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Abstract: Openings (and dually closings) are an important class of transformations used in

image analysis. We review their main algebraic properties, in particular their characteriza-

tion in terms of the invariance domain, and give several methods for constructing them. A

particular emphasis is laid on inf-overfilters as a class of operators generating new types of

openings. In conformity with the new algebraic framework for mathematical morphology,

we assume that the object space under study is any complete lattice, optionally provided

with an arbitrary group of automorphisms.

1. Opening and Closing: Two Simple but Useful Notions

Suppose that we have an object space L whose elements (written A,B, . . . , Y, Z, etc.) can

be compared thanks to a partial order relation ≤. For example L can be:

(a) The set P(E) of all subsets of a Euclidean or digital space E , or the set Conv(E) of all

convex subsets of E ; here ≤ is the inclusion relation ⊆.

(b) The set of grey-level images on E , where for two images X and Y , X ≤ Y if for any

point p ∈ E , its respective grey-levels X(p) and Y (p) satisfy X(p) ≤ Y (p).

(c) The set of all partitions of E , or the set of those partitions whose classes are connected;

they arise in particular when one attempts to segment an image on E into meaningful

components; for two partitions X and Y of E , X ≤ Y means that every class of X is

contained in a class of Y , and we say then that Y is coarser than X , or that X is finer

than Y . See also [22], pp. 15, 32, and 94–98 for more details.

Many other choices for L can be envisaged. The reader is referred in particular to [6,19,22].

Assume that we want to filter an object X ∈ L in order to remove from it some

aspects that we don’t need, or to extract from X some particular type of information. For

this purpose we apply some “filtering” operator ψ to X . Let us examine some desirable

properties for ψ:

(i) Idempotence: ψ2 = ψ, that is ψ(ψ(X)) = ψ(X) for any X ∈ L.

This corresponds to the usual notion of a perfect filter: it removes completely what is

unwanted, and so needs not be applied a second time. This is for example the case with
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ideal band-pass filters in signal processing. In contrast the median filter is not idempotent,

and it is not even guaranteed that a repeated application of it to an image converges to a

stable result. It has been shown [26] that the repetition of a median filter with symmetric

windows on a digital image having a finite number of pixels with non-zero grey-level, leads

after a finite number of steps either to a stable solution, or to an oscillation of period 2.

Such an oscillation between two images is illustrated for example in Figure 8.1 on p. 160 of

[22].

In [12] considerations about human low-level vision lead to the postulate that edge

detection must be idempotent. It has similarly been argued in [21] that idempotence is a

normal requirement of each stage in a sequence of operations in image analysis. See also

Subsection 1.1 of [19].

Now let us relate the behaviour of ψ to the partial ordering of L by ≤. We require that

if ψ removes something, then it removes anything smaller. In particular if X ≤ Y ≤ Z and

ψ(X) = ψ(Z) (ψ removes the difference between X and Z), then we have also ψ(X) = ψ(Y )

(ψ removes the difference between X and Y , and that between Y and Z). A sufficient

condition for this is:

(ii) Growth: For any X,Y ∈ L, X ≤ Y implies ψ(X) ≤ ψ(Y ).

We say then that ψ is increasing. An increasing idempotent operator is called a morpholog-

ical filter. In the case where (L,≤) is a complete lattice, the properties of such operators

have been analysed by Matheron and Serra in Chapters 5 to 10 of [22]. We recall in the

Appendix some of Matheron’s results. It appears that an analytic decomposition of mor-

phological filters into simple building blocks is a very hard task, even in the particular case

where L consists of the set of parts of a digital space E . However, this is easily achieved if

we assume one of the following two constraints, which are dual w.r.t. the partial order ≤:

(iii) Extensivity: For any X ∈ L, ψ(X) ≥ X .

(iii′) Anti-extensivity: For any X ∈ L, ψ(X) ≤ X .

An extensive morphological filter is called a closing, while an anti-extensive morphological

filter is called an opening. In the case of images, an opening will usually remove small positive

features, such as peaks and narrow ridges, while a closing will remove small negative features,

such as holes and narrow valleys. As explained in Chapter 10 of [20], openings are related

to size distributions: given λ > 0, the operator ψλ extracting from a population the subset

consisting of all elements of size at least λ must clearly be an opening (for example, in an

army take all soldiers at least six feet tall).

We end with an optional property: invariance under a symmetry group. In Euclidean

morphology [20], operators are generally required to be translation-invariant, which means

that they commute with any Euclidean translation. Some studies in image analysis consider

the stronger assumption of isotropy, that is invariance under both translations and rotations.

Note that these symmetries preserve the inclusion relation on sets. We generalize symmetries

by automorphisms. An automorphism of (L,≤) is a permutation τ of L which preserves

the partial order ≤, in other words such that for X,Y ∈ L, X ≤ Y ⇐⇒ τ(X) ≤ τ(Y ).

We consider a group T (that is, T is closed under composition and inversion), consisting

of some automorphisms of L; in fact T is an arbitrary subgroup of the group Aut(L) of all
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automorphisms of L. We assume then:

(iv) T-invariance: For any τ ∈ T, τψ = ψτ .

We will use the prefix “T-” for “T-invariant”; we will speak thus of T-operators, T-dilations,

T-erosions, T-openings, T-closings, etc. (see Section 3 of [6]). As we said above, the require-

ment of T-invariance is optional, for example it is absent from the characterizations given in

[22]. All results that we will give in the framework of T-invariance can directly be applied

to the case where it is not assumed: one has just to take T consisting of only the identity

operator id.

Conditions (i) to (iv) were presented for a set L provided with a partial order relation

≤. In order to give a decompositions of T-openings and T-closings in terms of this structure,

L itself must admit decompositions related to that partial order. In other words we will

assume that (L,≤) is a complete lattice, which means that every non-void subset K of L has

a least upper bound in L or supremum, as well as a greatest lower bound in L or infimum;

the supremum and infimum of K are necessarily unique, and we write them respectively

supK or
∨
K, and inf K or

∧
K. As we will see in Section 2, T-openings and T-closings

on a complete lattice are easily characterized by their domain of invariance, and can be

decomposed in terms of elementary operators called structural T-openings and T-closings.

Clearly opening and closing are dual concepts w.r.t. the partial order ≤. Therefore

every statement concerning openings can be translated into a similar statement concerning

closings by interverting ≤ and ≥,
∨

and
∧
, extensivity and anti-extensivity, dilations and

erosions, etc. We may thus to a great extent restrict ourselves to openings.

Most practitioners of mathematical morphology know the opening by a structuring

element, defined on subsets of a Euclidean or digital space E , which can be built as a

composition of the erosion and dilation by that structuring element. They know sometimes

the opening by a grey-level structuring function, defined on grey-level images on that space

E . Both are examples of structural T-openings (for sets, T is the group of translations of

E , while for grey-level functions, it includes also grey-level translations). However there are

many other openings besides these. In the remainder of this section, we will describe a

few unconventional openings on some well-known complete lattices. Then Section 2 will be

devoted to recalling the algebraic theory of T-openings [19]. Finally Section 3 will describe

inf-overfilters, a class of operators containing openings as particular cases, and which allow

the construction of new families of openings.

1.1. Connectivity classes

Much of what we will say here is based on [22], Section 2.6. Connectivity is defined in

the Euclidean space IRd in terms of the topology, but in the digital space ZZd it is defined

in terms of paths built from neighbouring pixels. In both cases the family C of connected

subsets of the space E satisfies the following two requirements: the empty set and a point are

connected, and a union of connected sets containing a given point is connected. Formally:

(i) ∅ ∈ C and for any x ∈ E , {x} ∈ C.

(ii) For any subset B of C,
⋂
B 6= ∅ implies that

⋃
B ∈ C

These two conditions characterize any family C of sets as a connectivity class on P(E) (the
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set of parts of E). Now connectivity can also be defined in terms of the operator associating

to each set and each point the connected component of that set containing that point; for a

fixed point, it acts as an opening on sets. We postulate thus the existence for each x ∈ E of

an opening γx on the complete lattice (P(E),⊆) of subsets of E , such that:

(iii) For any x ∈ E , γx({x}) = {x}.

(iv) For any x, y ∈ E and A ⊆ E , γx(A) ∩ γy(A) = ∅ or γx(A) = γy(A).

(v) For any x ∈ E and A ⊆ E , x ∈ A or γx(A) = ∅.

Clearly these properties are verified when γx(A) is the connected component of A containing

x, in the usual Euclidean or digital sense. We call a family of openings γx, x ∈ E , satisfying

these three conditions a system of connectivity openings on P(E). It is shown in Theorem 2.8

of [22] that the above two definitions of connectivity are equivalent:

Proposition 1.1. There is a one-to-one correspondence between connectivity classes on

P(E) given by (i) and (ii), and systems of connectivity openings on P(E) satisfying (iii),

(iv), and (v). A connectivity class C and the corresponding family of connectivity openings

γx define each other by the following two equivalent relations:

— For A ⊆ E , γx(A) is the union of all C ∈ C such that x ∈ C ⊆ A; in other words, it is

∅ for x /∈ A, while for x ∈ A it is the greatest C ∈ C such that x ∈ C ⊆ A.

— C is the set of all γx(A) for x ∈ E and A ⊆ E .

It is also possible to characterize connectivity classes in terms of an opening on the complete

lattice of partitions of E described in the example (c) on the first page of this chapter: to

the connectivity class C correponds the opening which associates to each partition P a finer

one made by splitting each class of P into its connected components. Note finally that for a

group T of permutations of E , C is T-invariant if and only if τγx = γτ(x)τ for every τ ∈ T.

Thanks to that general definition, one can define new types of connectivity from the

known digital and Euclidean ones. Two examples are given on pp. 54–56 of [22]; the second

one is particularly interesting, since it allows to regroup together any two connected com-

ponents which are close to one another, leading to a formalization of the concept of “nearly

connected” (as illustrated in Figure 2.8 there). It is based on Serra’s Proposition 2.9, which

we state here in a slightly more detailed form:

Proposition 1.2. Let γx, x ∈ E , be a system of connectivity openings on P(E) correspond-

ing to a connectivity class C. Consider a map W : E → P(E) such that x ∈ W (x) ∈ C for

each x ∈ E , and let δW be the dilation given by δW (A) =
⋃

x∈AW (x). For each x ∈ E define

the operator νx on P(E) by:

νx(A) =

{
A ∩ γxδW (A) if x ∈ A;
∅ if x /∈ A.

Then νx, x ∈ E , is a a system of connectivity openings on P(E), and the corresponding

connectivity class N consists of all subsets A of E such that δW (A) ∈ C. We have C ⊆ N .

The characterization of the connectivity class N is new. Note that this result cannot be

improved by generalizing the dilation δW to an extensive and increasing operator ψ such that

ψ({x}) ∈ C for every x ∈ E . A counterexample can be found for E = IR2 by taking the usual

4



connectivity, an increasing operator ψ satisfying ψ(X) = X for any set X included in a line,

but such that there is a non-collinear triple x, y, z of points with ψ({x, y, z}) = [x, y] ∩ {z},

where [x, y] is the closed segment spanned by x and y; then for X = {x, y, z} we have

νx(X) = X ∩ γxψ(X) = X ∩ [x, y] = {x, y}, and as ψ({x, y}) = {x, y}, we get ν2x(X) =

νx({x, y}) = {x, y} ∩ γxψ({x, y}) = {x, y} ∩ {x} = {x}, so that νx is not idempotent.

No proof of Proposition 1.2 was given in [22]: the growth and anti-extensivity of each

νx, as well as conditions (iii), (iv), and (v) are straightforward, but for the idempotence of

νx, the reader was referred to another source. We will thus show here the idempotence of

νx and the characterization of N :

Proof. Note that as p ∈ W (p) for each p ∈ E , δW is extensive. Take a non-void A ⊆ E

and x ∈ A. We will first prove that for any a ∈ A such that W (a) ∩ γxδW (A) 6= ∅, we have

W (a) ⊆ γxδW (A). Indeed, γxδW (A) and W (a) are both in C, and as W (a) ∩ γxδW (A) 6= ∅,

γxδW (A) ∪W (a) ∈ C by (ii). As W (a) ⊆ δW (A), we get

x ∈ γxδW (A) ⊆ γxδW (A) ∪W (a) ⊆ δW (A).

But γxδW (A) is by definition the greatest element of C which contains x and is contained

in δW (A), and as γxδW (A) ∪W (a) ∈ C, we must have γxδW (A) ∪W (a) ⊆ γxδW (A), that is

W (a) ⊆ γxδW (A).

Let us now show that δW νx(A) = γxδW (A). Take first p ∈ γxδW (A). As γx is anti-

extensive, we have p ∈ δW (A), and by definition of δW we get p ∈ W (q) for some q ∈ A.

As p ∈ W (q) ∩ γxδW (A), the preceding paragraph gives W (q) ⊆ γxδW (A). Now q ∈ A

and q ∈ W (q), so that we get q ∈ A ∩W (q) ⊆ A ∩ γxδW (A) = νx(A). As p ∈ W (q) and

q ∈ νx(A), we obtain p ∈ δW (νx(A)). Thus γxδW (A) ⊆ δW νx(A). Take next p ∈ δW νx(A).

By definition of δW , p ∈W (q) for some q ∈ νx(A). Now νx(A) = A ∩ γxδW (A) ⊆ γxδW (A);

hence q ∈ γxδW (A), and as q ∈ W (q), the preceding paragraph gives W (q) ⊆ γxδW (A). As

p ∈W (q), we get p ∈ γxδW (A), and so δW νx(A) ⊆ γxδW (A). The equality follows.

We can now prove that each νx is idempotent. Take A ⊆ E and x ∈ E . If x /∈ A,

we have νx(A) = ∅, and as νx is anti-extensive, we get νxνx(A) = ∅. If x ∈ A, then

νx(A) = A ∩ γxδW (A). Applying γx to both sides of δW νx(A) = γxδW (A), the fact that γx

is idempotent gives γxδW νx(A) = γxγxδW (A) = γxδW (A). As x ∈ νx(A), we get

νxνx(A) = νx(A) ∩ γxδW νx(A) =
(
A ∩ γxδW (A)

)
∩ γxδW (A) = A ∩ γxδW (A) = νx(A).

Let us finally characterize the connectivity class N . Take first a non-void A ⊆ E

and x ∈ A. If A ∈ N , then A = νx(A), and so δW (A) = δW νx(A) = γxδW (A), so

that δW (A) ∈ C. Conversely, if δW (A) ∈ C, then δW (A) = γxδW (A), so that νx(A) =

A ∩ γxδW (A) = A ∩ δW (A); but have A ⊆ δW (A), and so νx(A) = A and A ∈ N . Second,

∅ ∈ N and δW (∅) = ∅ ∈ C. Thus for any A ⊆ E , A ∈ N ⇐⇒ δW (A) ∈ C.

Finally C ⊆ N , because for a non-void C ∈ C and x ∈ C, we have C = γx(C) and

C ⊆ δW (C), so that C = C ∩ γx(C) ⊆ C ∩ γxδW (C) = νx(C), that is C = νx(C) and

C ∈ N .
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We illustrate this result in the case where E = ZZ2 (the digital plane), C is the set of

4-connected subsets of E , and δW is the translation-invariant dilation δB by a connected

structuring element B centered about the origin (that is, each W (p) is the translate Bp of

B by p). We derive from C the new connectivity class N consisting of all sets which are

4-connected or which join in a 4-connected set under the dilation δW . We show in Figure 1.1

the decomposition of a digital set into its N -connected components when B is the 5-pixel

cross.

B · 1 · 1 · · 1 · · · · 2 2

B B B 1 1 · 1 · · 1 · · · 2 2 2

B · 1 · 1 · · · · · · · 2 2

Figure 1.1. The N -connected components of the set are numbered 1 and 2, they consist

of maximal unions of 4-connected sets which join under dilation by B.

We will now give a second method for constructing a new connectivity class from an

old one, which derives from a suggestion by H. Heijmans. Anticipating on Section 2, for

any operator ψ on P(E), we call an invariant of ψ any X ⊆ E such that ψ(X) = X ,

and write Inv(ψ) for the set of invariants of ψ. Given an opening α on P(E), we will say

that α is connected for the connectivity class C if for every invariant A of α, all connected

components of A for C are also invariants of α. Clearly this is equivalent to the requirement

that αγxα = γxα for every x ∈ E , where all γx, x ∈ E , form the sytem of connectivity

openings associated to C. It is easy to show that for any two openings α0 and α1 we have

α0α1α0 = α1α0 ⇐⇒ α1α0α1 = α1α0 ⇐⇒ (α1α0)
2 = α1α0. We have thus three

equivalent formulations for α being connected for C: for every x ∈ E ,

αγxα = γxα ⇐⇒ γxαγx = γxα ⇐⇒ (γxα)
2 = γxα. (1.1)

For example, given B ⊆ E , the operator α : X 7→ X ∩ B on P(E) is an opening connected

for any connectivity class, because the invariants of α are the subsets of B.

For any subset B of P(E), write A(B) for the operator mapping any X ⊆ E to the

union of all elements of B included in X . It is straightforward (see again Section 2) that

A(B) is an opening. We have the following characterization:

Lemma 1.3. An operator α is an opening connected for the connectivity class C if and only

if there is a subset B of C such that α = A(B). The set of such openings is closed under

arbitrary union.

Proof. Suppose that α is connected for C, and let B = C ∩ Inv(α). Let X ⊆ E . For any

x ∈ α(X), let B be the connected component of α(X) containing x; as α(X) ∈ Inv(α)

(by idempotence) and α is connected, B ∈ Inv(α), and as B ∈ C, we have B ∈ B; thus

x ∈ B ⊆ α(X) ⊆ X for B ∈ B, and hence x ∈ A(B)(X). Thus α(X) ⊆ A(B)(X).

Conversely for any B ∈ B such that B ⊆ X , as α is increasing we have B = α(B) ⊆ α(X),

and so A(B)(X) ⊆ α(X). The equality α = A(B) follows.

Suppose now that α = A(B) for some B ⊆ C. Let A ∈ Inv(A(B)), and let B be a

connected component of A for C. For any x ∈ B, as x ∈ A = A(B)(A), there is some

6



B′ ∈ B such that x ∈ B′ ⊆ A; as B′ ∈ C and B is the connected component of x in A, this

means that B′ ⊆ B, and so x ∈ A(B)(B). Hence B ⊆ A(B)(B), and as A(B)(B) ⊆ B (by

anti-extensivity), we get B = A(B)(B). Therefore α is connected for C.

For any family Bj, j ∈ J of subsets of C, we have
⋃

j∈J A(Bj) = A(
⋃

j∈J Bj) (see

Section 2). Thus the set of openings connected for C is closed under union.

The openings A(B), where B ⊆ P(E), will play an important role in Section 2 for the

structural analysis of openings, but that time we will consider any complete lattice, not only

P(E). Now we give the method for constructing a new connectivity class from an existing

one and a connected opening:

Proposition 1.4. Let C be a connectivity class and α an opening connected for C. Let S

the subset of C consisting of ∅, all singletons {x} for x ∈ E , and all C ∈ C ∩ Inv(α). Then S

is a connectivity class. If γx (x ∈ E) is the system of connectivity openings associated to C,

then σx (x ∈ E), the one corresponding to S, is defined as follows for any x ∈ E and A ⊆ E :

σx(A) =




γxα(A) if x ∈ α(A);
{x} if x ∈ A \ α(A);
γxα(A) = ∅ if x /∈ A.

Proof. We show that S satisfies conditions (i) and (ii). It verifies (i) by definition. Given

a subset B of S such that
⋂
B 6= ∅, let x ∈

⋂
B; then {x} is the only possible singleton in

B. Either
⋃
B = {x} ∈ S or

⋃
B =

⋃
B′, where B′ is the set of elements of B which are not

singletons. In that case, B′ ⊆ C ∩ Inv(α); by property (ii) for C we have
⋃
B ∈ C; as we will

see in Section 2, Inv(α) is closed under union, so
⋃
B′ ∈ Inv(α); hence

⋃
B =

⋃
B′ ∈ S and

S satisfies (ii).

Let x ∈ E and A ⊆ E . If x /∈ A, then x /∈ α(A), and so by (v) (for both C and S) we

must have σx(A) = ∅ = γxα(A). If x ∈ A\α(A), then σx(A) ⊆ A gives ασx(A) ⊆ α(A), and

so x /∈ ασx(A); as x ∈ σx(A), we get σx(A) 6= ασx(A), that is σx(A) /∈ C ∩ Inv(α), and as

x ∈ σx(A) ∈ S, σx(A) is a singleton, in other words σx(A) = {x}. If x ∈ α(A), then σx(A) is

the greatest S ∈ S such that x ∈ S ⊆ A; now x ∈ γxα(A) and γxα(A) ∈ C ∩ Inv(α) (since α

is connected for C); hence x ∈ γxα(A) ⊆ A with γxα(A) ∈ S, which implies that γxα(A) ⊆

σx(A); if σx(A) is a singleton, we have σx(A) = γxα(A) = {x}, otherwise σx(A) ∈ C∩Inv(α)

and x ∈ σx(A), that is γxσx(A) = σx(A) = ασx(A); but then σx(A) = γxασx(A) ⊆ γxα(A),

and as γxα(A) ⊆ σx(A), we get σx(A) = γxα(A).

Note that the first part of the proof (that S is a connectivity class) does not use the fact

that α is connected for C. However when α is not connected, we can replace α by A(B),

where B = C ∩ Inv(α), and by Lemma 1.3, A(B) is connected for C. Indeed, C ∩ Inv(α) =

B ⊆ Inv(A(B)); on the other hand, as B ⊆ Inv(α), it follows from the general theory in

Section 2 thatA(B) ≤ α and so Inv(A(B)) ⊆ Inv(α); from the double inequality C∩Inv(α) ⊆

Inv(A(B)) ⊆ Inv(α) we deduce C ∩ Inv(α) = C ∩ Inv(A(B)), so that α and A(B) lead to the

same connectivity class S.

Note also that not every connectivity class S included in C arises in this way. For

example if C is the set of 8-connected subsets of the digital plane E = ZZ2, and S the set

of 4-connected subsets of E , there is no opening α such that S consists of ∅, the singletons,
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and the elements of C ∩ Inv(α). Indeed, if A and B are two 4-connected sets of size 2 which

are diagonally adjacent, then A,B ∈ S, A∪B ∈ C, A∪B /∈ S, and if we had A,B ∈ Inv(α),

we would have A ∪B ∈ Inv(α), a contradiction.

Let us illustrate Proposition 1.4 in the two-dimensional digital case with C the set

of 4-connected subsets of E , and where α is the translation-invariant opening αB by a 4-

connected structuring element B. Clearly αB takes the form described in Lemma 1.3 with

B being the set of translates of B, and so it is connected for C. We derive from C the new

connectivity class S consisting of the empty set, the singletons, and all 4-connected sets

invariant under αB. We show in Figure 1.2 how a digital set is divided into its S-connected

components when B is the 5-pixel cross. Notice how narrow portions of 4-connected sets

disconnect them in S.

B · 1 1 1 · · 8 · 2 4

B B B 1 1 1 1 1 6 7 2 2 2

B 3 1 1 1 · · · · 2 5

Figure 1.2. The S-connected components of the set are numbered 1 to 8, they consist of

maximal 4-connected sets open by B, otherwise of singletons.

Connectivity classes of the above form can be used to segment digital sets. First the

set X is divided into its S-connected components. Next, all such components which are

singletons are regrouped into C-connected components. We illustrate in Figure 1.3 what

this gives for Figure 1.2.

· 1 1 1 · · 6 · 2 4

1 1 1 1 1 6 6 2 2 2

3 1 1 1 · · · · 2 5

Figure 1.3. The segmentation of Figure 1.2 obtained by regrouping singletons into 4-

connected components.

Such an operation can also be applied in the complete lattice L of partitions of a digital

space E . Given a partition P , first all classes are split into S-connected components. Next,

all new classes which are singletons are regrouped into C-connected components.

Other manipulations on connectivity classes can be envisaged. For example a non-

void intersection of connectivity classes is again a connectivity class. Thus the family of

connectivity classes, ordered by inclusion, forms a complete lattice; the least one consists of

∅ and the singletons, while the greatest one is P(E), the set of all subsets of E .

We have studied openings α connected for C, that is satisfying αγxα = γxα for all

x ∈ E . One can also consider openings α such that γxαγx = αγx for every x ∈ E . This

means in fact that for every X connected, either α(X) = X or α(X) = ∅. As in (1.1), we

have the following equivalence:

γxαγx = αγx ⇐⇒ αγxα = αγx ⇐⇒ (αγx)
2 = αγx. (1.2)

In particular let α be any increasing operator such that for X ⊆ E we have α(X) = X or

α(X) = ∅. Then it is easily seen that α is anti-extensive and idempotent, and that for any
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X ⊆ E and x ∈ E , γxαγx(X) = αγx(X). For example we can choose α(X) = X if the size

of X exceeds some threshold, or as in [24], p. 27, α(X) = X if αB(X) 6= ∅, where αB is the

translation-invariant opening by a structuring element B. Clearly such a type of opening is

not necessarily connected.

An interesting study to be done is that of the wider class of openings α that preserve

connectivity: for X connected, α(X) is connected. This can be expressed as follows: for

every X ⊆ E and x ∈ E , γxαγx(X) = αγx(X) (if x ∈ αγx(X)) or γxαγx(X) = ∅ (if

x /∈ αγx(X)). A necessary (but not sufficient) condition is that (αγx)
2 = γxαγx for all

x ∈ E .

Given an anti-extensive operator ψ on P(E), let us consider the operator ψC resulting

from applying ψ separately to each connected component of a set in a connectivity class

C. For example in [24], p. 27, ψ is the above-mentioned opening which preserves X if

αB(X) 6= ∅, and removes it otherwise, and ψC removes all connected components too small

or narrow to contain a translate of B. For X ⊆ E we have

ψC(X) =
⋃

x∈E

ψγx(X). (1.3)

As ψ is anti-extensive, so is ψC . When is ψC increasing and idempotent, in other words an

opening?

Proposition 1.5. Let C be a connectivity class with system of connectivity openings γx

(x ∈ E). Let ψ be an anti-extensive operator on P(E), and let ψC given by (1.3). Then for

X ⊆ E we have

ψC(X) =
⋃

x∈E

γxψγx(X), (1.4)

ψ2
C(X) =

⋃

x∈E

(ψγx)
2(X). (1.5)

Moreover:

(a) ψC is increasing if and only if the restriction of ψ to C is increasing.

(b) ψC is idempotent if and only if (ψγx)
2 = γxψγx for every x ∈ E .

(c) ψC = ψ if and only if γxψγx = γxψ for every x ∈ E .

In particular ψC is an opening when ψ is an opening preserving connectivity in C, and ψC = ψ

when ψ is an opening connected for C.

Proof. Note first that for Y ⊆ X and x ∈ E we have γx(Y ) = γx(Y ∩γx(X)). Indeed, as γx

is an opening, γx(Y ) ⊆ Y and γx(Y ) ⊆ γx(X), so that γx(Y ) ⊆ Y ∩ γx(X) ⊆ Y ; applying

γx to each term of the inequality, we get

γx(Y ) = γxγx(Y ) ⊆ γx(Y ∩ γx(X)) ⊆ γx(Y ),

and the equality follows. For any X ⊆ E we have (for Y = ψC(X)):

γx(ψC(X)) = γx
(
ψC(X) ∩ γx(X)

)
= γx

((⋃

z∈E

ψγz(X)
)
∩ γx(X)

)

= γx

(⋃

z∈E

(
ψγz(X) ∩ γx(X)

))
= γx

(
ψγx(X) ∩ γx(X)

)
= γxψγx(X),

9



because for every z ∈ E , either γz(X) = γx(X) or ψγz(X) ∩ γx(X) ⊆ γz(X) ∩ γx(X) = ∅.

This gives finally

ψ2
C(X) =

⋃

x∈E

ψγx(ψC(X)) =
⋃

x∈E

ψγxψγx(X),

that is (1.5).

Let x ∈ ψC(X). For any z such that γz(X) 6= γx(X), we have γz(X)∩γx(X) = ∅, hence

x /∈ γz(X), and as ψ is anti-extensive, x /∈ ψγz(X). By (1.3), we have thus x ∈ ψγx(X), and

so x ∈ γxψγx(X). Therefore ψC(X) ⊆
⋃

x∈E γxψγx(X), and as each γx is anti-extensive, we

obtain from (1.3) the equality (1.4).

For X ∈ C, ψC(X) = ψ(X) and so for ψC to be increasing, the restriction of ψ to C

must be increasing. This condition is also sufficient, because for any X ⊆ E and x ∈ E ,

γx(X) ∈ C, and for X ≤ Y we have γx(X) ≤ γx(Y ) and so ψγx(X) ≤ ψγx(Y ). Thus (a)

holds.

By (1.4) and (1.5), ψ2
C(X) = ψC(X) is equivalent to

⋃

x∈E

(ψγx)
2(X) =

⋃

x∈E

γxψγx(X).

Now (ψγx)
2(X) ⊆ γxψγx(X) for each x ∈ E (since ψ is anti-extensive); moreover for x, z ∈ E

γxψγx(X) ∩ γzψγz(X) 6= ∅ implies that γx(X) ∩ γz(X) 6= ∅, so that γx(X) = γz(X) and

γxψγx(X) = γzψγz(X). Therefore the above equality holds if and only if (ψγx)
2(X) =

γxψγx(X) for every x ∈ E . This gives (b). As seen previously, this condition is satisfied in

particular when ψ is an opening which preserves connectivity in C.

As ψ(X) =
⋃

x∈E γxψ(X), we have ψ(X) = ψC(X) if and only if

⋃

x∈E

γxψ(X) =
⋃

x∈E

γxψγx(X).

As γxψγx(X) ⊆ γxψ(X) for each x ∈ E , and for x, z ∈ E we have γxψ(X) ∩ γzψ(X) = ∅ or

γxψ(X) = γzψ(X), the above equality holds if and only if γxψγx(X) = γxψ(X) for every

x ∈ E . Thus we get (c). From (1.1) this condition is verified in particular when ψ is an

opening connected for C.

We illustrate this result in the two-dimensional digital case with 4-connectivity, and ψ defined

by

ψ(X) =

{
X if |X | ≥ 12,
αB(X) otherwise,

where αB is the translation-invariant opening by a 4-connected structuring elementB (again,

the 5-pixel cross). It is easily shown that ψ is an opening. Moreover, as αB is connected,

from (1.1) we can obtain (αBγx)
2 = γxαBγx for every x ∈ E , from which we derive (ψγx)

2 =

γxψγx. Thus ψC is an opening. Note that ψ is not connected, does not preserve connectivity,

and is distinct from ψC . We show in Figure 1.4 the behaviour of ψC on a digital set. Large

connected components are preserved, small ones are diminished, and can even disappear.

Chapter 7 of [22] considers closings ϕ such that ϕγxϕ = γxϕ for every x ∈ E , which

means that for every invariant F of ϕ, all connected components of F for C are also invariants
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• • • • · · · · • · · · • ·

B • · • · · · · • • • ◦ • • •

B B B • · • • · · · · • · · · • ·

B • · • · · ◦ · · · · · · · ·

• · • · ◦ ◦ ◦ ◦ ◦ ◦ · · · ·

Figure 1.4. The points of X which are deleted by ψC are written ◦, those which are

preserved are written •.

of ϕ (this is the analogue for closings of the openings connected for C considered above). Now

ϕγxϕ = γxϕ is equivalent to γxϕγx = ϕγx, which means that ϕ preserves connectivity (for

X connected, ϕ(X) is connected). A subclass of this family consists of all closings which do

not create connected components. An interesting fact proved there is that these two classes

of closings form complete lattices for the ordering by inclusion. Hence for any closing ϕ

on P(E), there is a greatest closing ϕc preserving connectivity (or not creating connected

components) such that ϕc(X) ⊆ ϕ(X) for all X ⊆ E . For example from the convex hull

(obviously a closing) we derive the “connectivity preserving convex hull” or “convex hull

which does not create connected components”.

The author has considered with H. Heijmans the possibility of defining connectivity

classes on other object spaces than P(E), for example on the space of grey-level images on

E . In fact this is possible by translating conditions (i) to (v) into any complete lattice L

where instead of points or singletons we have a sup-generating family, that is a subset ℓ of L

such that any element of L is the supremum of a subset of ℓ. This applies thus to grey-level

images by taking ℓ to be the set of impulse functions (see [6], Section 4.). However such

notions of connectivity are generally useless, since they consist mainly of statements of the

form “the umbra of the image is connected”.

1.2. Annular openings

On p. 107 of [22] Serra defines a new class of translation-invariant openings on the complete

lattice P(E) of parts of a digital or Euclidean space E . He shows that for every non-

empty symmetric structuring element B (that is x ∈ B implies −x ∈ B), the operator

γB : P(E) → P(E) : X 7→ X ∩ (X ⊕B) is an opening. Normally one takes B not containing

the origin o, otherwise γB reduces to the identity X 7→ X ; if B is a ring centered about o,

such an opening will remove isolated particles from a set (see Figure 5.2 on p. 108 of [22]).

This example leads to the denomination of annular opening for γB.

Such an opening can also be defined without translation-invariance. As in Proposi-

tion 1.2, consider a map W : E → P(E), and let δW be the dilation given by δW (A) =⋃
x∈AW (x). The symmetry condition on B generalizes to W as follows: for p, q ∈ E we

have p ∈ W (q) ⇐⇒ q ∈ W (p). Then the operator γW : P(E) → P(E) : X 7→ X ∩ δW (X)

is an opening. For any X ⊆ E , γW (X) is the union of all pairs {x, y} such that x, y ∈ X

and y ∈W (x) (or equivalently x ∈W (y)). Usually one takes W such that x /∈ W (x) for all

x ∈ E .

In Section 3 of [19] this construction has been generalized to a wide class of complete
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lattices satisfying the following infinite supremum distributivity law:

Y ∧ (
∨

j∈J

Xj) =
∨

j∈J

(Y ∧Xj). (ISD)

This excludes in particular the complete lattice of convex sets (which is not distributive).

Let for example L be the complete lattice of grey-level functions E → G, where the

space E is either ZZd or IRd, and the set G of grey-levels is either ZZ = ZZ ∪ {+∞,−∞} or

IR = IR ∪ {+∞,−∞}. Then the Minkowski addition F ⊕ G of two grey-level functions F

and G is defined by setting

(F ⊕G)(x) = sup
h∈E

[F (x− h) +G(h)]

for any x ∈ E , with the further convention, in cases of ambiguous expressions of the form

+∞ − ∞, that F (x − h) + G(h) = −∞ when F (x − h) = −∞ or G(h) = −∞ (see [6],

Section 4). For any grey-level structuring function G : E → G, we define the support of G,

supp(G), as the set of points h ∈ IRd for which G(h) > −∞. Now assume that:

(i) supp(G) is symmetric;

(ii) G(h) +G(−h) ≥ 0 for every h ∈ supp(G).

Then the operator γG : L → L : F 7→ F ∩ (F ⊕G) is an opening. In general one chooses G

such that supp(G) does not contain the the origin o, otherwise γG reduces to the identity

F 7→ F . When G is a flat structuring function (G(h) = 0 for h ∈ supp(G)), the behaviour

of γG is analogous to that of the corresponding annular opening γsupp(G) for sets.

In Section 5 of [5] this example has been extended to grey-level functions with a finite

set of grey-levels, say {0, . . . , N}.

1.3. Iteration of anti-extensive operators

We will see in Section 2 that a supremum of openings (on a given complete lattice L) is again

an opening. On the other hand an infimum of openings is generally not an opening: it is

anti-extensive, increasing, but usually not idempotent. In fact any anti-extensive increasing

operator can arise in this way:

Proposition 1.6. Every anti-extensive and increasing operator on a complete lattice L is

an infimum of openings on L.

Proof. Let ψ be anti-extensive and increasing. For any B ∈ L define the operator ψB as

follows:

ψB(X) =

{
ψ(B) ∧X if X ≤ B;
X if X 6≤ B.

We will show that each ψB is an opening, and that ψ is the infimum of all ψB.

It is clear that ψB is anti-extensive. To verify that it is increasing, let X ≤ Y ; if

X ≤ B, then ψB(X) = ψ(B) ∧X ≤ ψ(B) ∧ Y ≤ ψB(Y ); on the other hand if X 6≤ B, then

Y 6≤ B and so ψB(X) = X ≤ Y = ψB(Y ); therefore ψB(X) ≤ ψB(Y ) in any case. Next we

show that ψB is idempotent; if X ≤ B, then ψB(X) = ψ(B) ∧X ≤ X ≤ B, and so

ψ2
B(X) = ψ(B) ∧ ψB(X) = ψ(B) ∧

(
ψ(B) ∧X

)
= ψ(B) ∧X = ψB(X);
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on the other hand if X 6≤ B, then ψB(X) = X and so ψ2
B(X) = X . Thus ψ2

B(X) = ψB(X)

in any case, and ψB is an opening.

Now for any X ∈ L, ψ(X) ≤ ψB(X); indeed, if X ≤ B, then ψ(X) ≤ ψ(B) and

ψ(X) ≤ X , so that ψ(X) ≤ ψ(B) ∧ X = ψB(X); on the other hand if X 6≤ B, then

ψ(X) ≤ X = ψB(X). Moreover, we have ψX(X) = ψ(X) ∧X = ψ(X). As ψ(X) ≤ ψB(X)

for each B ∈ L, but ψX(X) = ψ(X), we get ψ(X) =
∧

B∈L ψB(X), that is ψ =
∧

B∈L ψB.

Note that this result does not extend to the case where T-invariance is required. As coun-

terexample, take L = ZZ = ZZ∪ {+∞,−∞}, ordered in the usual way, and T = ZZ acting by

translation; there are only two T-openings, the identity and constant −∞ mappings, but

there are infinitely many anti-extensive and increasing T-operators between them, namely

all negative translations.

As an illustration of strange results that can be obtained by combining only two very

simple openings, Example 5.1 in Section 5 of [19] takes in the digital plane ZZ2 a (2 × 2)-

square A and a 5-pixel cross B, and considers the two translation-invariant morphological

openings αA and αB by A and B on the complete lattice P(ZZ2). Then αAαB, αBαA, and

αA∩αB are not openings. They share the same set of invariants, namely Inv(αA)∩Inv(αB),

some elements of which are illustrated in Figure 5 (c) there. Choosing an operator ψ among

these three, and iterating it indefinitely: ψ, ψ2, ψ3, . . ., for n → ∞ the sequence of powers

ψn converges to an opening α, the greatest opening which is less than both αA and αB.

Although the behaviour of αA and αB is easily described in terms of translates of A and

B respectively, this is not the case for α: we were unable to characterize geometrically the

family of structuring elements in terms of which it can be decomposed (and in fact this

family is infinite).

In general terms, the problem considered in Section 5 of [19] is whether the infinite

iteration ψ, ψ2, ψ3, . . ., of an anti-extensive and increasing operator ψ on a complete lattice

L, converges to an opening, even after an infinite number of steps. This convergence is

defined as follows. Clearly . . . ≤ ψn ≤ ψn−1 ≤ . . . ≤ ψ; thus ψn is a decreasing sequence of

T-operators and we define its “limit” ψ∞ by

ψ∞ =
∧

n≥1

ψn.

Then ψ∞ is an increasing and anti-extensive operator. For ψ∞ to be idempotent, it is

necessary and sufficient to have ψ · ψ∞ = ψ∞. It is important to notice that this equality

does not necessarily hold. Two examples where ψ(ψ∞(X)) 6= ψ∞(X) for some X ∈ L can

be found: on p. 113 of [22] for L = P(H), where H is a closed half-line in IR, and in [4] for

L = P(ZZ); the latter is particularly instructive, since ψ takes the form X 7→ (X ⊕ A) ∩X

for some infinite subset A of ZZ.

There are then two possible orientations for obtaining an opening by iteration of ψ.

The first one [10] is to admit higher powers of ψ than than integers or infinity, using the

concept of ordinals from Zermelo-Fraenkel set theory. For any ordinal ν, ψν is defined by

transfinite induction as follows: if ν is a successor, that is ν = µ + 1 of another ordinal µ,

then we set ψν = ψ ·ψµ; otherwise ν is a limit, and we set ψν =
∧

0<µ<ν ψ
µ. As L is smaller
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than the class of ordinals, it is guaranteed that for some ordinal ν we will have ψν = ψµ

for every ordinal µ > ν, and so ψν is idempotent. This approach is useless for practical

applications, but has some theoretical interest.

The second orientation is to find sufficient conditions for having ψ · ψ∞ = ψ∞. This

problem is studied in [4] for sets in a digital or Euclidean space, and in Section 5 of [19]

for arbitrary complete lattices (see also [23]). In particular it is shown that this equality is

always verified for “local” operators on sets, whose behaviour at a point p depends on the

configuration of points in a finite neighbourhhod of p. This is the case for openings by a

finite structuring element that we considered in the example above. Possible applications of

this approach in digital geometry include the construction of an opening from a local median

filter [4], or the well-known computation of the distance transform of a set by iteration of

a local neighbourhood transform, which is in fact an erosion [19]. This question is further

developped in Section 7 of [5] for grey-level functions with a finite set of grey-levels. A

general theoretical study of this subject is in preparation [7].

1.4. Miscellany

We mentioned at the beginning the relation between openings and size distributions, follow-

ing Chapter 10 of [20]: for λ > 0, the operator ψλ extracting from a population the subset

consisting of all elements having size at least λ must clearly be an opening. This concept can

be generalized to a situation where size is not quantified, but we speak of “large enough”

instead of “having size at least λ”. We have only to specify the class B of elements which are

“large enough”, from which we require only that “larger than large enough is large enough”,

that is B ∈ B and B ≤ C implies C ∈ B.

This idea is at the basis of the recently found class of “rank-max” and related openings

[15], which generalize the translation-invariant opening αB by a structuring element B in a

digital or Euclidean space: instead of taking the union of all translates of B contained in

a set X , we take the union of all subsets of X which consist of “large enough” portion of

a translate of B. This type of openings will be discussed in Section 3, where we will study

inf-overfilters.

Given a complete lattice L with least element O and an increasing operator ψ on L,

we can define X to be “large enough” if ψ(X) 6= O; indeed ψ(X) 6= O and X ≤ Y implies

ψ(Y ) 6= O. We derive then the operator G[ψ] which preserves all “large enough” elements

of L and removes all others:

G[ψ](X) =

{
X if ψ(X) 6= O;
O if ψ(X) = O.

It is easily checked that this is an opening, and that it is invariant under the same auto-

morphisms of L as ψ. When L = P(E), we have already met such a type of opening in

Subsection 1.1 (before Proposition 1.5).

For grey-level functions E → G (where E is the space ZZd or IRd, and G is the set of

grey-levels ZZ = ZZ∪{+∞,−∞} or IR = IR∪{+∞,−∞}), we can also remove all grey-levels

which are below a given threshold g ∈ G. This gives the threshold opening αg defined by
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setting for every function F and point p ∈ E :

αg(F )(p) =

{
F (p) if F (p) ≥ g ;
−∞ if F (p) < g .

Openings and closings often intervene in computational geometry, particularly when

one studies convexity in relation to shape. In fact the convex hull operation, as well as

most of its variants (see [16]), is a translation-invariant closing. Sometimes morphological

operators are applied in this field without the authors being aware of it. For example in [2]

shape is discussed in relation to “α-hull” operators on Euclidean planar subsets, which are

defined as follows for any α ∈ IR; given a set X ⊆ IR2, its α-hull is:

— for α = 0, its convex hull;

— for α > 0, the intersection of all closed disks of radius 1/α containing X ;

— for α < 0, the intersection of all sets containing X which are complements of an open

disk of radius −1/α.

The authors derive from this construction some mathematical features related to the Delau-

nay triangulation of a finite cluster of points. See also [9] for an extension of this analysis. In

fact, the α-hull is a translation-invariant closing, and for α 6= 0 it is an example of structural

T-closing, a concept that we will introduce in Section 2.

The reader should consult Chapter 4 of [20] (and optionally Chapters 17 and 18 of [22])

for a detailed analysis of the role of convexity in Euclidean mathematical morphology. This

background can be fruitful when one studies the wide literature on convexity and shape (see

in particular [16], especially Section D).

Finally let us refer to the other chapters of this book (in particular [5]) for further

examples of openings.

2. Algebraic Theory of Openings

Contemporary mathematical morphology studies the algebraic properties of image transfor-

mations in a very general framework: the object space (that is, the set of all pictures on

which some types of operations are defined) is any complete lattice. Only in certain circum-

stances do we need to make some assumptions on it (cfr. the Basic Assumption below) in

order to obtain more precise characterizations.

In Section 1 we have met several examples of complete lattices, in particular the set

P(E) of parts of a space E , ordered by inclusion. The basic concepts related to complete

lattices were introduced in Subsection 1.3 of [6]. The reader should be acquainted with it.

A more detailed exposition is to be found in Chapters 1 and 5 of [1]. Let us recall briefly

our notation.

We have a complete lattice L with the order relation ≤, a supremum operation written∨
or sup, an infimum operation written

∧
or inf, both defined on any non-void subset of

L, and two universal bounds, the least element O and the greatest element I, defined by

I = supL and O = inf L. Note that the supremum and infimum operations are also defined

for the empty set:

O =
∨

∅ and I =
∧

∅. (2.1)
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(Cfr. the convention setting an empty sum equal to zero and an empty product equal to

one). Other elements of L are written by capital letters X,Y, Z, etc. We consider O = LL,

the set of all maps ψ : L → L, and elements of O are called operators; O is naturally ordered

by setting ψ ≤ ξ if and only if ψ(X) ≤ ξ(X) for all X ∈ L. Then O inherits the complete

lattice structure of L, with O : X 7→ O and I : X 7→ I as least and greatest elements

respectively, and the supremum and infimum operations given by setting for any X ∈ L and

any family ψj (j ∈ J) of operators:

(∨

j∈J

ψj

)
(X) =

∨

j∈J

(
ψj(X)

)
and

(∧

j∈J

ψj

)
(X) =

∧

j∈J

(
ψj(X)

)
.

The identity operator X 7→ X is written id. Other operators are written by lowercase greek

letters β, γ, etc., with the letters α, δ, ε, ϕ, τ being reserved to openings, dilations, erosions,

closings, and “translations” (that is, automorphisms of L). The composition ψθ of the

operator θ by the operator ψ is defined by ψθ(X) = ψ
(
θ(X)

)
for X ∈ L. In particular, we

write ψ2 for ψψ, and more generally ψn for the composition of ψ repeated n times (n > 0).

The range of an operator ψ is the set Ran(ψ) of all ψ(X) for X ∈ L; an invariant of ψ

is some X ∈ L such that ψ(X) = X ; the domain of invariance of ψ is the set Inv(ψ) of all

invariants of ψ. Clearly Inv(ψ) ⊆ Ran(ψ); moreover we have the following characterization

of the idempotence of ψ:

ψ2 = ψ ⇐⇒ Ran(ψ) ⊆ Inv(ψ) ⇐⇒ Ran(ψ) = Inv(ψ). (2.2)

The operators in which we are interested are generally supposed to be invariant under

a certain group of automorphisms of the complete lattice L (for example the group of

translations when L is the set of parts of a Euclidean space). We take thus any group T of

automorphisms of L. Given τ ∈ T and an operator ψ ∈ O, we will say that ψ commutes

with τ , or that ψ is τ -invariant, if ψτ = τψ. Moreover, we will say that ψ is T-invariant if ψ

commutes with every τ ∈ T. We will use the prefix “T-” for “T-invariant”. We will speak

thus of T-operators, T-dilations, T-erosions, T-openings, T-closings, etc. (see Section 3 of

[6]). Note that when the operator ψ is not T-invariant, the least T-operator ≥ ψ and the

greatest T-operator ≤ ψ are

∨

τ∈T

τψτ−1 and
∧

τ∈T

τψτ−1

respectively. We recall Proposition 3.1 of [6]: the set of T-operators is closed under the

operations of composition, supremum, infimum, and it contains id, O, I. When T-invariance

is not necessary, we can take T = {id}, and then a result concerning T-operators for

an arbitrary T can be particularized into a similar one for operators without translation-

invariance.

Given a subset B of L and τ ∈ T, let τ(B) = {τ(X) | X ∈ B}. We will say that B

is T-invariant if for every τ ∈ T, B = τ(B). As T is a group, it is sufficient to show that

τ(B) ⊆ B for any τ ∈ T, because we have then τ−1(B) ⊆ B and so B = τ
(
τ−1(B)

)
⊆ τ(B).

If B is not T-invariant, then the T-invariant set generated by B is BT =
⋃

τ∈T
τ(B). We

16



say that a subset B of L is sup-closed if sup C ∈ B for any C ⊆ B (in particular O ∈ B by

(2.1)); an inf-closed subset of L is defined similarly. By Proposition 1.1 of [6], a sup-closed

subset B of L is itself a complete lattice, with universal bounds O and supB, the same

supremum operation as in L, but an infimum operation infB not necessarily equal to the

one in L: for K ⊆ L, infB(K) is equal to the greatest element of B which is a lower bound of

K. We write Bsup and Binf for the sup-closed and inf-closed subsets generated by B. They

consist of all suprema
∨
H and infima

∧
H respectively of subsets H of B. Note that the

sup-closed subset of L generated by a T-invariant set is itself a T-invariant set; when B is

not a T-invariant set, the sup-closed T-invariant set generated by B is BT
sup = (BT)sup. The

same is true for inf-closed sets.

2.1. Adjunctions, dilations, and erosions

One of the main contributions of [6] is the thorough study of adjunctions as a general

principle for pairing dilations and erosions.

We recall from [22], Chapter 1, and [6], Subsection 2.1, that a dilation and an erosion

are operators commuting with the supremum and infimum operations respectively, in other

words δ is a dilation if

δ(
∨

j∈J

Xj) =
∨

j∈J

δ(Xj)

and ε is an erosion if

ε(
∧

j∈J

Xj) =
∧

j∈J

ε(Xj)

for any subset {Xj | j ∈ J} of L. In particular by (2.1) we have δ(O) = O and ε(I) = I. This

definition includes as special case the well-known translation-invariant dilation X 7→ X ⊕B

and erosion X 7→ X ⊖ B of a set X by a structuring element B in a Euclidean or digital

space.

Note that any dilation or erosion is an increasing operator, and that any automorphism

of L is both a dilation and an erosion.

Although idempotence, extensivity, and anti-extensivity have a meaning only for op-

erators mapping an object space L into itself, this is not the case for increasing operators,

dilations, and erosions. They can be defined also as operators L1 → L2, where L1 and L2

are two complete lattices. This is not a futile abstraction. Operators between distinct object

spaces have been considered in the following situations:

— Distance transforms: given a digital space E , the distance transform is a map P(E) →

Fun(E), where Fun(E) is the set of grey-level functions E → ZZ; it involves a dilation

or an erosion, according to the convention used to express the transform. See [25] and

Subsection 5.3 of [19].

— Decomposition of morphological operations on power lattices: see Subsection 2.4 of [6],

where several practical examples are given.

— Transformation of dilations and erosions for grey-level functions E → G, where G = ZZ

or IR, into similar ones for grey-level functions E → Ĝ, where Ĝ is a bounded closed

subset of G: see [18], Section 4.
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— Sampling and reconstruction: given the set G = ZZ or IR of grey-levels, a space E and

a subspace D ⊆ E , the two object spaces Fun(E) and Fun(D) of grey-level functions

E → G and D → G respectively can be linked by two maps, namely a sampling

σ : Fun(E) → Fun(D) and a reconstruction ρ : Fun(D) → Fun(E). H. Heijmans and

A. Toet [8] considered such operators in the case where E is a digital space and D

a subspace with coarser resolution, and proposed to take a dilation for σ, and the

adjoint erosion for ρ. This principle is also valid when E = IRd and D = ZZd, in the

context of digitization. Moreover it can be applied to the sampling and reconstruction

of sets, with σ : P(E) → P(D) and ρ : P(D) → P(E) (cfr. the well-known square box

quantization of sets).

Now given two operators η : L2 → L1 and ζ : L1 → L2, we call the pair (η, ζ) an adjunction

between L2 and L1 if and only if for any X ∈ L1 and Y ∈ L2 we have

ζ(X) ≤ Y ⇐⇒ X ≤ η(Y ). (2.3)

When ζ and η are both L → L, we say that (η, ζ) is an adjunction on L. Adjunctions on L

were considered by Serra in Chapter 1 of [22] under the name of “morphological duality”.

However this concept is much older than mathematical morphology; it is linked to the

classical mathematical notion of Galois connection (see [6], Subsection 2.3), and to category

theory [3].

Examples of adjunctions include: the erosion and dilation by a structuring element

B for Euclidean or digital sets, the reconstruction and sampling mappings of [8] that we

mentioned above.

Adjunctions between distinct complete lattices are very interesting from a theoretical

point of view. For example they are used by Roerdink [14] in order to define Minkowski

operations ⊕ and ⊖ in the case of a space with a non-abelian group of symmetries in place

of translations. In [5] an adjunction between grey-level functions and sets is defined from

thresholding (see the equations (4.2) and (4.5) there), and it is used to extend set operators

to “flat” operators on grey-level images. A further application of this general framework

will be given in the next subsection for the structural characterization of openings. We will

thus consider two or even three complete lattices, which may or may not be distinct, and

adjunctions between them.

A detailed study of adjunctions is made in Subsections 2.3 and 3.1 of [6], and Subsec-

tion 2.2 of [19]. We will summarize these results here. First, adjunctions are restricted to

dilations and erosions with the same invariant automorphisms:

Lemma 2.1. Given an adjunction (η, ζ) between two complete lattices L2 and L1 and a

group T of automorphisms of both L1 and L2,

(i) ζ is a dilation and η is an erosion;

(ii) ζ is T-invariant if and only if η is T-invariant.

(Note that when T acts as a group of automorphisms of both L1 and L2 it is meaningful to

speak ofT-invariance for operators L1 → L2 and L2 → L1.) For a proof, see Propositions 2.5

and 3.2 of [6]. An adjunction (η, ζ) where ζ and η are T-invariant is called a T-adjunction.
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Now let δ be a T-dilation L1 → L2. If (ε, δ) is a T-adjunction for some T-erosion

ε : L2 → L1, then for any Y ∈ L2, ε(Y ) is by definition the greatest Z ∈ L1 such that

Z ≤ ε(Y ). Now by (2.3) Z ≤ ε(Y ) ⇐⇒ δ(Z) ≤ Y , so that:

For every Y ∈ L2, ε(Y ) is the greatest Z ∈ L1 such that δ(Z) ≤ Y . (2.4)

But the greatest element of a set is its supremum, and hence (2.4) implies:

For every Y ∈ L2, ε(Y ) =
∨

{Z ∈ L1 | δ(Z) ≤ Y }. (2.5)

Finally if (2.5) holds, it is easy to show (see in [6] the proofs of Proposition 2.6 and point (i)

of Theorem 2.7), using the fact that δ commutes with supremum, that (ε, δ) is an adjunction,

and so ε is a T-erosion. Therefore the three statements: (ε, δ) is a T-adjunction, (2.4), and

(2.5), are equivalent. Similarly, given a T-erosion ε : L2 → L1, the fact that (ε, δ) is a

T-adjunction is equivalent to each of the following two statements:

For every X ∈ L1, δ(X) is the least Z ∈ L2 such that X ≤ ε(Z). (2.6)

For every X ∈ L1, δ(X) =
∧

{Z ∈ L2 | X ≤ ε(Z)}. (2.7)

We conclude:

Proposition 2.2. Given a group T of automorphisms of two complete lattices L1 and

L2, the set of T-adjunctions between L2 and L1 constitutes a bijection between the set of

T-dilations L1 → L2 and the set of T-erosions L2 → L1; in other words:

(i) Given a T-dilation δ : L1 → L2, there is a unique T-erosion ε : L2 → L1 such that

(ε, δ) is an adjunction; ε is defined by (2.4) or equivalently (2.5).

(ii) Given a T-erosion ε : L2 → L1, there is a unique T-dilation δ : L1 → L2 such that

(ε, δ) is an adjunction; δ is defined by (2.6) or equivalently (2.7).

In an adjunction (ε, δ), we say that ε is the upper adjoint of δ, while δ is the lower adjoint

of ε; accordingly we write ε = δ̇ and δ = ε
˙
in order to mean (2.5) and (2.7). The following

result is easily proved from (2.3):

Lemma 2.3. Given a group T of automorphisms of three complete lattices L1, L2, and L3:

(i) If (εj , δj) is a T-adjunction between L2 and L1 for every j ∈ J , then (
∧

j∈J εj ,
∨

j∈J δj)

is a T-adjunction between L2 and L1.

(ii) Given two T-adjunctions (ε, δ) between L2 and L1 and (ε′, δ′) between L3 and L2,

then (εε′, δ′δ) is a T-adjunction between L3 and L1.

Following [1], one calls a dual isomorphism between two lattices a bijection θ which reverses

the partial order relation: X ≤ Y ⇐⇒ θ(X) ≥ θ(Y ). A bijection which transforms

suprema into infima is a dual isomorphism, because we have then:

X ≤ Y ⇔ Y = X ∨ Y ⇔ θ(Y ) = θ(X ∨ Y ) ⇔ θ(Y ) = θ(X) ∧ θ(Y ) ⇔ θ(X) ≥ θ(Y ).

From Proposition 2.2 and Lemma 2.3 we derive then the following immediate consequence:
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Corollary 2.4. Given a group T of automorphisms of three complete lattices L1, L2, and

L3:

(i) The set of T-dilations L1 → L2 is sup-closed, the set of T-erosions L2 → L1 is inf-

closed; both are thus complete lattices. The set of T-adjunctions between L2 and L1

is a dual isomorphism between these two complete lattices.

(ii) The composition of two T-dilations L1 → L2 and L2 → L3 is a T-dilation L1 → L3,

and the same holds for T-erosions. T-adjunctions induce an anti-automorphism for

the law of composition, in other words for three dilations δ, δ1, δ2 we have δ = δ1δ2 if

and only if δ̇ = δ̇2δ̇1.

In particular when we restrict ourselves to one complete lattice L, the set of T-dilations (or

T-erosions) is a monoid, in the sense that it is closed under composition and contains the

identity id. We end with the following result coming from the Propositions 2.8 of [6] and

[19], except the third point, whose proof is left to the reader:

Proposition 2.5. Given a group T of automorphisms of two complete lattices L1 and L2,

and a T-adjunction (ε, δ) between L2 and L1,

(i) δεδ = δ, εδε = ε, δε is a T-opening on L2, and εδ is a T-closing on L1.

(ii) Inv(δε) = Ran(δε) = Ran(δ) and Inv(εδ) = Ran(εδ) = Ran(ε).

(iii) Ran(δ) is sup-closed, Ran(ε) is inf-closed, and both are T-invariant; they are isomor-

phic complete lattices, where D ∈ Ran(δ) and E ∈ Ran(ε) correspond under this

isomorphism by the equivalent relations E = ε(D) and D = δ(E).

We can use (2.5) and (2.7) in order to describe the behaviour of δε and εδ. Applying δ to

both sides of (2.5), the fact that δ commutes with the supremum operation gives for any

Y ∈ L2:

δε(Y ) =
∨

{δ(Z) | Z ∈ L1, δ(Z) ≤ Y }. (2.8)

On the other hand (2.7) with X = ε(Y ) gives:

δε(Y ) =
∧

{Z ∈ L2 | ε(Y ) ≤ ε(Z)}. (2.9)

Similarly for any X ∈ L1 we obtain:

εδ(X) =
∧

{ε(Z) | Z ∈ L2, X ≤ ε(Z)}; (2.10)

=
∨

{Z ∈ L1 | δ(Z) ≤ δ(X)}. (2.11)

If we use (2.4) and (2.6) instead of (2.5) and (2.7), then in the above four equations we may

replace
∨

by “the greatest element of” and
∧

by “the least element of”.

2.2. Structural characterization of openings

Now we stay within a single complete lattice L with a groupT of automorphisms. Let us call

a contraction an increasing and anti-extensive operator. Thus an opening is an idempotent

contraction. Write CT for the set of T-contractions. We will exhibit an adjunction between

CT and P(L) which induces an isomorphism between the set of T-openings and the set of

sup-closed T-invariant subsets of L.

We first exhibit the structure of CT as complete lattice and monoid. The following

result is easily proved (part of it comes from Propositions 2.2 and 3.1 of [6]):
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Lemma 2.6. CT is closed under composition, arbitrary suprema, and non-empty infima,

and its has O and id as least and greatest element.

Thus CT is a complete lattice, with the same supremum and infimum operations as in the

set O of operators, except that the empty infimum is id in CT and I in O (cfr. (2.1)).

Now let us see how the partial order on CT is translated into the domain of invariance

of its elements. Given ψ, ψ′ ∈ CT, ψ ≤ ψ′ implies Inv(ψ) ⊆ Inv(ψ′); indeed, for X ∈ Inv(ψ)

we have X = ψ(X) ≤ ψ′(X) ≤ X and so X ∈ Inv(ψ′). For ψ1, . . . , ψn ∈ CT (n > 1) we have

Inv(ψ1 · · ·ψn) = Inv(ψ1) ∩ · · · ∩ Inv(ψn). (2.12)

Indeed, as ψ1 · · ·ψn ≤ ψj for j = 1, . . . , n, we get Inv(ψ1 · · ·ψn) ⊆ Inv(ψj); on the other

hand it is trivial that for X ∈ Inv(ψ1) ∩ · · · ∩ Inv(ψn) we have ψ1 · · ·ψn(X) = X . A similar

argument shows that for a non-empty family ψj (j ∈ J) of T-contractions,

Inv
(∧

j∈J

ψj

)
=

⋂

j∈J

Inv(ψj) (J 6= ∅). (2.13)

Now let P(L) be the complete lattice of parts of L, ordered by inclusion. We obtain the

following:

Proposition 2.7. The map CT → P(L) : ψ 7→ Inv(ψ) is an erosion. It has a lower adjoint

dilation P(L) → CT : B 7→ A
T(B) defined as follows: for any B ⊆ L, AT(B) is the least

T-contraction ξ such that B ⊆ Inv(ξ). Conversely, for any T-contraction ψ, Inv(ψ) is the

greatest X ⊆ L such that AT(X ) ≤ ψ.

Proof. By (2.13) the map ψ 7→ Inv(ψ) commutes with non-empty infima. As the empty

infimum is id in CT and L in P(L), since we have Inv(id) = L, that map commutes also

with the empty infimum, and it is an erosion. Given the lower adjoint dilation B 7→ A
T(B),

applying (2.6) and (2.4) to them gives the expression of AT(B) and Inv(ψ) respectively.

Following [22], in Subsection 2.2 of [19] we called A
T(B) the least T-extension of the identity

on B, which means that it is the least increasing T-operator having B in its domain of

invariance. As the map B 7→ A
T(B) is a dilation P(L) → CT, for any family Bj (j ∈ J) of

subsets of L (even an empty one) we have

A
T

(⋃

j∈J

Bj

)
=

∨

j∈J

A
T(Bj). (2.14)

The following result describes AT(B) in more detail:

Proposition 2.8. Given B ⊆ L,

(i) A
T(B) is a T-opening.

(ii) For any X ∈ L, AT(B)(X) =
∨
{B ∈ BT | B ≤ X}, and A

T(B)(X) is the greatest

Y ∈ BT
sup such that Y ≤ X .

(iii) Inv(AT(B)) = BT
sup.
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Proof. By definition, AT(B) is the least ξ ∈ CT such that B ⊆ Inv(ξ); but then B ⊆ Inv(ξ2)

and ξ2 ≤ ξ, from which we deduce ξ2 = ξ, that is AT(B) is idempotent, and (i) holds.

Let ψ be defined by ψ(X) =
∨
{B ∈ BT | B ≤ X}. Obviously ψ(X) ∈ BT

sup and

ψ(X) ≤ X . Given A ∈ BT
sup with A ≤ X , then either A = O ≤ ψ(X), or A = supX for

some non-empty X ⊆ BT, and for each B ∈ X we have B ≤ A ≤ X , so that X enters in

the decomposition of ψ(X) and A ≤ ψ(X). Thus ψ(X) is the greatest Y ∈ BT

sup such that

Y ≤ X . It is then easy to show that ψ is a T-contraction and Inv(ψ) = BT

sup.

Let ξ be a T-contraction such that B ⊆ Inv(ξ). The T-invariance of ξ implies that

BT ⊆ Inv(ξ). For every B ∈ BT such that B ≤ X , we have B = ξ(B) ≤ ξ(X), and so

ψ(X) ≤ ξ(X) by definition of ψ. Thus ψ is the least T-contraction having B in its domain

of invariance, and so ψ = A
T(B) and Inv(AT(B)) = Inv(ψ) = BT

sup. Hence (ii) and (iii)

hold.

The next result is Proposition 2.3 of [19]:

Proposition 2.9. Let α be an opening and ψ a contraction. Then the following four

statements are equivalent:

(i) α ≤ ψ.

(ii) αψ = α.

(iii) ψα = α.

(iv) Inv(α) ⊆ Inv(ψ).

Consider for example size distributions: for each λ > 0, there is an opening αλ extracting

from a population the subset consisting of all elements of size at least λ; then for λ > µ > 0

we have obviously αλ ≤ αµ and αλαµ = αµαλ = αλ.

Now the above results allow us to formulate the structural characterization of T-

openings in terms of sup-closed T-invariant subsets of L:

Theorem 2.10.

(i) For any T-contraction ψ, ψ is a T-opening if and only if ψ = A
T(B) for some subset

B of L.

(ii) The set of T-openings is sup-closed, with universal bounds O and id.

(iii) For any T-contraction ψ, AT(Inv(ψ)) is the greatest T-opening ≤ ψ.

(iv) For any subset B of L, B is sup-closed and T-invariant if and only B = Inv(ψ) for some

T-contraction ψ.

(v) The set of sup-closed T-invariant subsets of L is closed under intersection, with uni-

versal bounds ∅ and L.

(vi) For any subset B of L, Inv(AT(B)) = BT

sup, the least sup-closed T-invariant subset of

L containing B.

(vii) The set of T-openings, ordered by ≤, and the set of sup-closed T-invariant subsets of

L, ordered by inclusion, are isomorphic complete lattices. A T-opening α and a sup-

closed T-invariant set B correspond under this isomorphism by the equivalent relations

B = Inv(α) and α = A
T(B).

Proof. We will use freely Proposition 2.5 with δ : P(L) → CT : B 7→ A
T(B) and ε : CT →

P(L) : ψ 7→ Inv(ψ).
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(i): By Proposition 2.8 (i), A
T(B) is a T-opening. Conversely, given a T-opening α,

A
T(Inv(α)) is by definition the least T-contraction ξ such that Inv(α) ⊆ Inv(ξ) (see Propo-

sition 2.7). Now by Proposition 2.9, Inv(α) ⊆ Inv(ξ) is equivalent to α ≤ ξ, and so this least

ξ must be α, that is α = A
T(Inv(α)).

(ii): By (i) the range of δ is the set of T-openings, and Ran(δ) is sup-closed. See also (2.14).

(iii): A
T(Inv(ψ)) is a T-opening (see (i)), and as δε is anti-extensive, AT(Inv(ψ)) ≤ ψ.

Given any other T-opening α ≤ ψ, by Proposition 2.9 we have Inv(α) ⊆ Inv(ψ); now

as εδε = ε, we have Inv(AT(Inv(ψ))) = Inv(ψ), so that Inv(α) ⊆ Inv(AT(Inv(ψ))); by

Proposition 2.9 this gives α ≤ A
T(Inv(ψ)). Thus AT(Inv(ψ)) is the greatest such α.

(iv): Given a T-contraction ψ and B = Inv(ψ), by Proposition 2.8 (iii) and the fact that

εδε = ε we obtain BT

sup = Inv(AT(B)) = Inv(AT(Inv(ψ))) = Inv(ψ) = B, that is B is sup-

closed and T-invariant. Conversely if B is sup-closed and T-invariant, Proposition 2.8 (iii)

again gives B = BT
sup = Inv(AT(B)).

(v): By (iv) the range of ε is the set of sup-closed T-invariant subsets of L, and Ran(ε) is

inf-closed. See also (2.13).

(vi) follows from Proposition 2.8 (iii), given the obvious fact that BT
sup is the least sup-closed

T-invariant subset of L containing B.

(vii): We have shown that Ran(δ) is the set of T-openings, while Ran(ε) is the set of sup-

closed T-invariant subsets of L. Both complete lattice are isomorphic, the isomorphism

being given by the restriction of δ to Ran(ε) or conversely the restriction of ε to Ran(δ).

Given B ∈ L, let us write A
T

B for AT({B}); we call it the structural T-opening by B, and

for each X ∈ L we have

A
T

B(X) =
∨

{τ(B) | τ ∈ T, τ(B) ≤ X}.

Clearly A
T

B = A
T

τ(B) for every τ ∈ T. For example in the case where L = P(E) for a digital

or Euclidean space E and T is the group of translations of E , for B ⊆ E the structural

T-opening A
T

B by B is equal to δBεB, the composition of the erosion and dilation by B.

Given a T-opening α and any B ⊆ L such that Inv(α) = BT

sup, we have α = A
T(B)

by the above theorem, and (2.14) gives A
T(B) = supB∈B A

T

B . Thus every T-opening is a

supremum of structural T-openings, something which is well-known in the case of P(E) with

translations.

There are two remarks to be made now. First, the results given here can be obtained

in a more “down-to-earth” way, without recourse to the adjunction between CT and P(L);

this is indeed the approach followed in [19], Section 2; however the abstract proofs given

here are much shorter.

Second, the above theory can be translated to closings by duality, interverting dual

notions such as supremum and infimum, dilation and erosion, etc. Call an expansion an

increasing and extensive operator. The map ψ 7→ Inv(ψ) is a dilation from the complete

lattice of T-expansions to (P(L),⊇), the dual of (P(L),⊆); alternately, it is an erosion

from the dual of the complete lattice of T-expansions to (P(L),⊆). Its adjoint B 7→ F
T(B)

associates to each B ⊆ L the greatest T-extension of identity on B, that is the greates T-

expansion having B in its domain of invariance. Under this adjunction, T-closings correspond
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by dual isomorphism to inf-closed T-invariant subsets of L. We define also F
T

B = F
T({B}),

the structural T-closing by B, and then every T-closing is an infimum of structural T-

closings.

2.3. Basic Assumption and duality under inversion

In the case of sets or grey-level functions on a Euclidean or digital space with translation-

invariance, a structural T-opening or T-closing can be obtained by the composition of a

T-dilation and its adjoint T-erosion. We will give here the conditions which guarantee this

property; they are of course satisfied in the above two cases.

Given ℓ ⊆ L, we say that ℓ is sup-generating if every X ∈ L is the supremum of a

subset of ℓ. Elements in ℓ will be written as lower-case letters x, y, z, etc. For X ∈ L we

define ℓ(X) = {x ∈ ℓ | x ≤ X}. The fact that ℓ is sup-generating means that X =
∨
ℓ(X).

In Subsection 3.2 of [6] we introduced the following:

Basic Assumption. T is commutative and L has a sup-generating subset ℓ such that:

(i) ℓ is T-invariant, in other words for every τ ∈ T and x ∈ ℓ, τ(x) ∈ ℓ;

(ii) T is transitive on ℓ, in other words for every x, y ∈ ℓ, there exists τ ∈ T such that

τ(x) = y.

As explained in Subsection 3.2 of [6], the Basic Assumption implies that T acts regularly

on ℓ, in other words that for every x, y ∈ ℓ, there is a unique τ ∈ T such that τ(x) = y.

Let o be some fixed element of ℓ which we call the origin. For every x ∈ ℓ there is a unique

τx ∈ T such that τx(o) = x. This bijection between ℓ and T allows us to endow ℓ with

the commutative group structure of T. For x, y ∈ ℓ we define x + y = τy(x) = τx(y),

−x = τ−1
x (o), and x− y = x+ (−y). This makes ℓ an additive group isomorphic to T. For

X ∈ L and h ∈ ℓ, we define Xh = τh(X). Then in Subsection 3.2 of [6] we proved that every

T-adjunction on L is of the form (εA, δA) for some A ∈ L, where

δA(X) = X ⊕A =
∨

a∈ℓ(A)

Xa,

εA(X) = X ⊖A =
∧

a∈ℓ(A)

X−a.

Note that for a ∈ ℓ, δa = τa and εa = τ−1
a . Moreover, the map A 7→ δA is an isomor-

phism between L and the complete lattice of T-dilations, while the map A 7→ εA is a dual

isomorphism between L and the complete lattice of T-erosions, that is

B ≤ C ⇐⇒ δB ≤ δC ⇐⇒ εB ≥ εC

for any B,C ∈ L. This implies in particular that for Aj ∈ L (j ∈ J),

δsupj∈J Aj
=

∨

j∈J

δAj
and εinfj∈J Aj

=
∧

j∈J

εAj
.

More properties of T-adjunctions under the Basic Assumption are given in [6], Subsec-

tion 3.2. In particular we obtained Matheron’s theorem, which states that an increasing
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T-operator is a supremum of T-erosions. Then in Subsection 2.3 of [19] we proved that

under the Basic Assumption:

(i) Given a T-opening α and a T-dilation δ, Inv(α) is invariant under δ, in other words

αδα = δα.

(ii) For any B ∈ L, AT

B = δBεB.

The Basic Assumption is obviously satisfied in the case of sets or grey-level functions (see [6],

Section 4). This shows that the opening by a structuring element (a structural T-opening)

can be obtained as the composition of the erosion and dilation by that element.

But what about the closing by that structuring element? The Basic Assumption is not

sufficient for this purpose. We will see two examples of a structural T-closing which cannot

be obtained from a T-adjunction.

Let L be a complete lattice and ϕ a T-closing for which there is some X ∈ Inv(ϕ) with

X 6= I, such that for every A ∈ L, δA ≥ ϕ implies δA(X) = I. Then ϕ is not an infimum

(either empty or non-empty) of T-dilations, because this would give ϕ(X) = I. Thus the

dual version of Matheron’s theorem does not hold. It follows moreover that ϕ is not an

infimum of T-closings of the form εAδA, because each εAδA is an infimum of T-dilations:

εAδA =
∧

a∈ℓ(A)

τ−aδA =
∧

a∈ℓ(A)

δA−a
.

In fact this situation arises in the following two cases:

(a) L is the complete lattice of all topologically closed subsets of IRd, and ϕ = F
T

B , where

B is a closed set whose complement is bounded but non-empty.

(b) L is the complete lattice of all convex subsets of IRd, and ϕ = F
T

B, where B is a convex

set such that there exists a bounded convex set C with B ⊖ C = ∅ (B contains no

translate of C); for example B can be a segment or a half-line (it contains no translate

of a disk).

Thus structuralT-closings do generally not coincide with closings arising fromT-adjunctions

on L. For this we need the dual of the Basic Assumption. In practice, it will be easier

to obtain it from an operation similar to the complementation for sets, or the grey-level

inversion for grey-level function, which turns the complete lattice upside down.

Let us call an inversion an operator θ on L such that: θ2 = id and θ is decreasing, that

is X ≤ Y =⇒ θ(X) ≥ θ(Y ) for all X,Y ∈ L. As θ2 = id, θ is a bijection and we have in

fact X ≤ Y ⇐⇒ θ(X) ≥ θ(Y ), in other words an inversion is a dual automorphism of L.

An inversion θ transforms an operator ψ into θψθ, the dual by θ of ψ. For example

in the case of sets, the complementation θ : X 7→ Xc gives θψθ : X 7→ ψ(Xc)c, the dual

by complementation of ψ. Now for an inversion θ on L, the map ψ 7→ θψθ is itself an

inversion of the complete lattice O of operators, which preserves the law of composition,

interverts openings and closings, dilations and erosions, and reverses adjunctions in the

sense that for an adjunction (ε, δ) on L, (θδθ, θεθ) is again an adjunction. Moreover if we

put θ(B) = {θ(B) | B ∈ B} for B ⊆ L, we get for any ψ ∈ O: Inv(θψθ) = θ(Inv(ψ)) and

Ran(θψθ) = θ(Ran(ψ)).

If we set θTθ = {θτθ | τ ∈ T}, then the fact that θ2 = id implies the equivalence

between T = θTθ, T ⊆ θTθ, and T ⊇ θTθ. We say then that θ preserves T. When the
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inversion θ preserves T, then an operator ψ is T-invariant if and only if θψθ is T-invariant;

moreover for any B ⊆ L, we will have θAT(B)θ = F
T(θ(B)).

Let us see what happen when L satisfies the Basic Assumption and has an inversion

θ which preserves T. Given B ∈ L, we have first θAT

Bθ = F
T

θ(B). Second, as (εB, δB) is

a T-adjunction, (θδBθ, θεBθ) is also a T-adjunction, and there is some B̃ ∈ L such that

θδBθ = ε
B̃

and θεBθ = δ
B̃
. Third, we have A

T

B = δBεB. Combining these three facts, we

get

F
T

θ(B) = θAT

Bθ = θδBεBθ = ε
B̃
δ
B̃
. (2.15)

Thus every structural T-closing arises from a T-adjunction on L.

Let us examine in more detail the map B 7→ B̃. As θ2 = id, we have
˜̃
B = B, and so

this map is a bijection; now for B,C ∈ L we have

B ≤ C ⇐⇒ δB ≤ δC ⇐⇒ θδBθ ≥ θδCθ ⇐⇒ ε
B̃
≥ ε

C̃
⇐⇒ B̃ ≤ C̃,

and it is thus an automorphism of the complete lattice L. In particular B̃ = supb∈ℓ(B) b̃.

Moreover, for any b ∈ ℓ we have

θτbθ = θδbθ = ε̃
b
= τ−1

b̃
. (2.16)

For example in the case of subsets of a digital or Euclidean space E , the complemen-

tation is an inversion which commutes with any automorphism of P(E), in particular with

translations. Here (2.16) gives τb = τ−1

b̃
for any point b, so that b̃ = −b and we get thus

B̃ = {−b | b ∈ B}. Note that since B 7→ B̃ is an automorphism and complementation

commutes with automorphisms, we have (B̃)c = B̃c and we write it B̃c. Now (2.15) gives

F
T

B = ε
B̃cδB̃c . In the literature B̃ = {−b | b ∈ B} is usually written B̌. See also [6],

Subsection 4.1, and [19], Subsection 2.4 for more details on this particular case.

In the case of grey-level functions on E , ℓ consists of all impulse functions fh,v having

value v at point h and −∞ elsewhere, while θ is given by θ(F )(x) = −F (x) for any grey-level

function F (grey-level inversion). It is easily seen that θτh,vθ = τh,−v and so (2.16) gives

f̃h,v = f−h,v; hence F̃ is given by F̃ (x) = F (−x) (inversion in the spatial domain). Here we

have also θ(F̃ ) = θ̃(F ). For more details on this complete lattice, see also [6], Subsection 4.4.

2.4. The case without translation-invariance, and some generalizations

We said at the beginning of this section that all our general results concerning T-operators

can be applied to the case where T-invariance is not required, by simply taking T = {id};

indeed, any operator is invariant under id. This is essentially the point of view adopted by

Serra and his followers in [22] and other works.

For T = {id} the operators A
T(B), FT(B), AT

B, and F
T

B are written A(B), F(B),

AB, and FB. It is easily seen from Proposition 2.8 that A
T(B) = A(BT) and similarly

F
T(B) = F(BT). In particular if B is T-invariant (which is for example the case when

B = Inv(ψ) or B = Ran(ψ) for a T-operator ψ), then A
T(B) = A(B) and F

T(B) = F(B).

There are some additional results which hold in this special case. We have already

seen Proposition 1.6, which states that any contraction is an infimum of openings, and we
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gave a counterexample to this result when T-invariance is needed by taking L = ZZ =

ZZ ∪ {+∞,−∞} and T = ZZ; note that here L satisfies the Basic Assumption and has an

inversion preserving T. There is also Matheron’s theorem, whose expression by Serra on

complete lattices is as follows (see [6], Theorem 2.4, and [22], Theorem 1.2):

An operator ψ is a non-empty supremum of erosions if and only if ψ is increasing and

ψ(I) = I. Dually, ψ is a non-empty infimum of dilations if and only if ψ is increasing

and ψ(O) = O.

The corresponding statements for T-operators require respectively the Basic Assumption

and its dual (cfr. the two counterexamples we mentioned with the family of closed sets and

the one of convex sets).

There is a third property peculiar to the case T = {id} (see [19], Proposition 2.9).

Given an adjunction (ε, δ) on L, we call the opening δε a morphological opening, and the

closing εδ a morphological closing. Then:

A structural opening AB is a morphological opening; every opening is a supremum

of morphological openings. Dually, a structural closing FB is a morphological closing;

every closing is an infimum of morphological closings.

Again the corresponding statements for T-operators require respectively the Basic Assump-

tion and its dual (cfr. the same two counterexamples). This contradicts the suggestion made

in [24], Theorem 2.4 p. 24, that they are generally valid under translation-invariance.

This distinction explains our choice of structural T-openings (resp. T-closings), rather

than morphological ones, as the basic blocks for the decomposition of T-openings (resp. T-

closings). Note however that if we do not restrict adjunctions to L, but take them between

two complete lattices, then every T-opening becomes trivially “morphological”:

Proposition 2.11. Given a T-opening α, there is a T-adjunction (ε, δ) between L and

Inv(α) such that α = δε.

(This result is proved in Proposition 3.10 of Chapter 0 of [3] in the case without T-

invariance). Indeed, Inv(α) is a T-invariant complete lattice, and we have only to take

δ : Inv(α) → L : X 7→ X and ε : L → Inv(α) : Y 7→ α(Y ); both δ and ε are T-invariant and

for X ∈ Inv(α) and Y ∈ L we have δ(X) = X ≤ Y ⇐⇒ X ≤ α(Y ) = ε(Y ).

3. Inf-overfilters

Despite their forbidding name, inf-overfilters are very useful in practice, because they allow

the construction of new types of openings. Indeed, although any opening can be decomposed

as a supremum of structural openings, this is not always the most economical way to define

a new opening. For example in Subsection 1.2 we defined from a symmetric structuring

element B in a space E with translation group T, the annular T-opening id∧δB ; its minimal

decomposition in terms of structuralT-openings would be
∨

b∈B A
T

{o,b}, which is clearly more

complicated than id ∧ δB. Here we will again consider openings of the form id ∧ η for an

increasing operator η; now η will not be a dilation, but an inf-overfilter: the terminology

stems from Matheron (see [22], Chapter 6). It will generally have a decomposition as an

infimum of suprema of terms of the form δε, where δ is a T-dilation, ε a T-erosion, and
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δ ≥ ε
˙
(or equivalently ε ≥ δ̇). Again, this decomposition will generally be easier than the

one as a supremum of structural T-openings.

In Section 6.3 of [22] Matheron made the following definition: An inf-overfilter is an

increasing operator η such that η(id ∧ η) = η. Dually, a sup-underfilter is an increasing

operator ζ such that ζ(id∨ ζ) = ζ. By duality, we can restrict our analysis to inf-overfilters

and openings, the corresponding results for sup-underfilters and closings following immedi-

ately. Note that for an increasing operator η we always have η(id ∧ η) ≤ η id = η; hence η

will be an inf-overfilter if η(id∧η) ≥ η. We call a T-inf-overfilter a T-invariant inf-overfilter.

When T-invariance is not necessary, one can set T = {id} and drop the prefix “T-”.

The following elementary result (see [19], Proposition 4.1) highlights the meaning of

the concept of an inf-overfilter:

Proposition 3.1. Given an inf-overfilter η, then η ≤ η2 and id ∧ η is an opening.

An operator ψ such that ψ2 ≥ ψ is called by Matheron an overfilter, and this explains

the origin of the term “inf-overfilter”. Any opening is an inf-overfilter as it corresponds to

the particular case where η = id ∧ η. An inf-overfilter can be interpreted as an increasing

operator η applying to X ∈ L an opening id ∧ η, but adding to it something more (the

difference between η(X) and (id ∧ η)(X)), which does not depend on X , but only on the

result (id ∧ η)(X) of that opening.

Inf-overfilters were studied from a purely algebraic point of view by Matheron in Chap-

ter 6 of [22], especially in Sections 6.3 and 6.4. Independently of this work, we introduced the

so-called “rank-max” openings on sets or grey-level functions (see [15]) as a generalization of

the opening by a structuring element A. Given a rank filter ρkA associated to a rank k and a

structuring element A, and the dilation δA by A (in other words the max filter associated to

the reflected structuring element Ǎ), the operator id ∧ δAρkA is an opening; more generally,

given a family Cj (j ∈ J) of subsets of A, the operator

α = id ∧ δA(
∨

j∈J

εCj ) (3.1)

mapping a set X onto

α(X) = X ∩
((⋃

j∈J

(X ⊖ Cj)
)
⊕A

)
, (3.2)

is an opening. As explained in Subsection 4.2 of [19], this opening can be interpreted as

follows: it transforms a binary image X into the supremum of all portions of it which

consist of a “sufficiently large” subset of a translate of A; the subsets Cj of A are precisely

the minimal ones which can be considered as “sufficiently large”. When the family of Cj

reduces to A, the opening α reduces to the usual T-opening δAεA by A.

Serra pointed out that the operator δA(
∨

j∈J εCj) =
∨

j∈J δAεCj is an inf-overfilter,

linking thus this abstract concept to practical considerations. This remark was expanded

in Section 9.9 of [22], where a characterization of inf-overfilters was given. Further results

were obtained in Section 4 of [19], with the assumption of T-invariance.

The purpose of this section is to deepen this study. In Subsection 3.1 we recall some

of elementary results from [22] and [19]. Subsection 3.2 studies the complete lattice of inf-
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overfilters associated to any given opening. Finally in Subsection 3.3 we give decomposition

formulas for such inf-overfilters, generalizing some similar characterizations from [19].

But beforehand we will briefly illustrate the interest of this family of operators. Given

L = P(E), the set of parts of the digital plane E = ZZ2, let B be the 5-pixel cross (as in

Figure 1.2), and let A be the (3× 3)-square, both centered about the origin. Then δAεB is a

T-inf-overfilter and id∧ δAεB is a T-opening which can be decomposed as the supremum of

the structural T-openings by B,C,D,E, F , where C,D,E, F are the four subsets obtained

by adding to B one of the four corners of A (see Figure 3.1). This opening will preserve in a

set X all 5-pixel crosses and all pixels 4-adjacent to two pixels of such a cross. Now if in the

segmentation of Figures 1.2 and 1.3 we had taken id∧ δAεB instead of αB , the components

labelled 3, 4, and 5 would have been merged with the neighbouring components labelled 1

and 2 respectively, a better result.

A A A B C C D D E F

A A A B B B C C C D D D E E E F F F

A A A B C D E E F F

Figure 3.1. The domain of invariance of the T-opening id∧ δAεB is sup-generated by the

translates of B,C,D,E, F .

3.1. Basic properties of inf-overfilters

The results stated below are proved in Subsection 4.1 of [19], and generalize some earlier

findings of Matheron and Serra (without T-invariance).

The converse of Proposition 3.1 is not true: if ψ is increasing and id∧ψ is an opening,

then ψ is not necessarily an inf-overfilter, even when ψ2 ≥ ψ. Consider for example L =

P(ZZ2), the complete lattice of parts of the digital plane ZZ2, take B to be the set of 8

neighbours of the origin o, and let ψ = δB. As B is symmetric (B = B̌), id ∧ δB is an

annular opening; as B ⊆ B ⊕ B, we get δ2B = δB⊕B ≥ δB; however we have δB({o}) = B,

so that (id ∧ δB)({o}) = {o} ∩ B = ∅, and hence δB(id ∧ δB)({o}) = δB(∅) = ∅, that is

δB({o}) 6= δB(id ∧ δB)({o}).

Nevertheless, an opening of the form id ∧ ψ, where ψ is increasing, arises in fact from

an inf-overfilter:

Proposition 3.2. Let ψ be an increasing operator such that id ∧ ψ is an opening. Let

η = ψ(id ∧ ψ). Then η is an inf-overfilter and id ∧ η = id ∧ ψ.

The following result is essentially due to Matheron, and it should be compared to Theo-

rem 2.10 (ii):

Proposition 3.3. The set of T-inf-overfilters is sup-closed, with universal bounds O and

I.

Our next result is a generalization of properties found by Serra and Matheron:

Proposition 3.4. Let η be a T-inf-overfilter, α a T-opening, (ε, δ) a T-adjunction, and ψ

an increasing T-operator. Then the following operators are T-inf-overfilters:

29



(i) ψη, if ψ ≥ id ∧ η.

(ii) η2.

(iii) ψα, if ψ ≥ α.

(iv) ψε, if ψ ≥ δ.

An example of the form (iv) was given in Figure 3.1 with η = δAεB, where A ⊇ B. Let

us now illustrate (i) with that same η = δAεB and with ψ = εBδB (ψ is a closing, so that

ψ ≥ id ≥ id ∧ η). We show in Figure 3.2 how the two openings id ∧ η and id ∧ ψη behave

differently.

A A A B ∗ ∗ · ∗ · ∗ ·

A A A B B B ∗ ∗ ∗ ∗ ∗ ∗ ∗

A A A B · ∗ · · · ∗ ·

∗ ∗ ∗ · ∗ ∗ ∗ ∗ ∗ ∗ · ∗ ∗ ∗

∗ ∗ ∗ · ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ · ∗ ∗ ∗ ∗ ∗ ∗ · ∗ ∗ ∗

∗ ∗ · · · ∗ · ∗ ∗ · · · ∗ ·

∗ ∗ ∗ · ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

· ∗ · · · ∗ · · ∗ · · · ∗ ·

Figure 3.2. On top we have the structuring elements A and B (both centered about the

origin), and the original set X . In the middle are shown δAεB(X) and εBδBδAεB(X). At

bottom we get (id ∧ δAεB)(X) and (id ∧ εBδBδAεB)(X), two distinct results.

Note that any constant operator γA : X 7→ A is an inf-overfilter. It is T-invariant if A

is fixed by T.

Given a T-inf-overfilter η, then id ∧ η is the greatest T-opening ≤ η. From Proposi-

tion 3.4 (iii) we deduce the following characterization due to Matheron:

Corollary 3.5. Given an increasing T-operator η, the following three statements are

equivalent:

(i) η is a T-inf-overfilter.

(ii) If αη is the greatest T-opening ≤ η, then ηαη = η.

(iii) There is a T-opening α and an increasing T-operator θ such that θ ≥ α and η = θα.

3.2. The complete lattice of T-inf-overfilters associated to a T-opening

From Corollary 3.5 we know that T-inf-overfilters can be characterized as operators of the

form θα for a T-opening α and an increasing T-operator ≥ α. We make thus the following

definition. Given a T-opening α, write HT(α) for the set of all T-inf-overfilters θα, where θ

is an increasing T-operator ≥ α, and AT(α) for the set of all T-openings of the form id∧ η,

where η ∈ HT(α). For any T-inf-overfilter η we have η ∈ HT(id∧η), and for any T-opening

α we have α ∈ HT(α) and α ∈ AT(α). Let now α be a fixed T-opening.
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Lemma 3.6. Given a T-operator η, η ∈ HT(α) if and only if η is increasing, η ≥ α, and

ηα = η.

Proof. If η ∈ HT(α), that is η = θα for an increasing θ ≥ α, then η is increasing,

η = θα ≥ αα = α, and ηα = θαα = θα = η. If η is increasing, η ≥ α, and ηα = η, then we

take θ = η.

Corollary 3.7. α is the unique T-opening in HT(α).

Proof. For a T-opening α′ ∈ HT(α), by Lemma 3.6 we have α′ ≥ α and α′α = α′; now

the latter equality implies α′ ≤ α (by Proposition 2.9), so that α′ = α.

Theorem 3.8. HT(α) is inf-closed and closed under non-empty suprema.

Proof. Consider a non-empty family of elements ηj of HT(α) (j ∈ J 6= ∅). As ηj ≥ α and

ηjα = α for each j ∈ J (by Lemma 3.6), we get
∧

j∈J ηj ≥ α and (
∧

j∈J ηj)α =
∧

j∈J (ηjα) =∧
j∈J ηj ; now

∧
j∈J ηj is T-invariant, hence it belongs toHT(α). Similarly

∨
j∈J ηj ∈ HT(α).

Thus HT(α) is closed under non-empty suprema and infima. Now I =
∧
∅ ∈ HT(α), and so

HT(α) is inf-closed.

It follows that HT(α) ∪ {O} is a complete sublattice of O. Note that HT(α) is itself a

complete lattice, with the same supremum and infimum operations as in O, except that

sup ∅ = α instead of O (see (2.1)).

Proposition 3.9. Given an increasing T-operator θ ≥ α and η ∈ HT(α), we have θη ∈

HT(α). In particular HT(α) is closed under composition.

Proof. By Lemma 3.6 we have ηα = η and η ≥ α, so that θηα = θη and θη ≥ αα = α,

that is θη ∈ HT(α). For any η
′ ∈ HT(α), η

′ ≥ α, so we can take θ = η′, and η′η ∈ HT(α).

Lemma 3.10. Let α′ be a T-opening such that α′ ≥ α. Then ηα′ = η for every η ∈ HT(α);

in particular when η ≥ α′ we have η ∈ HT(α
′).

Proof. As id ≥ α′ ≥ α and ηα = η, we get η ≥ ηα′ ≥ ηα = η, that is ηα′ = η. If η ≥ α′,

then η ∈ HT(α
′) by Lemma 3.6.

Corollary 3.11. For every η, η′ ∈ HT(α), η(id∧η′) = η and (id∧η)(id∧η′) = id∧η∧η′.

Proof. As id ∧ η′ is a T-opening ≥ α, η(id ∧ η′) = η by Lemma 3.10. Thus

(id ∧ η)(id ∧ η′) = id(id ∧ η′) ∧ η(id ∧ η′) = (id ∧ η′) ∧ η = id ∧ η ∧ η′.

Proposition 3.12. AT(α) is closed under non-empty infima, and for any α1, . . . , αn ∈

AT(α) (n ≥ 2),

α1 · · ·αn = α1 ∧ . . . ∧ αn.

Moreover, if L satisfies the infinite supremum distributy condition

X ∧ (
∨

j∈J

Yj) =
∨

j∈J

(X ∧ Yj), (ISD)

then AT(α) is closed under non-empty suprema.
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Proof. For α1 = id ∧ η1 and α2 = id ∧ η2, where η1, η2 ∈ HT(α), Corollary 3.11 says that

α1α2 = (id ∧ η1)(id ∧ η2) = id ∧ η1 ∧ η2 = α1 ∧ α2.

For α1, . . . , αn ∈ AT(α), where n > 2, the equality α1 · · ·αn = α1 ∧ . . . ∧ αn follows by

induction:

α1 · · ·αn = (α1 · · ·αn−1)αn = (α1 ∧ . . . ∧ αn−1)αn

= α1αn ∧ . . . ∧ αn−1αn = (α1 ∧ αn) ∧ . . . ∧ (αn−1 ∧ αn) = α1 ∧ . . . ∧ αn.

Given a non-empty family of elements ηj of HT(α) (j ∈ J 6= ∅), by Theorem 3.8 we

have
∧

j∈J ηj ∈ HT(α). Hence
∧

j∈J (id∧ηj) = id∧
∧

j∈J ηj ∈ AT(α). Thus AT(α) is closed

under non-empty infima.

By Theorem 3.8 again,
∨

j∈J ηj ∈ HT(α); now if L satisfies the condition (ISD), then

O satisfies it also and we get
∨

j∈J (id∧ηj) = id∧ (
∨

j∈J ηj) ∈ AT(α). Thus AT(α) is closed

under non-empty suprema.

When (ISD) holds, AT(α)∪{O, I} is a complete sublattice of O; in fact AT(α) is then itself

a complete lattice, with the same supremum and infimum operations as in O, except that

sup ∅ = α instead of O and inf ∅ = id instead of I (see (2.1)). Note that (ISD) is satisfied

for sets or grey-level functions.

We saw in Subsection 1.3 that an infimum or a composition of openings is usually not

an opening. Hence Proposition 3.12 is very interesting, since it gives a class of openings

which can be algebraically combined in various ways. This will be illustrated in the next

subsection, where we will express elements of HT(α) in terms of dilations and erosions

intervening in the decomposition of α.

3.3. Decomposition formulas

Inspired by our “rank-max” openings, Serra gave in Section 9.9 of [22] a characterization

of inf-overfilters on a complete lattice satisfying the infinite distributivity conditions ((ISD)

and its dual). This characterization was generalized in [19], Subsection 4.1 to any complete

lattice, and extended to the case of T-invariance. Here we will express this result in the

framework of HT(α). Indeed, recall that any T-inf-overfilter η is in HT(α) for some T-

opening α.

If we look back at Proposition 3.4, point (iii) expresses a T-inf-overfilter in HT(α),

while point (iv) considers a T-inf-overfilter of the form ψε for a T-erosion ε and ψ an

increasing T-operator such that ψ ≥ ε
˙
. In fact this point (iv) was derived from point (iii)

(see [19], Proposition 4.4), and we prove similarly the following:

Proposition 3.13. For any T-adjunction (ε, δ), the lattice HT(δε) is the set of all ψε,

where ψ is an increasing T-operator ≥ δ.

Proof. If η ∈ HT(δε), then η = ηδε and η ≥ δε. Setting ψ = ηδ, ψ is an increasing

T-operator, η = ηδε = ψε, and ψ = ηδ ≥ δεδ = δ. Conversely, if η = ψε for an increasing

T-operator ψ ≥ δ, then η = ψε ≥ δε and ηδε = ψεδε = ψε = η, that is η ∈ HT(δε).
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For example consider again the digital plane ZZ2 and the 5-pixel cross B shown in Figure 3.1.

If H and V are respectively the horizontal and vertical (3 × 5)-rectangles, centered about

the origin, then (δH ∧ δV )εB ∈ HT(δBεB). The opening id ∧ (δH ∧ δV )εB will preserve in

a digital set any pixel p which lies in a (3 × 3)-square containing a translate of B (cfr. the

sets C,D,E, F in Figure 3.1), or such that there exist two (3×3)-squares, each containing a

translate ofB, which are neighbouring p in the horizontal and vertical directions respectively.

See Figure 3.3.

V V V · ∗ ·

H H
V
H

V
H

V H · ∗ · · ∗ ∗ y ∗ ∗ ∗

H H
V
H

V
H

V H ∗ ∗ ∗ x ∗ ∗ ∗ · ∗ · · ∗ ∗

H H
V
H

V
H

V H ∗ ∗ · · ∗ · ∗ ∗ ∗

V V V ∗ ∗ ∗

Figure 3.3. The opening id ∧ (δH ∧ δV )εB removes pixel x, but preserves pixel y, as well

as pixels marked ∗.

Now we can start the characterization of HT(α) for a T-opening decomposable as a

supremum of morphological T-openings:

Lemma 3.14. Given T-openings αj and ηj ∈ HT(αj) (j ∈ J), we have
∨

j∈J ηj ∈

HT(
∨

j∈J αj).

Proof. For J = ∅, this reduces to O ∈ HT(O). Assume thus that J 6= ∅. Clearly

η =
∨

j∈J ηj is increasing and T-invariant. Now α =
∨

j∈J αj is a T-opening, and for each

j ∈ J we have η ≥ ηj = ηjαj and id ≥ α ≥ αj ; hence η ≥ ηα ≥ ηjαj = ηj , so that

η ≥ ηα ≥
∨

j∈J ηj = η, that is ηα = η. As ηj ≥ αj for each j ∈ J , we get η ≥ α.

Proposition 3.15. Given two non-empty index sets J,K, let (εj , δj) be a T-adjunction for

j ∈ J , let ψkj be an increasing T-operator for j ∈ J and k ∈ K, and assume that ψkj ≥ δj

for every j, k. Then the operator

η =
∧

k∈K

∨

j∈J

ψkjεj (3.3)

belongs to HT(
∨

j∈J δjεj).

Proof. By Proposition 3.13 we have ψkjεj ∈ HT(δjεj) for every j ∈ J, k ∈ K. Lemma 3.14

implies that ηk =
∨

j∈J ψkjεj ∈ HT(
∨

j∈J δjεj) for every k ∈ K. As HT(
∨

j∈J δjεj) is closed

under non-empty infima (by Theorem 3.8), η =
∧

k∈K ηk ∈ HT(
∨

j∈J δjεj).

The invariants of the opening id∧ η for η as in (3.3) were characterized in Theorem 4.6 and

Corollary 4.7 of [19]. We recall this result here:

Proposition 3.16. Let η be given by (3.3). Then the domain of invariance of id∧η consists

of all B ∈ L such that for every j ∈ J there is some Cj ∈ L with

∨

j∈J

δj(Cj) ≤ B ≤
∧

k∈K

∨

j∈J

ψkj(Cj). (3.4)
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Moreover, if L satisfies (ISD), then (3.4) holds if and only if for every k ∈ K and j ∈ J there

are some Bkj , Cj ∈ L with

δj(Cj) ≤ Bkj ≤ ψkj(Cj) and B =
∧

k∈K

∨

j∈J

Bkj . (3.5)

In order to give a converse of Proposition 3.15, we will assume a decomposition of any

increasing T-operator θ such that θ(O) = O as an infimum of T-dilations.

Theorem 3.17. Suppose that in L every increasing T-operator fixing O is a non-empty

infimum of T-dilations. Let α =
∨

j∈J δjεj , where J 6= ∅ and each (εj , δj) is a T-adjunction.

Then for any η ∈ HT(α) there exists η0 ∈ HT(α) with η0(O) = O, a non-empty index set

K, a family of T-dilations δ′k (k ∈ K) such that for every j, k, δ′k ≥ δjεj or equivalently

δ′kδj ≥ δj , and we have

η0 =
∧

k∈K

∨

j∈J

δ′kδjεj and η = η0 ∨ γ =
∧

k∈K

∨

j∈J

(δ′k ∨ γ)δjεj , (3.6)

where γ is the constant operator defined by γ(X) = η(O) for X ∈ L. In particular η takes

the form (3.3), and η = η0 when η(O) = O.

Proof. Define the operator θ by θ(O) = O and θ(X) = η(X) for X 6= O, and let η0 = θα.

Clearly θ is an increasing T-operator, θ ≥ α, and so η0 ∈ HT(α) by definition; moreover

η0(O) = O and η = θ ∨ γ = η0 ∨ γ.

By our assumption we have the decomposition θ =
∧

k∈K δ′k, where δ
′
k is a dilation for

each k ∈ K, and K 6= ∅. Moreover, for each j, k we have δ′k ≥ θ ≥ α ≥ δjεj. From the

properties of adjunctions (in particular Proposition 2.5) it is easily seen that δ′k ≥ δjεj is

equivalent to δ′kδj ≥ δj . Now we have the decomposition

η0 = θα =
( ∧

k∈K

δ′k
)(∨

j∈J

δjεj
)
=

∧

k∈K

∨

j∈J

δ′kδjεj ,

because each dilation δ′k commutes with suprema. Thus the left half of (3.6) holds.

As γ is a constant operator, it satisfies (γ ∨ ψ)ξ = γ ∨ ψξ for any two operators ψ, ξ,

and so for every k ∈ K we have

∨

j∈J

(δ′k∨γ)δjεj =
∨

j∈J

(γ∨δ′kδjεj) = γ∨
(∨

j∈J

δ′kδjεj
)
= γ∨

(
δ′k

∨

j∈J

δjεj
)
= γ∨δ′kα = (γ∨δ′k)α.

Hence we get ∧

k∈K

∨

j∈J

(δ′k ∨ γ)δjεj =
∧

k∈K

(γ ∨ δ′k)α =
( ∧

k∈K

(γ ∨ δ′k)
)
α.

As η = ηα = (γ ∨ θ)α =
(
γ ∨ (

∧
k∈K δ′k)

)
α, in order to obtain the right half of (3.6) we have

only to show that ∧

k∈K

(γ ∨ δ′k) = γ ∨
( ∧

k∈K

δ′k
)
. (3.7)
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First, given X 6= O, for each k ∈ K we have δ′k(X) ≥ θ(X) = η(X) ≥ η(O) = γ(X), and so∧
k∈K δ′k(X) ≥ γ(X); then

∧

k∈K

(δ′k ∨ γ)(X) =
∧

k∈K

(
δ′k(X) ∨ γ(X)

)
=

∧

k∈K

δ′k(X) = γ(X) ∨
( ∧

k∈K

δ′k(X)
)
.

Next, for each k ∈ K we have δ′k(O) = O and so

∧

k∈K

(δ′k ∨ γ)(O) =
∧

k∈K

(
δ′k(O) ∨ γ(O)

)
= γ(O) = γ(O) ∨

( ∧

k∈K

δ′k(O)
)
.

Thus the equality holds for any X ∈ L, and (3.7) follows.

Remark. (i) The real difficulty in the proof is in showing (3.7) and

γ ∨
∧

k∈K

∨

j∈J

δ′kδjεj =
∧

k∈K

∨

j∈J

(δ′k ∨ γ)δjεj

without assuming (ISD). If we assume it, this is trivial.

(ii) For T = {id}, every increasing operator fixing O is an infimum of dilations, and every

opening is a supremum of morphological openings (cfr. Subsection 2.4; for more details

see Theorem 2.4 of [6] and Proposition 2.9 of [19]). In this case Theorem 3.17 characterizes

H{id}(α) for any opening α. In particular we obtain Serra’s characterization of inf-overfilters

(Theorem 9.7 of [22]).

(iii) If T 6= {id}, then we have not always such decompositions. However:

— if L satisfies the Basic Assumption (cfr. Subsection 2.3), then every T-opening is a

supremum of morphological T-openings (see also [19], Theorem 2.11);

— if L satisfies the dual of that Basic Assumption, then every increasing T-operator is

an infimum of T-dilations (see also [6], Theorem 3.11 and Remark 3.2 (iv)).

Note that if L satisfies the Basic Assumption or its dual, I is the only increasing T-operator

which does not fix O. Thus in the case of binary or grey-level images on a Euclidean or

digital space, Theorem 3.17 characterizes HT(α) for any T-opening α, and η = η0, except

for η = I.

Let us now give some particular case. Consider again the opening on sets given by (3.1) and

(3.2). It arises from the inf-overfilter δA(
∨

j∈J εCj) =
∨

j∈J δAεCj , where Cj ⊆ A for each

j ∈ J . The latter clearly takes the form (3.3) with ψkj = δA and εj = εCj for each k ∈ K

and j ∈ J , and so it belongs to HT(α) for α =
∨

j∈J δCjεCj .

While keeping the Cj constant (j ∈ J), we can modify δA (with the constraint A ⊇⋃m
j=1 C

j , in other words δA ≥
∨m

i=1 δCj), and we obtain thus different openings in AT(α).

They satisfy the property of Proposition 3.12: given a non-empty family of such openings,

we can take their composition or equivalently their infimum, and also their supremum, and

we still get an opening in AT(α). Clearly such combined openings take the form

id ∧ ψ(
∨

j∈J

εCj ), where ψ(∅) = ∅, ψ is increasing, and ψ ≥
∨

j∈J

δCj . (3.8)

35



Conversely every such ψ is an infimum of a non-empty family of dilations δA ≥
∨

j∈J εCj ,

and so an opening of the form (3.8) can be written as

id ∧ (
∧

k∈K

δAk
)(
∨

j∈J

εCj), where K 6= ∅ and Ak ⊇
⋃

j∈J

Cj for k ∈ K. (3.9)

Thus (3.8) and (3.9) are equivalent characterizations of openings in this subfamily of AT(α),

and so such openings are non-empty infima of openings of the form (3.1) with the Cj fixed

but A varying.
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Appendix. Morphological filters and their domain of invariance

At the beginning of Section 1, we defined a morphological filter as an increasing and idem-

potent operator, but afterwards we restricted ourselves to extensive or anti-extensive ones,

namely closings and openings. The main advantage of this limitation of scope is obtained in

Section 2: the characterization of openings by their domain of invariance, which gives an iso-

morphism between the complete lattice of T-openings and the one of sup-closed T-invariant

sets. A dual characterization holds for closings.

We will see here to what extent such a characterization can be made for morphological

filters. We will show that the domain of invariance of a T-invariant morphological filter is a

T-invariant complete lattice embedded in the original one, but with possibly distinct supre-

mum and infimum operations. Now this mapping from T-invariant morphological filters to

T-invariant complete lattices is not one-to-one, but only onto: a T-invariant complete lattice
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is the domain of invariance of a whole family of T-invariant morphological filters, whose uni-

versal bounds are known. Moreover this mapping does not relate ordering relations between

morphological filters to corresponding inclusion relations between their respective domains

of invariance. Hence we cannot give a simple structural decomposition of morphological

filters, as we did for openings and closings.

For the sake of brievity, let us write a filter for a morphological filter, and a T-filter for

a T-invariant morphological filter. Matheron made a detailed study of filters in Chapter 6

of [22], without T-invariance. We will prove here in a different way some of his results, with

the additional constraint of T-invariance. In the case where it is not taken into account, all

results on T-filters apply to filters by taking T = {id}.

Let us recall some notation from Section 2. We consider operators on a complete lattice

L. The range of an operator ψ is the set Ran(ψ) of all ψ(X) for X ∈ L; an invariant of ψ

is some X ∈ L such that ψ(X) = X ; the domain of invariance of ψ is the set Inv(ψ) of all

invariants of ψ. Clearly Inv(ψ) ⊆ Ran(ψ); moreover the idempotence of ψ can be expressed

in three equivalent ways (see (2.2)):

ψ2 = ψ ⇐⇒ Ran(ψ) ⊆ Inv(ψ) ⇐⇒ Ran(ψ) = Inv(ψ).

We will use the following fact from Matheron’s Criterion 6.6, proved in Section 6.1 of

[22]: If ψ and ξ are filters and ψ ≤ ξ, then ψξ and ξψ are filters. This is for example the

case if ψ is an opening and ξ a closing.

The following three results characterising T-filters in terms of T-invariant complete

lattices embedded in L are simply extensions to T-invariance of results from Section 6.2 of

[22]:

Proposition A.1. Let ψ be a T-filter. Then Inv(ψ) is a T-invariant complete lattice for

the same order relation ≤ as L, with least element ψ(O) and greatest element ψ(I); given

S ⊆ Inv(ψ), the supremum and infimum of S in Inv(ψ) are ψ(
∨

S) and ψ(
∧

S).

Proof. Inv(ψ) is T-invariant because ψ is T-invariant.

For X ∈ L, O ≤ X ≤ I, and as ψ is increasing, ψ(O) ≤ ψ(X) ≤ ψ(I), so that ψ(O)

and ψ(I) are the least and greatest elements of Ran(ψ) = Inv(ψ). Let S ⊆ Inv(ψ) and

suppose that U ∈ Inv(ψ) is an upper bound of S: for all S ∈ S, U ≥ S. Thus for S ∈ S we

have S ≤
∨
S ≤ U , and as ψ is increasing,

S = ψ(S) ≤ ψ(
∨

S) ≤ ψ(U) = U ;

this means that ψ(
∨
S) is the least upper bound of S in Ran(ψ) = Inv(ψ). We prove in the

same way that ψ(
∧

S) is the greatest lower bound of S in Inv(ψ).

Proposition A.2. Let B be a T-invariant complete lattice included in L, with supremum

and infimum operations written
∨B

and
∧B

. The set of T-filters having B as domain

of invariance is not empty; its least element is F
T(B)AT(B) and its greatest element is

A
T(B)FT(B). Moreover, for any X ∈ L, we have

F
T(B)AT(B)(X) =

B∨
{B ∈ B | B ≤ X}

and A
T(B)FT(B)(X) =

B∧
{B ∈ B | B ≥ X}.
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Proof. We show only the half of the statement concerning F
T(B)AT(B). The other

half about A
T(B)FT(B) follows by duality. As F

T(B) and A
T(B) are T-invariant, so is

F
T(B)AT(B). Now F

T(B)AT(B) is a filter by Matheron’s criterion. Let X ∈ L and B(X)

the set of B ∈ B such that B ≤ X . As B is T-invariant, AT(B)(X) =
∨
B(X) (see Sec-

tion 2). For any C ∈ B, C ≥ A
T(B)(X) =

∨
B(X) if and only if C ≥ B for every B ∈ B(X),

in other words if and only if C ≥
∨B B(X); hence

∨B B(X) is the least element of B which

is ≥ A
T(B)(X). As B is T-invariant, we have (see Section 2):

F
T(B)AT(B)(X) =

∧
{C ∈ B | C ≥ A

T(B)(X)} =
∧

{C ∈ B | C ≥
B∨
B(X)} =

B∨
B(X).

In particular FT(B)AT(B)(X) ∈ B, while for B ∈ B we have B = F
T(B)AT(B)(B); hence

Ran(FT(B)AT(B)) = Inv(FT(B)AT(B)) = B. Let ψ be a T-filter such that Inv(ψ) = B.

For all B ∈ B(X) we have B ≤ X and so B = ψ(B) ≤ ψ(X), since ψ is increasing; as

ψ(X) ∈ B, we have thus FT(B)AT(B)(X) =
∨B B(X) ≤ ψ(X). Therefore F

T(B)AT(B) is

the least T-filter having B as domain of invariance.

Corollary A.3. Let B be a T-invariant complete lattice included in L, with supremum

and infimum operations written
∨B

and
∧B

. For any S ⊆ B,

B∨
S = F

T(B)(
∨

S) and

B∧
S = A

T(B)(
∧

S).

Proof. By definition of AT(B), B ⊆ Inv(AT(B)) and Inv(AT(B)) is sup-closed in L (see

Section 2); so A
T(B)(

∨
S) =

∨
S. As B = Inv(FT(B)AT(B)), by Proposition A.1 we have∨B S = F

T(B)AT(B)(
∨
S). Hence

∨B S = F
T(B)

(
A

T(B)(
∨
S)

)
= F

T(B)(
∨
S). The

other equality concerning
∧B S is proved in the same way.

In particular, for any T-filter ψ having B as domain of invariance, we have ψ(
∨

S) =

F
T(B)AT(B)(

∨
S) = F

T(B)(
∨
S) and ψ(

∧
S) = A

T(B)FT(B)(
∧
S) = A

T(B)(
∧
S).

Given aT-filter ψ, it is easy to show that the set ofT-filters ξ such that Inv(ξ) = Inv(ψ)

is the set of operators ψθ, where θ is an increasing T-operator such that Inv(ψ) ⊆ Inv(θ).

One can also prove that for two T-operators ψ and ξ, they are T-filters with the same

domain of invariance if and only if ψξ = ξ and ξψ = ψ.

Let us see to what features of filters correspond inclusion relations between their do-

mains of invariance. This cannot be the ordering ≤, because Inv(ξ) ⊆ Inv(ψ) means ξ ≤ ψ

when ξ and ψ are openings, but ξ ≥ ψ when ξ and ψ are closings. However there is an

analogue of points (iii) and (iv) of Proposition 2.9 is as follows: given two filters ψ and ξ,

Inv(ξ) ⊆ Inv(ψ) ⇐⇒ ψξ = ξ.

The set of T-filters is a complete lattice (this was shown by Matheron in [22] without

T-invariance), but this structure is not reflected in the invariance domain of T-filters.
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