Philips Research Laboratory Brussels
Av. E. Van Becelaere 2, Box 8
B-1170 Brussels, Belgium

Manuscript M106
(third version)

List Coding of Quadtrees

Christian Ronse

February 1987

Abstract: We propose to encode quadirees as lists, where a parent node is represented
by a pair of parentheses and a leaf node is represented by a number coding its colour (0 or
1 for two-tone images). This list representation is a particular case of the edge-string [8]
used by the author for the coding of adjacency trees in binary images. It allows also an easy
implementation in LISP of various image processing operations applied to quadtrees, such
as: raster to quadtree conversion, quadtree to raster conversion, set operations, symmetries,
shifts, Euler numbers, etc., by the use of recursive functions. We give indeed the FRANZ
LISP code for such operations. Thanks to its simplicity, it can be useful for prototyping of

quadtree processing algorithms and for educational purposes.

Keywords: quadtrees, recursivity, edge-string, depth-first expression, list coding, LISP
coding, FRANZ LISP.

Domains: Digital image processing, LISP, didactic applications.

I. Introduction

The quadtree represents a well-known hierarchical representation of digital images. It
is built recursively as follows. Consider a 2" x 2" digital image I. If all pixels of I have
the same colour ¢, then I can be represented as a single node to which we associate that
colour c. Otherwise we divide I into four 2"~ x 2°~! images Iy, I, I, and Is, which can
be represented as children nodes of I in a tree. For each I; (i = 0,...,3), we apply the
same operation: if the pixels of I; are not all of the same colour, we subdivide I; into four
27~2x 22 images I, I;1, I;2 and I;3, which will be represented as the children nodes of I;in
the tree. We continue in this way until we obtain homogeneous regions. The corresponding
terminal nodes of the tree are called leaf nodes. To each one of them we associate its colour.

We show this construction in Figure 1 for a two-tone 4 x 4 image.

G W @ &

= o O O

= =]

O = O
o

0 1.4 0 0 -0 1 1 1T H-0

Figure 1. An image and its quadtree

A quadtree node which is not a leaf node is the parent node of four children nodes.
Note that these four children nodes cannot be leaf nodes having all the same colour.

A survey of the quadtree has been made by Samet [11]. (Incidentally, he calls it the
region quadtree, in order to distinguish it from a variant structure that he calls the point
quadtree). The reader should consult that reference for an extensive bibliography on this
subject.

Many papers have been devoted to efficient ways for coding quadtrees (see in particular
Section 2.2 of [11] and the relevant bibliography). Each representation can be justified on
three grounds: its memory cost, the computational efficiency and the simplicity of the
corresponding code for the implementation of basic digital image operations.

One of the most compact coding schemes is the depth-first (in brief, DF-) expression
of Kawaguchi and Endo [5,6]. As explained in [12], it often requires less memory than
Gargantini's linear quadtree [4]. Here every non-leaf node is coded by a left parenthesis,
while every leaf node is coded by its colour. Thus the quadtree of Figure 1 has the following
DF-expression:

(0(0110(0001(1110 (1)
In this paper, we propose to encode quadtrees by a similar expression, but where each

1

left parenthesis is balanced by a right one. For example the quadtree of Figure 1 is coded as
(0(0110)(0001)(1110)) (2)

We call this representation the list coding. It has been considered also in [7]. It was briefly
described in [5]; it was called there the “context-free grammar G'”, and it was considered
as an intermediate form of the DF-expression. The latter is obtained from the list coding
by deleting all right parantheses. As we will explain in Section I, it is also a particular case
of the edge-string which we used in [8] in order to encode the tree structure formed by the

adjacency relations between black and white connected components in a binary picture.

We will see in Section II that for an image having ¢ distinct colours, the asymptotic
memory cost of the list coding is that of the DF-expression multiplied by the factor

5log(c + 2)
4log(c+1))

For binary images (ie., for ¢ = 2), this factor is approximately 1.577.

The advantage of the list coding, compared to the DF-expression, resides in the ease
of the implementation of picture processing operations. Indeed, the underlying grammar is
nearly the same as that of symbolic expressions in LISP. By inserting blank spaces between
the various colour numbers and sublists in (2), we get the list

(0(0110)(0001) (1110)) (4)

which is a well-formed LISP list. We call it the LISP coding of the quadtree.

Moreover LISP is a language particularly well suited to recursivity, which is a basic
feature of quadtrees. Thus many standard image operations can easily be implemented by
recursive functions, Indeed, we give in Section III an implementation in FRANZ LISP of
several basic operations applied to quadtrees of binary pictures: raster to quadtree conver-
sion, quadtree to raster conversion, set operations, symmetries, shifts, and Euler numbers.
The resulting code is simple, and these operations run theoretically in linear time, at worst
in the number of pixels, and at best in the number of nodes of the quadtree. In practice,
this remains true if one neglects the time taken by the LISP garbage collector for three of
these operations: raster to quadiree conversion, quadtree to raster conversion, and Euler

numbers.

We explain in Section IV that other operations can be implemented, for example the
construction of Gargantini’s linear quadtree, the determination of the colour of a pixel, etc..
Moreover, the methodology can also be generalized to related structures, such as octtrees
or point quadtrees (see [11] for a definition).

The simplicity of the LISP code for these operations indicates that list coding can be
used for educational purposes: the teaching of LISP to people having some experience in
image processing, or the teaching of quadtrees to LISP programmers.

2

Readers interested solely in the LISP implementation can skip Section II, which is a
‘cultural’ background on the relations between list coding and other string-type grammars
for the representation of trees.

II. From edge-strings to lists

The problem of coding trees is also treated in the detection of connected components of
binary pictures. Here the graph induced by the adjacency relation between black and white
connected components is a tree [9]; moreover, for every node ¢ in the tree corresponding
to a (black or white) connected component C, the children nodes of ¢ correspond to the
connected components of the opposite colour adjacent to C' and surrounded by it. This
graph is called the adjacency tree of the picture. There are several differences between this
type of tree and the quadtree. A first one is that the number of children nodes of a nonleaf
node can be any positive integer, not only 4. A second one, more important from our point
of view, is that the ordering of the children nodes of a given node is irrelevant, since the
ordering of the holes in a two-dimensional connected component has no topological meaning.
This contrasts with the quadtree, where the order of the children nodes is essential.

We will thus introduce a refinement of the notion of tree. We call an ordered tree one
in which the ordering of the children nodes of a nonleaf node is taken into account; if that
order is irrelevant, one calls it an unordered tree. Thus quadtrees are ordered trees, while

adjacency trees of binary pictures are unordered trees.

An interesting fact is the existence of two general methods [1,8] for coding ordered
trees as strings of symbols, which have been found in the context of a study of the adjacency
tree (which is an unordered tree). The first one, due to Buneman [1], was called in [8] the
vertex-string; in [8] we derived from it the second one, which was then called the edge-string.
The vertex- and edge-strings of an ordered tree 7 can be defined as follows. Define the path

P such that
(Z) P begins and ends in the top node ¢ of 7;
(¢2) P passes through every node of 7 at least once;
(#é2) P is shortest possible with respect to (i) and (ii);
)

(iv) Given a parent node v, P passes through the children nodes of v in their order of

SUCCession.

This path P is unique. The succession of nodes of 7 in P forms the vertex-string of
7 (this is because we called in [8] a node a vertex). Let us label each edge of 7 by the label
of the bottom node on this edge (i.e., the one which is a child node of the other node). Let
E be the sequence of edge labels in P; then every node label intervenes in F, except that of
the top node t of 7. We choose thus tEt as the edge-string of 7.

These two strings can be built recursively:

(1°) An ordered tree having a single node v has vertex-string v and edge-string v v.

3

(2°) Let 7 be an ordered tree having vertex-string V7 and edge-string E7. Suppose that
z is a leaf node of 7 and that we modify 7 by adding to it k nodes 3, ...,%, which
are children nodes of z. Let R be the resulting ordered tree; then its vertex-string V%
and edge-string Ex are obtainde in the following way:

(a) Vg is built from Vi by replacing in it the unique occurrence of # by the string
TP LY X ... TYp T

(b) Ex is built from By by replacing in it the unique occurrence of z & by the string
TYLNY2Y2 - Yk Yk T

Figure 2. A tree

For example the tree shown in Figure 2 has vertex-string
abebfbacadgdhjhkhdida - (5)

and edge-string
abeeffbecedgghjjkkhiida (6)

and it is easy to check that a node having ¢ children occurs ¢ + 1 times in the vertex-string,
while every node occurs 2 times in the edge-string.

For more details on vertex- and edge-strings, their properties, the conversion from one
to another, their practical use for coding adjacency trees, etc., the reader should consult
Section 5.3 of [8]. Let us simply note that for an ordered tree, its vertex- and edge-strings
are uniquely defined.

Now there exist variants of the edge-string. In the case of the adjacency tree, if one
knows the colour of the connected component corresponding to the top node of that tree
(i.e., the component surrounding all others), and one generally assumes that it is white,
then the topological structure of the image is determined by its adjacency tree, where the
labels and ordering of nodes are irrelevant. Thus one can replace in the edge-string the two
occurrences of anode v by two parentheses (and). Then the edge-string (6) corresponding

to the tree of Figure 2 becomes

(OO (7)

4

This parenthesis representation of the adjacency tree was given by Rosenfeld [9].

Let us now explain how the list coding of quadtrees can be derived from its edge-string.
A quadtree is an ordered tree in which a colour is associated to each leaf node. Given the
quadtree 7, we make the following modifications to its edge-string E7. For a nonleaf node
v, its two occurences in E7 are replaced by two parantheses (and). For a leaf node w, its
two occurrences in E7 appear together; we replace then that occurence of w w by e, where
¢ is the colour associated to w. It is then easily seen that we obtain in this way the list
coding of 7.

Again, the list coding of a quadtree is uniquely defined. (In fact, the same holds for
the DF-expression, see [5]).

We can finally describe the memory cost of the list coding, compared to that of the
DF-expression. Given a quadtree 7 having N nonleaf nodes and L leaf nodes, it is easily
seen that L = 3N + 1. Given the alphabet A consisting of the ¢ colours of the image and of
the parantheses (and), the list coding of 7 takes 2N + L = 5N + 1 symbols in A, and each
element of A is coded in logy(c + 2) bits. On the other hand, the DF-expression of 7 takes
N+L = 4N +1 symbols in A’ = A— {)}, and each element of A’ requires log,(c+ 1) bits of
coding. Thus the ratio between the memory cost of the list coding and the DF-expression is

(5N + 1) log,(c + 2) _ 5log(c + 2)
(4N 4 1)logy(c +1) ~ 4log(c+1)’

as said above in (3)

ITII. Implementation of basic image processing operations in LISP

We said in the Introduction that by inserting blanks between the colour numbers and
the sublists in the list coding of a quadtree, one obtains a well-formed LISP list; we called it
the LISP coding of that quadtree. In fact, as we will explain here, this coding is the natural
way to represent quadtrees in LISP.

Recall the recursive definition of the quadtree of an image I given at the beginning
of this paper. If all the pixels of the image I have the same colour ¢, then the quadtree of
I is a single node to which one associates that colour ¢. Here the LISP representation of I
can be defined as the atom c. If this is not the case, then one divides I into four subimages
Iy, I, I and I3, which will give the children nodes of the one representing I. The LISP
representation of this subdivision of I comes naturally as the list (I I; I, Is). We repeat the
above argument to each I;, etc., until we get homogeneous regions. Then the corresponding
LISP symbolic expression will be the LISP coding of I defined in the Introduction (i.e., the
list coding with blanks inserted).

Not only is this coding the natural representation for quadtrees in LISP, but the
inherent recursivity of the quadtree structure is well served by the easy implementation of

5

recursivity in that language. As we will see below, many operations on quadtrees can be

implemented by recursive functions requiring a few lines of code.

Languages like LISP and PROLOG are highly popular in the AT community, and there
have been some implementations of image processing operations in these languages (see for
example [2,3]).

Before describing the implementation of these operations, let us make a general remark
on quadtrees. Given a 2% x 2" image I, if one replace every pixel by a 2* x 2* array of pixels
having the same colour, then the resulting 2"+* x 2" +* image I’ has the same quadtree as I;
one can then consider that I and I' represent the same image, with different resolutions 2"
and 271* respectively. Thus we will assume that all images have size 1 x 1, with the pixels

having size 27" x 27" for a resolution 2".

We will now describe the implementation in LISP (in fact in the FRANZ LISP dialect)
of several operations for processing quadtrees of binary images. (We tested them on a VAX
11/780 running under UNIX 4.2BSD with a FRANZ LISP interpreter). For each operation,
we give a brief description of the implementation, and then its LISP code. In order to
understand it, the reader should know the rudiments of that language, say the first 4 chapters
of [13].

We assume that the colour of a pixel is coded by the two numbers 0 and 1 corresponding
to white and black respectively. We have implemented 7 types of operations: basic functions,

raster to quadtree conversion, quadtree to raster conversion, set operations, symmetries,
shifts, and Euler numbers.

ITT.1. Basic functions

These are some simple operations on quadtrees which will be used subsequently.

We have the function normal, which simplifies the list (= = z) into = for z = 0, 1.
We will call this operation the norinalization of the quadtree; it will be useful in raster to
quadtree conversion, set operations or shifting of quadtrees, because one can then obtain

nodes whose 4 children nodes are leafs of the same colour.

There is also the reverse function unnorm. It will be necessary in order to give the list
coding of the quadrants of a quadtree reduced to a leaf, and it will also be used in quadtree

to raster conversion.

Then we define nwgd, which extracts from the quadtree of an image I the quadtree of
the north-west quadrant of I. We define similarly negd, swgd and seqd for the other three
quadrants.

Finally, the function depth (taken from [13], page 82) gives the number of levels of the
quadtree minus 1. It is the logarithm in base 2 of the minimal resolution of an image whose

quadtree corresponds to that list.

We get the following code:

(defun normal (4 B C D)
(cond ((and (atom A) (eq A4 B) (eq A C) (eq 4 D)) 4)
(¢ (List 4 B C D))))

(defun mnnorm (X)
(comnd ((atom X) (1ist X X X X))
(t X))

(defun nwqd (X) (car (umnnorm X)))
(defun negd (X) (cadr (unnorm X)))
(defun swgd (X) (caddr (unnorm X)))
(defun segd (X) (cadddr (umnorm X)))

(defun depth (Z)
(cond ((mnll Z) 1)
((atom Z) 0)

(t (add (apply ’max (mapcar ’depth Z)) 1))))

ITI.2. Raster to quadtiree conversion

In LISP, a raster image can be represented as a list of rows, where each row is a list

of pixels. For example the image of Figure 1 can be represented by the following list:
((0o001) (0010) (0011) (0110))

Now the raster to quadtree conversion is achieved by the function quadiree. It is based
on a repeated application of the function quad, which transforms a 2”~* x 2% raster whose
pixels are LISP codings of quadtrees of 2* x 2* subimages (in particular the original raster
for k = 0) into a 9n—k—1 y 9n—k-1 paster whose pixels are lists representing quadtrees of
2k+1 5 9841 gyubimages. The function quad is applied successively until k = n; then guadiree
returns the resulting quadtree list, which is the unique pixel of the resulting 1 x 1 raster.
The function guad works as follows. Given the raster list R = (R ... Ry,), it takes two
lists, the empty list () and the reverse (Ra, ... Ry) of R, and applies to them the function
prequad, which transforms recursively two lists (R, ... R,) and (Ry; Rgi—; ... R;) into
(R: ... R,) and (Rg;—2 Rgi—s ... Ry), until the second list is empty, returning then the
first list R' = (R{ ... R,), which is the new raster.

The transformation of the two rows Ry; and Ry;_; into the new row R! is achieved
by the function group. It uses a similar process as above. It applies a recursive function
pregroup to three lists, the empty list () and the reverses of Ry; and Ro;_1. Here pregroup
takes the first two elements of the last two lists, combine them through the function normal,
and puts the resulting normalised quadtree in front of the first list, until the last two lists
(or simply one of them) are empty, returning then the first list which is the new row R}.

7

Defining these operations in the correct order, one obtains the following code:

(defun pregroup (A B C)
(cond ((null B) A)

(t (pregroup (cons (mormal (cadr C) (car C) (cadr B) (car B)) 4)
(cddr B)
(cddzr €)))))

(defun group (X Y) (pregroup nil (reverse X) (reverse Y)))

(defun prequad (X Y)
(cond ((null Y) X)

(t (prequad (coms (group (car Y) (cadr Y)) X)
(cddr Y)))))

(defun quad (Z) (prequad nil (reverse Z)))

(defun guadtree (Z)
(cond ((null (cdr Z)) (caar Z))

(t (quadtree (quad Z)))))

It is easy to check that the computational complexity of the operation guad in terms
of elementary operations is in O(IN), where N is the number of pixels in the raster R.
Thus for a 2™ x 2" image, the total computational complexity of the function guadiree is
asymtotically linear in 4” + 4271 4 ... 4+ 4% in other words is in O(4").

II1.3. Quadtree to raster conversion

This operation is the reverse of the previous one, it is achieved by the function raster.
However, there is one fact to take into account, that the size in pixels of the raster image
is not uniquely determined by its quadtree. Thus raster admits an additional argument, a
nonnegative integer N, which is the logarithm in base 2 of the resolution of the resulting
raster. If one wants to take the minimal raster corresponding to that quadtree, then N must
be equal to the depth of that quadtree; this leads to the function minraster.

The functions corresponding to pregroup, group, prequad and guad are presplit, split,
preras and ras respectively. This gives the following code:

(defun nncar (X) (unnorm (caxr X)))

(defun presplit (A B C)
(cond ((null C) (list A4 B))
(t+ (presplit (coms (car (mncar C)) (cons (cadr (mmcar C)) 4))
(append (cddr (ancar C)) B)
(cdzr C)))))

(defun split (Z) (presplit nil nil (reverse Z)))

(defun preras (X Y)
(cond ((null Y) X)
(t+ (preras (append (split (car Y)) X) (edr Y)))))

(defun ras (Z) (preras nil (reverse Z)))

(defun inraster (N Z)
(cond ((zerop W) Z)
(t (inraster (diff T 1) (zas Z)))))

(defun raster (O Z) (inraster T (1ist (1ist Z))))

(defun minraster (Z) (raster (depth Z) Z))

Agam the computational complexity of the function raster is linear in the number of

pixels of the resulting raster.

I11.4. Set operations

This is very simple: one applies a set operation to one or two quadtrees by applying
it to each of its quadrants and normalizing the resulting quadtree, noting that when one of
these quadtrees is reduced to a single node, the result of the operation is trivial.

We define four operations: comp (complement of an image), union (union of two
images), inter (intersection of two images) and delta (symmetric difference of two images).
We give here the code for comp and delta, and we leave the code of union and inter to the
reader:

(defun comp (X)
(cond ((eq X 1) 0)
((eq X 0) 1
(t (List (comp (car X))
(comp (cadr X))
(comp (caddr X))
(comp (cadddr X))))))

(defun delta (X Y)
(cond ((eq X 0) Y)

((eq X 1) (comp Y))

((eq Y O) X)

((eq Y 1) (comp X))

(t (normal (delta (car X) (car Y))
(delta (cadr X) (cadr Y))
(delta (caddr X) (caddr Y))

(delta (cadddr X) (cadddr Y))))))

It is easy to see that the computational complexity of these operations is linear in the

number of nodes of the quadtrees used as arguments.

9

IIT.5. Symmetries

These are the 8 symmetries of the square: the identity, the rotations by +90°, the
central symmetry, the diagonal and median symmetries. Each one is achieved by applying
it to each quadrant of the quadtree and to the ordering of these 4 quadrants inside the
quadtree.

We have labelled the 7 nonidentity symmetries as follows: rotl (left rotation, that is
counterclockwise rotation of 90°), rotr (right rotation, that is clockwise rotation of 90°),
syme (central symmetry), symv (symmetry about the vertical median), symh (symmetry
about the horizontal median), sympd (symmetry about the principal diagonal, the one
between the NW and SE corners of the image), and symsd (symmetry about the secondary
diagonal, the one between the NE and SW corners of the image).

We give below the code for rotl and sympd; we leave to the reader the code of the 5
other non-identity symmetries:
(defun rotl (Z)
(cond ((atom Z) Z)
(t+ (List (rotl (cadr Z))

(zotl (cadddr Z))
(rotl (car Z))
(rotl (caddr Z))))))

(defun sympd (Z)
(cond ((atom Z) Z)
(t+ (1list (sympd (car Z))
(sympd (caddr Z))
(sympd (cadr Z))

(sympd (cadddr Z))))))

Clearly the computational complexity of these operations is linear in the number of

nodes of the quadtrees used as arguments.

IIT.6. Shifts

We recall that we assume that all images have the same size; thus the amplitude of a
shift will not be expressed in terms of a number of pixels, but of a proportion of the image.
A horizontal or vertical shift can thus be defined as a function of three variables: its relative
amplitude, the original image to be shifted, and the image with which to fill the portion of
the original image which is left vacant by the shift.

For example, a rightwards horizontal shift of an image I can be written as the expres-
sion (rhshift p J I), where p is some data giving the relative amplitude a of the shift (we
will come back to it later), and J is the image whose ath right portion must fill the ath left
portion of I which becomes vacant by that shift. Two particular cases are J = I (circular
shift) and J = 0 (shift with filling by white pixels).

10

The same can be done with vertical shifts; a downwards vertical shift can be written
as (dvshift p J I). We can obtain a leftwards horizontal shift lhshift as follows: if p
corresponds to the relative amplitude o (where 0 < o < 1) and p' corresponds to 1 — a,
then the leftwards shifted image (lhshift p J I) can be obtained as (rhshift p' I .J). We
can also obtain upwards vertical shift uvshift from a downwards one.

Let us now describe how we represent the relative amplitude, and how these shifts are
computed. Suppose that we want to operate a shift whose relative amplitude is of the form
@127 + -+ 4+ a, 27" (where each a; = 0,1 and normally a, = 1); then this amplitude can
be represented by the list (a; ... a,), with the empty list corresponding to the amplitude
0. The corresponding operations will be called Lrhshift and Ldvshift (where L stands for
list). They can be defined recursively as follows. If L is the empty list nil, then the resulting
image is I. Assume now that L is not empty. Suppose first that the first element of L is
0; then the list L' obtained from L by removing it represents the double amplitude; now
the shift (by L) on J and I is equivalent to a shift of double amplitude (thus by L') on the
quadrants of J and I; for example in Lrhshift, this will be from (negd J) to (nwgd I), from
(nwqd I) to (negd I), etc.. Suppose finally that the first element of L is 1; one does then as
above, but one must precede the application of shift by L' by a shift of amplitude 1/2 from
J to I; for example in Lrhshift we get (nwgd J) instead of (negd J), (negd J) instead of
(nwgd I), ete. in the formula. This gives thus the following code:

(defun Lrhshift (L J I)
(cond ((null L) I)
((zerop (car L))
(normal (Lrhshift (cdr L) (neqd J) (awgd I))
(Lrhshift (cdr L) (nwgd I) (meqd I))
(Lrhshift (cdr L) (seqd J) (swqd I))
(Lrhshift (cdr L) (swgd I) (seqd I))))
(t+ (normal (Lrhshift (cdr L) (awgd J) (neqd J))
(Lzhshift (cdr L) (neqd J) (nwqgd I))
(Lrhshift (cdr L) (swqd J) (seqd J))
(Lrhshift (cdr L) (seqd J) (swgd I))))))

(defun Ldvshift (L J I)
(cond ((null L) I)

((zerop (car L))

(normel (Ldvshift (cdr L) (swgd J) (mwqd I))

(Ldvshift (cdr L) (seqd J) (neqd I))

(Ldvshift (cdr L) (awqd I) (swqd I))

(Ldvshift (cdr L) (meqd I) (segqd I))))

(+ (normal (Ldvshift (cdr L) (mwqd J) (swqd J))

(Ldvshift (cdr L) (megd J) (segd J))

(Ldvshift (cdr L) (swgd J) (nwgd I))

(Ldvshift (cdr L) (seqd J) (megd I))))))

The computational complexity of these two operations is in O(4'), where £ is the

11

length of L. If the maximum of the depths of the images I and J is d (in other words if I
and J can be considered as 2¢ x 2¢ images in terms of pixels) and the shift amplitude is a
multiple of the resolution of I and J, then £ < d, and so this complexty is at most in O(4%).

ITT.7. Euler numbers

The Euler number of a binary image is the number of connected components of the fig-
ure (i.e., the set of black pixels) minus the number of holes in it. Of course, it depends on the
adjacency relation chosen for black pixels, and so there are two such numbers, corresponding
to the 4 and 8-adjacencies.

There exist simple formulas for computing the Euler numbers, which are valid if one
assumes that the image contains a white connected component surrounding the rest of the
image. If the original image does not satisfy this constraint, then we can surround it by
white pixels on all sides; this is done for quadtrees in LISP by the function zeroborder.

We will use a formula based on the counting of certain 2 X 2 configurations, which is
found in [10], page 349. Consider the following 3 configurations (up to a square symmetry):

0 0 10 01
1 0 1 1 10

(a) (b) (c)

Then (a) represents a convex turn of 90°, (b) a concave turn of 90°, and (c) two turns
of 90°, which are convex if one considers 4-adjacency for black pixels and 8-adjacency for
white ones, and concave if one chooses the reverse adjacencies. Write cvi, cct and dbt for the
number of configurations (a), (b) and (c) in the image. As the sum of convex turns minus
the sum of concave turns makes +360° on the outer edge of a black connected component,
and —360° on the outer edge of a hole, the Euler number is then

cvt — ect + 2dbt
4 b

where + is + if one chooses the 4-adjacency for black pixels and — if one chooses the
8-adjacency for them.

Thus the two Euler numbers (called euler4 and euler8 in the code) can be obtained
by computing the list (cvt cct dbt) (which can be considered as a vector in LISP). The
function giving this vector-type list will be named eulervee in the code. It can be computed
recursively. Every part of the image contributes to that vector. For a 2 x 2 configuration of
4 pixels, this contribution is computed by the function elemvec, which gives as result one
of the vectors (0 0 0), (1 0 0), (0 1 0) and (0 0 1), which are called nulvee, cvivee, cctvec
and dbtvec respectively.

Now, for a quadtree @, (eulervec Q) is either nulvec (if Q consists in a single node),
or it can be obtained by adding the following contributions:

12

— The application of the function eulervee to the 4 quadrants of Q.

— The contribution given by the 2 x 2 configurations along vertical edges separating
those quadrants; it is obtained by the function vert.

— The one given by the configurations along horizontal edges separating those quad-
rants; it is obtained by the function hori.

— The one given by the configuration at the common corner of those quadrants; it is
obtained by the function corn.

These 3 functions corn, vert and hor: have easy recursive decompositions. Thus the
following code is obtained:

(defun zeroborder (Z) (list (list 0 0 O (nwqd Z))
(1ist 0 O (negd Z) 0)
(1list 0 (swgd Z) 0 0)
(list (seqd Z) 0 0 0)))

(setq nulvec (0 0 0))
(setq cvtvec (1 0 0))
(setq cctvec (0 1 0))
(setq dbtvec (0 0 1))

(defun elemvec (NH NE SW SE)
(setq SUM (add W HE SH SE))
(cond ((eq SUM 1) cvivec)
((eq SUM 3) cctvec)
((and (eq SUM 2) (eq IW SE)) dbtvec)
(t+ nunlvec)))

(defun coxm (HW HE SW SE) (comnd
((and (atom UW) (atom IE) (atom SW) (atom SE)) (elemvec IH HE SH SE))
(t (corn (seqd HW) (swqd FE) (meqd SW) (mwgd SE)))))

(defun vert (W E)
(cond ((and (atom W) (atom E)) nulvec)
(t+ (mapcar ’add (vert (meqd W) (nwqd E))
(vert (seqd W) (swqd E))
(corn (neqd W) (nwqgd E) (seqd W) (swqd E))))))

(defun hori (T S)
(cond ((and (atom H) (atom S)) nulvec)
(t (mapcar ’add (hori (swqd H) (awgd S))
(hori (seqd H) (negd S))
(corn (swgd T) (seqd H) (nwgd S) (meqd S))))))

13

(defun eulervec (X)
(cond ((atom X) nulvec)

(t (mapcar ’add (eunlervec (car X))
(eulexvec (cadr X))
(enlervec (caddr X))
(enlervec (cadddr X))
(hoxri (car X) (caddr X))
(hori (cadr X) (cadddr X))
(vert (car X) (cadr X))
(vert (caddr X) (cadddr X))
(corn (car X) (cadr X) (caddr X) (cadddr X))))))

(defun enler4 (Z)
(setq Y (enlervec Z))
(quotient (diff (add (car Y) (times 2 (caddr Y))) (cadr Y)) 4))

(defun eunler8 (Z)
(setq Y (eulervec Z))

(quotient (diff (car Y¥) (add (cadr Y) (times 2 (caddr Y)))) 4))

We will now describe the computational complexity of these functions. Let d be the
depth of the quadtree. The complexity of corn is at most linear in d, since it depends upon
the depth of its arguments. That of vert (or of hori) has an upper bound of the form ¢(d),
where p(2) = 2¢(x — 1) + az + b; it is easy to see that this implies that ¢(z) is of the form
u+ 2° — vz — w. Finally, the complexity of eulervec is bounded above by a function ¥(d),
where 9(2) = 49(2 — 1) + 4p(2) + ez + f; one checks that this implies that 3(=) is of the
form m - 4® —n - 2° — 2 — 5. Thus the computational complexity of the computation of the
Euler numbers is at worst linear in 4.

IV. Further applications of LISP for quadtrees and conclusion

‘We leave open the possibility of a more efficient implementation in LISP of the quadtree

processing functions described above.

Other operations on binary images represented by quadtrees can be implemented in

LISP. We will only give here a few hints about this implementation.

First, one can construct Gargantini's linear quadtree [4]. It is a concatenated sequence
oflabellings of black leaves. It can be defined recursively as follows. We choose a “separator”
character X (for example a blank or a carriage return). Let Q be quadtree. If @ consists of
a single white node, then the linear quadtree is empty; if Q consists of a single black node,
then the linear quadtree consists of the single character X. If the quadtree has more than
one node, then consider the four quadrants Qq, @, @2 and @3 of the image; for each Q;,
one can construct its linear quadtree, and so each black leaf corresponding to it is coded by
a string S; then the coding of that leaf in Q is ¢S, and the linear quadtree corresponding to

14

Q) is the concatenation of all strings corresponding to leafs. The coding of a black leaf takes
the form
TR iy 4 with a; €£10,1,2,3} for j=1,...,m.

Thus the string a; ... a, X indicates that the corresponding black leaf is in the a, th quadrant
of the ... of the a;th quadrant of Q. In particular it is possible to obtain the coordinates
and dimensions of black leaves from the linear quadtree.

Such a particular recursive structure allows an easy implementation in LISP. Here the
coding a; ... a,X can be translated into a list (a; ... a,), which will be called the black
leaf coding list, and the linear quadtree consists then in a list of such lists corresponding
to black leaves. Matters of efficiency (for example a linear computational complexity) may

impose the use of auxiliary functions involving several arguments, for example:
— a partial list of black leaf coding lists, to which the other ones must be added;
— the quadtree Q* under investigation;

— a list of coefficients to be added to the coding lists of black leaves in Q* in order
to obtain the corresponding coding lists in Q).

One can also determine the colour of a pixel. Given a pixel p having coordinates (z, 7)

in a 2" X 2" image, we can code ¢ and j in the same way as the relative amplitude of shifts

n
= E 3-1 o 2?1—'&’
t=1

then we code it by the list L[¢] = (¢} ... ¢,), and similarly for j. Then #; and j; determine
the quadrant ° in which p lies, and we have then only to perform the search in Q° for the
colour of p with the lists (edrL[i]) = (i2 ... ¢,) and (edrL[j]), and repeat the operation
until the quadrant is a leaf in the quadtree. Thus that operation’s running time is linear in

in the previous section. Thus if

the depth of the quadtree (if one does not take into account the garbage collector).

The LISP coding of quadtrees is not restricted to binary images. The operations
described above can be generalized to grey level images (but one must take care, when grey
levels are floating point numbers or “large” integers, to replace eg by equal in the code, and
not to use atom to test whether a list represents a leaf, but rather to define a predicate leaf
for that purpose).

One can also apply our methodology to octtrees (the generalization of quadtrees to
3 dimensions) or to what Samet [11] calls point guadtrees. This structure differs from the
ordinary quadtree (or the region quadtree according to Samet [11]) in that the subdivision
of a region into 4 subregions is not done into 4 equal squares, but into 4 rectangles deter-
mined by the point which is their common corner. Here we can code the point quadtree Q
recursively as (¢ § Qo Q1 Q2 Qs), where (i, j) are the coordinates of the point determining
that subdivision (relative to @), and the Q;’s are the 4 portions of the image determined by
that subdivision.

15

As a conclusion, we will say that the LISP coding of quadtrees defined in Section 1
leads to a very easy implementation in LISP of various image processing operations, with
a very short source code. It is particularly suited to the case where one is more concerned
over simplicity than efficiency. Indeed, for space efficiency, pointerless representations of
quadtrees take less memory than LISP lists (in which two pointers correspond to each
node), and in this case it is better to use for example Gargantini’s linear quadtree. But
there are some instances where simplicity matters more than efficiency; we give here two
examples:

(1°) Education: Asmost of our code uses only elementary LISP functions, list coding
can be useful for the teaching of LISP to students having a background in digital geometry.
The implementation and testing of various quadtree transormations are thus interesting ex-
ercises. Conversely, it is more attractive to introduce quadtrees to experienced programmers
with our simple LISP coding than with an implementation in PASCAL or C requiring long
(and uninstructive) declarations in the program.

(2°) Prototyping: When studying and testing prototypes of image processing trans-
formations, efficiency is not the highest concern. The most important thing is to be able to
modify easily the source code. This one must thus be the simplest possible.

For the processing of images in the quadtree form, the corresponding image data
could be stored in memory either under the form of the DF-expression or by the list coding
(without blanks), while it would be processed in the form of LISP lists; in this respect it
would not be hard to devise a program translating one form into another, providing thus
a simple interface. In this way, one would satisfy both requirements of compact memory

storage and computationally easy processing.

Acknowledgement

The author thanks his colleague M. Vauclair for his helpful comments on the presen-
tation of the manuscript.

References

[1] O.P. Buneman: A grammar for the topological analysis of plane figures. In Machine
Intelligence 5. (B. Meltzer & D. Michie, eds.), pp. 383-393, Edinburgh University Press,
Edinburgh, 1969.

[2] J. Camacho Gonzalez, M.H. Williams, LE. Aitchison: Evaluation of the Effective-
ness of Prolog for a CAD Application. IEEE CG&A, pp. 67-75, Mar. 1984.

[3] S. Edelman, E. Shapiro: Quadtrees in Concurrent Prolog. Report C584-19, Dept.
of Math., Weizman Institute of Science, Aug. 1984, revised Jan. 1985,

[4] 1. Gargantini: An effective way to represent quadtrees. Comm. ACM, Vol. 25,
no. 12, pp. 905-910, Dec. 1982.

16

[5] E. Kawaguchi, T. Endo: On a Method of Binary-Picture Representation and Its
Application to Data Compression. IEEE Trans. Pattern Analysis & Machine Intelligence,
Vol. PAMI-2, no. 1, pp. 27-35, Jan. 1980.

[6] E. Kawaguchi, T. Endo, J.-I. Matsunaga: Depth-First Picture Expression Viewed
from Digital Picture Processing. IEEE Trans. Pattern Analysis & Machine Intelligence,
Vol. PAMI-5, no. 4, pp. 373-384, Jul. 1983.

[7] M.S. Parsons: Generating Lines Using Quadgraph Patterns. Unpublished Manu-
script, University of Kent at Canterbury, May 1985.

[8] C. Ronse, P.A. Devijver: Connected Components in Binary Images: the Detection
Problem. Research Studies Press, Letchworth, Hertfordshire, England, 1984.

[9] A. Rosenfeld: Adjacency in digital pictures. Information and Control, Vol. 26,
pp. 24-33, 1974.

[10] A. Rosenfeld, A.C. Kak: Digital Picture Processing. Academic Press, New York,
1976.

[11] H. Samet: The Quadtree and Related Hierarchical Data Structures. Computing
Surveys, Vol. 16, no. 2, pp. 187-260, Jun. 1984.

[12] M. Tamminen: Comment on Quad- and Octtrees. Comm. ACM, Vol. 27, no. 3,
Pp. 248-249, Mar. 1984.

[13] P.H. Winston, B.K.P. Horn: Lisp, 2nd. edition. Addison-Wesley, Reading, Mass.,
1084,

17

