.11. For every n,n' € Hr(a), n(idAn’) = n and (idAn)(idAn') =idAnAn'.
PROOF. As id A 7' is a T-opening > «, n(id An') = n by Lemma 3.10. Thus

(idAn)(id A7) =idid A7) An(idAn) = (idAn)Anp=idAnAn. 1

PROPOSITION 3.12. Arx(«) is closed under non-empty infima, and for any aq,...,q, €
Ar(a) (n>2),

a1 Q=1 N ...\ Qp.

Moreover, if L satisfies the infinite supremum distributy condition

XA\ v =\ (XA, (ISD)

JjeJ jeJ
then At («) is closed under non-empty suprema.
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PROOF. For a; = id Am1 and ag = id A 12, where 11,12 € Hr(«), Corollary 3.11 says that
Qg = (ld N nl)(id A\ 772) =id AN Ane=a1 A as.

For ai,...,a, € Ar(a), where n > 2, the equality ay -+ o, = a1 A ... A o, follows by

induction:

a1 an = (a1 apo1)an = (@1 Ao Aap—1)an

=arap Ao A1 = (@ Aap) Ao A (ap—1 Aag) = a1 Ao A ap.

Given a non-empty family of elements 7; of Hr(«) (j € J # (), by Theorem 3.8 we
have A\ ;c ;nj € Hr(a). Hence A\, ;(idAn;) =idAA;c;nj € Ar(@). Thus Ar(a) is closed
under non-empty infima.

By Theorem 3.8 again, \/,c;n; € Hr(a); now if £ satisfies the condition (ISD), then
O satisfies it also and we get \/; ;(id An;) = 1dA(V ¢ ;n;) € Ar(a). Thus Ar(e) is closed
under non-empty suprema. il

When (ISD) holds, At () U{O,I} is a complete sublattice of O; in fact At () is then itself
a complete lattice, with the same supremum and infimum operations as in O, except that
sup ) = « instead of O and inf () = id instead of I (see (2.1)). Note that (ISD) is satisfied
for sets or grey-level functions.

We saw in Subsection 1.3 that an infimum or a composition of openings is usually not
an opening. Hence Proposition 3.12 is very interesting, since it gives a class of openings
which can be algebraically combined in various ways. This will be illustrated in the next
subsection, where we will express elements of Hr(«) in terms of dilations and erosions
intervening in the decomposition of a.

3.3.  Decomposition formulas

Inspired by our “rank-max” openings, Serra gave in Section 9.9 of [22] a characterization
of inf-overfilters on a complete lattice satisfying the infinite distributivity conditions ((ISD)
and its dual). This characterization was generalized in [19], Subsection 4.1 to any complete
lattice, and extended to the case of T-invariance. Here we will express this result in the
framework of Hr(«). Indeed, recall that any T-inf-overfilter 7 is in Hr(a) for some T-
opening a.

If we look back at Proposition 3.4, point (iii) expresses a T-inf-overfilter in Hr(«),
while point (iv) considers a T-inf-overfilter of the form e for a T-erosion £ and ¥ an
increasing T-operator such that ¢ > e. In fact this point (iv) was derived from point (ii%)
(see [19], Proposition 4.4), and we prove similarly the following:

PROPOSITION 3.13. For any T-adjunction (g,0), the lattice Hr(d¢) is the set of all ye,
where 1) is an increasing T-operator > §.

PRrOOF. If n € Hr(de), then n = nde and n > de. Setting 1» = nd, ¢ is an increasing
T-operator, n = née = e, and ¥ = nd > ded = §. Conversely, if n = e for an increasing
T-operator 1 > 0, then n = e > de and nde = Yede = e = n, that is n € Hr(de). I
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For example consider again the digital plane Z* and the 5-pixel cross B shown in Figure 3.1.
If H and V are respectively the horizontal and vertical (3 x 5)-rectangles, centered about
the origin, then (dg A dv)ep € Hr(dpep). The opening id A (6g A dy)ep will preserve in
a digital set any pixel p which lies in a (3 x 3)-square containing a translate of B (cfr. the
sets C, D, E, F in Figure 3.1), or such that there exist two (3 x 3)-squares, each containing a
translate of B, which are neighbouring p in the horizontal and vertical directions respectively.
See Figure 3.3.

VvV .ox
HHEH H [ <% - -k % Yok ok %
HHE A H [ ¥ k% kX ok ok k Cok - k%
HHVHVHVH * % - ok . * ok %

VvV * ok ok

FIGURE 3.3. The opening id A (g A v )ep removes pixel x, but preserves pixel y, as well
as pixels marked x.

Now we can start the characterization of Hr(«) for a T-opening decomposable as a
supremum of morphological T-openings:

LEMMA 3.14. Given T-openings «; and n; € Hr(a;) (j € J), we have \/,c;m; €
HT(vjeJ Oéj).
PROOF. For J = {), this reduces to O € Hr(O). Assume thus that J # (. Clearly

1 = V,e;1; is increasing and T-invariant. Now o = \/, ; a; is a T-opening, and for each

jeJ
j € J we have n > n; = nja; and id > o > «;; hence n > na > nja; = n;, so that

nZnaZVjeJnj:n,thatisna:n. Asn; > aj foreach j € J, weget n > . I

PROPOSITION 3.15. Given two non-empty index sets J, K, let (¢;,0;) be a T-adjunction for
j € J, let ¢r; be an increasing T-operator for j € J and k € K, and assume that 1y; > 0;
for every j, k. Then the operator

n= /\ \/ ’L/kaf;‘j (3.3)

keK jeJ

belongs to Hr (Ve s 0;€5)-

PROOF. By Proposition 3.13 we have ¢y;e; € Hr(d;¢,) for every j € J, k € K. Lemma 3.14
implies that n, =V, ; Yrje; € Hr(V ey 05¢;) for every k € K. As Hr(Vc; dj¢;) is closed
under non-empty infima (by Theorem 3.8), n = Aycx ik € Hr(V ey d565)- B

The invariants of the opening id A 7 for i as in (3.3) were characterized in Theorem 4.6 and
Corollary 4.7 of [19]. We recall this result here:

PROPOSITION 3.16. Let ) be given by (3.3). Then the domain of invariance of id A1 consists
of all B € L such that for every j € J there is some C; € L with

V) <B< NV (G (3.4)

JjeJ keK jeJ
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Moreover, if L satisfies (ISD), then (3.4) holds if and only if for every k € K and j € J there
are some By, C; € L with

(Sj(Cj) < Bkj < ’L/Jk](cj) and B = /\ \/ Bkj. (35)
keK jeJ

In order to give a converse of Proposition 3.15, we will assume a decomposition of any
increasing T-operator 6 such that 6(O) = O as an infimum of T-dilations.

THEOREM 3.17. Suppose that in L every increasing T-operator fixing O is a non-empty
infimum of T-dilations. Let a =/, ;
Then for any n € Hr(«) there exists ng € Hr(a) with 99(O) = O, a non-empty index set

d;e4, where J # () and each (g}, ;) is a T-adjunction.

K, a family of T-dilations 0), (k € K) such that for every j, k, 0, > dje; or equivalently
95.0; > ¢;, and we have

m= AV &de; and  g=novy= A V6 v)de, (3.6)

kEK jeJ kEK jeJ

where ~y is the constant operator defined by v(X) = n(O) for X € L. In particular n takes
the form (3.3), and n = 9 when n(O) = O.

PROOF. Define the operator @ by #(0O) = O and 0(X) = n(X) for X # O, and let 7y = ba.
Clearly 6 is an increasing T-operator, § > «, and so 19 € Hr(a) by definition; moreover
0(0) =0 andn=60V~y=mnV~.

By our assumption we have the decomposition 6 = A\, d;,, where 0;, is a dilation for
each k € K, and K # (. Moreover, for each j, k we have §, >0 >« > dje;. From the
properties of adjunctions (in particular Proposition 2.5) it is easily seen that d; > d;¢; is
equivalent to 5;(% > 6;. Now we have the decomposition

770:904: (/\ 5;)(\/ 5j€j) = /\ \/5;5]-6]-’
keK jed kEK jEJ
because each dilation d;, commutes with suprema. Thus the left half of (3.6) holds.

As v is a constant operator, it satisfies (7 V )€ = v V ¢€ for any two operators v, &,
and so for every k € K we have

\/ (8, Vy)dje; = \/ (yVode;) =V (\ 0rdie;) =V (6, \/ di85) = vV ira = (yVi})e
JjeJ JjeJ JjeJ JjeJ

Hence we get

A VEvse = N\ @va)a= (A G Vva))a

keK jeJ keK keK

Asn=na=(yVO)a=(vV(Acx ;) a, in order to obtain the right half of (3.6) we have
only to show that

ANV =yv (N o). (3.7)

keK keK
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First, given X # O, for each k € K we have 6,(X) > 0(X) = n(X) > (0) = 7(X), and so
Arex 0, (X) > v(X); then

A @V = A (LX) V(X)) = A\ 6:(X) =5(X) v (/\ ).

keK keK keK keK

Next, for each k € K we have §;,(O) = O and so

N Vv NO) = A\ (6:(0) v4(0)) =v(0) =+(0) v ( )\ 6,.(0)).

keK keK keK
Thus the equality holds for any X € £, and (3.7) follows. I

REMARK. (i) The real difficulty in the proof is in showing (3.7) and

WA Vo= N\ V6L vase

kEK jEJ kEK jEJ

without assuming (ISD). If we assume it, this is trivial.
(#i) For T = {id}, every increasing operator fixing O is an infimum of dilations, and every
opening is a supremum of morphological openings (cfr. Subsection 2.4; for more details
see Theorem 2.4 of [6] and Proposition 2.9 of [19]). In this case Theorem 3.17 characterizes
H fiay () for any opening a. In particular we obtain Serra’s characterization of inf-overfilters
(Theorem 9.7 of [22]).
(#i7) If T # {id}, then we have not always such decompositions. However:
— if £ satisfies the Basic Assumption (cfr. Subsection 2.3), then every T-opening is a
supremum of morphological T-openings (see also [19], Theorem 2.11);
— if L satisfies the dual of that Basic Assumption, then every increasing T-operator is
an infimum of T-dilations (see also [6], Theorem 3.11 and Remark 3.2 (iv)).
Note that if £ satisfies the Basic Assumption or its dual, I is the only increasing T-operator
which does not fix O. Thus in the case of binary or grey-level images on a Euclidean or
digital space, Theorem 3.17 characterizes Hr(«) for any T-opening a, and n = 1o, except
for n =1.

Let us now give some particular case. Consider again the opening on sets given by (3.1) and
(3.2). It arises from the inf-overfilter 64(\;c;ecs) = Ve 04ecs, where C7 C A for each
j € J. The latter clearly takes the form (3.3) with ¢y; = d4 and €; = ¢y for each k € K
and j € J, and so it belongs to Hr(a) for a =V, ; dcigcs-

While keeping the CV constant (j € J), we can modify 64 (with the constraint A D
Uiz, CY, in other words 64 > /-, 8cs), and we obtain thus different openings in A ().
They satisfy the property of Proposition 3.12: given a non-empty family of such openings,
we can take their composition or equivalently their infimum, and also their supremum, and

we still get an opening in At (a). Clearly such combined openings take the form

id A 1/)(\/ ECi)s where (@) =0, 4 isincreasing, and 1 > \/ 0ci- (3.8)

JjeJ jeJ
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Conversely every such 1 is an infimum of a non-empty family of dilations d4 > \/ jesEcis
and so an opening of the form (3.8) can be written as

idA (N 0a)(\ecs),  where K#0 and A, 2| JC7 for keK. (3.9
keK jeJ jeJ

Thus (3.8) and (3.9) are equivalent characterizations of openings in this subfamily of Ar(«),
and so such openings are non-empty infima of openings of the form (3.1) with the C7 fixed
but A varying.
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APPENDIX. MORPHOLOGICAL FILTERS AND THEIR DOMAIN OF INVARIANCE

At the beginning of Section 1, we defined a morphological filter as an increasing and idem-
potent operator, but afterwards we restricted ourselves to extensive or anti-extensive ones,
namely closings and openings. The main advantage of this limitation of scope is obtained in
Section 2: the characterization of openings by their domain of invariance, which gives an iso-
morphism between the complete lattice of T-openings and the one of sup-closed T-invariant
sets. A dual characterization holds for closings.

We will see here to what extent such a characterization can be made for morphological
filters. We will show that the domain of invariance of a T-invariant morphological filter is a
T-invariant complete lattice embedded in the original one, but with possibly distinct supre-
mum and infimum operations. Now this mapping from T-invariant morphological filters to
T-invariant complete lattices is not one-to-one, but only onto: a T-invariant complete lattice
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is the domain of invariance of a whole family of T-invariant morphological filters, whose uni-
versal bounds are known. Moreover this mapping does not relate ordering relations between
morphological filters to corresponding inclusion relations between their respective domains
of invariance. Hence we cannot give a simple structural decomposition of morphological
filters, as we did for openings and closings.

For the sake of brievity, let us write a filter for a morphological filter, and a T-filter for
a T-invariant morphological filter. Matheron made a detailed study of filters in Chapter 6
of [22], without T-invariance. We will prove here in a different way some of his results, with
the additional constraint of T-invariance. In the case where it is not taken into account, all
results on T-filters apply to filters by taking T = {id}.

Let us recall some notation from Section 2. We consider operators on a complete lattice
L. The range of an operator v is the set Ran(¢) of all ¢/(X) for X € £; an invariant of v
is some X € L such that (X) = X; the domain of invariance of v is the set Inv(¢) of all
invariants of ¢. Clearly Inv(¢)) C Ran(¢); moreover the idempotence of ¢ can be expressed
in three equivalent ways (see (2.2)):

Y? =1 <= Ran(¢y) C Inv(v)) <= Ran()) = Inv(1)).

We will use the following fact from Matheron’s Criterion 6.6, proved in Section 6.1 of
[22]: If ¢ and & are filters and ¢ < &, then ¢¢ and &y are filters. This is for example the
case if ¢ is an opening and £ a closing.

The following three results characterising T-filters in terms of T-invariant complete

lattices embedded in £ are simply extensions to T-invariance of results from Section 6.2 of
[22]:
PROPOSITION A.l. Let ¢ be a T-filter. Then Inv(v) is a T-invariant complete lattice for
the same order relation < as L, with least element 1(0O) and greatest element (I); given
S CInv(%y), the supremum and infimum of S in Inv(y)) are ¥(\/ S) and Y(A S).
PROOF. Inv(¢)) is T-invariant because ¢ is T-invariant.

For X € £, 0 < X < I, and as ¢ is increasing, ¥(0) < ¢(X) < ¥(I), so that ¥(O)
and ¢(I) are the least and greatest elements of Ran(y) = Inv(e)). Let S C Inv(¢)) and

suppose that U € Inv(t)) is an upper bound of S: for all S € S, U > S. Thus for S € S we
have S <\/S§ < U, and as % is increasing,

S=u(S) <v(\/8) < ¢(U) =U;
this means that ¢(\/ S) is the least upper bound of § in Ran(¢)) = Inv(y)). We prove in the
same way that ¥ (/A S) is the greatest lower bound of S in Inv(z)). i

PRrROPOSITION A.2. Let B be a T-invariant complete lattice included in £, with supremum
and infimum operations written \/® and A\P. The set of T-filters having B as domain
of invariance is not empty; its least element is FT(B)AT(B) and its greatest element is
AT (B)FT(B). Moreover, for any X € L, we have
B
F'(B)AT(B)(X)=\/{BeB|B <X}
B
and  AT(B)FT(B)(X)= \{BeB|B>X}.
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PROOF. We show only the half of the statement concerning FT(B)AT(B). The other
half about AT(B)FT(B) follows by duality. As FT(B) and AT(B) are T-invariant, so is
FT(B)AT(B). Now FT(B)AT(B) is a filter by Matheron’s criterion. Let X € £ and B(X)
the set of B € B such that B < X. As B is T-invariant, AT(B)(X) = \/ B(X) (see Sec-
tion 2). For any C' € B, C > AT(B)(X) = \/ B(X) if and only if C > B for every B € B(X),
in other words if and only if C > \/B B(X); hence \/B B(X) is the least element of B which
is > AT(B)(X). As B is T-invariant, we have (see Section 2):

B B
FTB)AT(B)(X) = \{CeB|C>ATB)X)} = \{CeB|C=>\/BX)}=\/B(X).

In particular FT(B)AT(B)(X) € B, while for B € B we have B = FT(B)AT(B)(B); hence
Ran(FT(B)AT(B)) = Inv(FT(B)AT(B)) = B. Let ¥ be a T-filter such that Inv(¢)) = B.
For all B € B(X) we have B < X and so B = ¢(B) < ¢(X), since ® is increasing; as
Y(X) € B, we have thus FT(B)AT(B)(X) = \/® B(X) < 4(X). Therefore FT(B)AT(B) is
the least T-filter having B as domain of invariance. il

COROLLARY A.3. Let B be a T-invariant complete lattice included in L, with supremum
and infimum operations written \/® and \°. For any S C B,

B B
VS=FT'B)(\/S) and N\S=ATB(\S).

PROOF. By definition of AT(B), B C Inv(AT(B)) and Inv(AT(B)) is sup-closed in £ (see
Section 2); so AT(B)(VS) =V S. As B =Inv(FT(B)AT(B)), by Proposition A.1 we have
VES = FT(B)AT(B)(VS). Hence \/°S = FT(B)(AT(B)(VS)) = FT(B)(VS). The

other equality concerning /\B S is proved in the same way. i

In particular, for any T-filter ¢ having B as domain of invariance, we have ¢¥(\/S) =
FY(B)AT(B)(VS) =FT(B)(VS) and (A S) = AT(B)FT(B)(AS) = AT(B)(A\S).

Given a T-filter ¢, it is easy to show that the set of T-filters £ such that Inv(§) = Inv(¢))
is the set of operators 18, where 6 is an increasing T-operator such that Inv(i) C Inv(6).
One can also prove that for two T-operators ¥ and &, they are T-filters with the same
domain of invariance if and only if ¢ = £ and &y = .

Let us see to what features of filters correspond inclusion relations between their do-
mains of invariance. This cannot be the ordering <, because Inv(§) C Inv(¢)) means & <
when ¢ and 1 are openings, but £ > ¢ when £ and ¢ are closings. However there is an
analogue of points (¢i7) and (iv) of Proposition 2.9 is as follows: given two filters ¢ and &,

Inv(¢) CInv(y) < Y&=¢.

The set of T-filters is a complete lattice (this was shown by Matheron in [22] without
T-invariance), but this structure is not reflected in the invariance domain of T-filters.
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