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ON A PROBLEM ABOUT PRIMITIVE PERMUTATION GROUPS.

(Primitive permutation groups of degree p2+p+ﬂ, where

p is a prime number,)

INTRODUCTION o

It is interresting to get a good characterization
of PSL(3,p) and PGL(3,p) as permutation groups of
degree p2+p+1. This dissertation is devoted to the
study of that problem. We attempt to prove the following:

Conjecture: If G is a primitive permutation group on a
2

set (b of size p2+p+1, where p is a prime number, if p
divides the order of G, then G is one of the following
groups acting in its natural representation of degree
p2+p+1:

(i) The little projective group PSL(3,p).

(ii) The general projective group PGL(3,p).
(iii) The alternating group Ap2+p+1'
(iv) The symmetric group Sp2+p+1'

The method that we use is the study of the p-elements

and Sylow p-subgroups of G.

It is clear that the condition "p2 divides the order
of G" is necessary, because there are counterexamples
otherwise:

. . . 2
(i) Frobenius groups Zp2+p+4'bp when pl(p(p +p+1) .
(ii) The group PSL(5,2) of degree 31=5°+5+1.
Chapter I consists of preliminary results in group

theory. These results are needed in our study.

In Chapter II, we prove general results about primi-



tive permutation groups G of degree p2+p+’1 on a set /b
and of order divisible by p2. Most of them were proved
by McDonough [9] or by Neumann and Praeger (Unpublished),
Using results of O'Nan El’l] and Scott [;1’7], we prove
first that G is doubly transitive. Then we prove a
theorem of Tsuzuku, which asserts that the conjecture

5

is true when p” divides the order of G. To do it, we
prove that G contains a subgroup Q@ of order p2, which
fixes p+1 points of YL and has one orbit of length pg.
Then it is possible to prove that G contains the alter-
nating group or that G & AutT) , Where Tl is a projective
plane constructed on b, It is easily verified that this
plane T is desarguesian.({[‘o prove Tsuzuku's theorem, we
use mainly results of Jordan f6,7J). Finally, we study
the case where p2 divides exactly the order of G. A
Sylow p-subgroup P of G has an orbit f of length p2, an
orbit A of length p and a fixed point « . Then Q=P. has

A
p orbits T,,,...,l’ on T, We pose A'=A Us4t. Then X=G{A,}

p

acts on A' and onfl?:fr,],...,rp‘[, and both actions have
kernel YZGA' . Thus X/Y is a group of degree p and p+1,
and using the results of Cameron CZJ and I'robenius BJ,
we obtain strong conditions on these two actions. In
particular, for fed, Xr{ﬁ has two orbits on _\_’?, and three
on Jb\{«df}}pf[‘his allows us to prove that G is triply primi-
tive onth. We prove also that p>11 and p=7 (mod.8).

Moreover, G is not quadruply transitive on Vb,

It seems that such group cannot exist, because there
is no known group which has faithful transitive actions

of degree p and p+1, where p is a prime bigger than 11.



5,-

In Chapter III, we are always concerned with the
case where p2 divides exactly the order of G. In order
to get more informations about the problem, we study
properties of the elements of G \X. Then we consider
subgroups M of G which contain Q buft are not contained
in X, with support W'S& %\{4,3}(665 ), and such that
for any gel, (@'aa ')8=A nas" or 'ya")8n (A" ga')4D.
Then M(&'HA'}=M£\X is a subgroup of X, and the proper-
ties of the two actions of X (on ¥ and A') give us

precise informations about M. In particular M/K, where

. O

g &M
-1
degree 1+kp and rank 1+k, where 7 slﬁfzér-. We have

(Mo X)® is a soluble %-—transitive group of

other conditions on M and M/K. We hope that with these
results the problem could be settled and the conjecture

proved.

NOTATIONS AND DEFINITIONS.

All groups and geometries will be supposed finite. For
abstract groups, we will use the definitions and notations
of C5], and for permutation groups, we will use those

of [19]. We will also use the notation "P éz&)(G)" to mean
that P is a Sylow p-subgroup of G. If X is a permutation
group on ¢f,, then we write fix X for the set of points

of Jb which are fixed by X.
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Chapter I. Preliminaries.

In our study, we will need some general group-
theoretic results. This chapter is devoted to the

proof of these results.

1. Some transfer-theoretic results.

One of the uses of transfer is to get normal
p-complements, or more generally normal complements
in groups. We will prove a generalisation of Burnside's
transfer theorem. If KS H <G, we say that K is weakly
closed in H if for any g &G, K®<H implies that KB=K.
(cfr.[5,0.255]).

Proposition 1.1. Let p be a prime number dividing

the order of a group G, and let PE'SP(G). If P is
abelian and contains a subgroup Q#1 such that NG(P)
centralizes Q, then any subgroup of Q is weakly
closed in P. Moreover, if V:G —»P is the transfer,

then QN kerV =1. In fact, for x €Q, xXV=x [G:PJ ‘

Proof. Take a subset X of P, and let g&G. If XB<P,
then X and X® are normal in P, and hence there is
he Ny (P) such that XB=x"[5,7.11]. If X<Q, then
héCG(X) and X®=X. Therefore, any subgroup of Q is

weakly closed in P. Now take x €Q, then there exist
m.,
_ : T = M
gié(}u?nd integers my such that xV=1; (gi .7 g;i).,

gi_/] p'e lgiéP for each i and 21 mi:[G:P], As x™ €q,

m. 8: m. Enmy; .
it follows that (x 1) Y=x 1 and hence xV=x" ZXLG-PJ.

As ['G:P] and IQ\are coprime, it follows that Qn kerV=1.
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Proposition 1.2. Let G be a group with an abelian Sylow

p-subgroup P for some prime p. If Q is a direct factor

of P, then Q is a direct factor of CG(Q).

Proof. We may write P=Q XR, where R is a subgroup of P.

Now Pé‘%p(cG(Q))’ and we may apply proposition 1.1 to

C4(Q): we have the homomorphism V:Cy(Q) —3P, with xv=x [C(Q) :E]
for x €Q. Therefore Q £ImV, and let H be the subgroup of
CG(Q) consisting of the elements g such that gV& R. Then
H<iCG(Q), HQ:CG(Q) and Hn Q=1. Thus CG(Q)= Q X H and hence

Q is a direct factor of CG(Q).
Note that this result is a consequence of [4].

§2. On the limit of transitivity of permutation groups

which do not contain the alternating groupe.

Here we prove a theorem due to Jordan [7]. Altough
it was stated for odd primes, it is also valid for the
prime 2. We will show some consequences of it.

Let p be a prime number.

Lemma 2.1. If H is a transitive group on a set UL of
size pa, if H has a transitive normal p-subgroup P, if
the nonabelian simple group S is a composition factor

of H, then S is a section of GL(a,p).

Proof. Take a counterexample (H,Jl) of minimal degree pb.
If H is imprimitive, then let Qi={Bq,...,Bpt§ be a complete
set of imprimitivity blocks. Then H acts on *leth kernel
H§ and image Hy. If S is a composition factor of Hg, then
P¥ is a normal p-subgroup of Hii transitive on¥, and so

S is a section of GL(t,p)$ GL(a,p) by minimality of H.
Hence S is a compsition factor of H§. Now H_ is normal

B,1 B+
in H Tawak HF p and so S is a composition
B4} { Bptg ’
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B.

B,
¥ 1 _ R :
factor of some Hi—H_{B} . But P, = P{Bi dH; and P, is

transitive on B;. Henée S is a section of GL(b-t,p)SGL(a,p)
in this case. If H is primitive, then HfAGL(b,t) < AGL(a,t)
because P is soluble EI‘B,’E’].B]. But then 5 is a section

of AGL(a,p), and as GL(a,p),%_’AGL(a,p)/(zp)a, S is a

section of GL(a,p). Therefore we have a contradiction

in each case, and the proposition must be true.

Theorem 2.2. Let p be a prime number, let m, q be integers

WEY o p’fq. Let G be a (k+1)=-fold

such that p"<q<p
transitive group of degree d=qpn+k which does not
contain Ad. Then one of the following holds:

(i) k< 5.

(ii) k £q.

(a11) A, is a section of GL(m+n,p).

Proof.Suppose that G is (k+1)-fold transitive on the
set b 'of size d, that k >q, k25 and G_iAd. Then we
prove that (iii) holds. Suppose first that n >O0.

Let Afdb, f’}‘i =k. Let P€ JP(GA)' As G is transitive
on M=JU\L ana ,rl =qpn, any orbit of P on r has length
at least pn [’19,5.4]. Let db’l""’%r be these orbits.
Then r & q< ke By Witt's lemma [19,9.4], N=N,(P) is k-fold
transitive on A , that is NA?.‘:" Sk' By a theorem of Jordan

- A a 4 A
[19,13.9], N "f A, and as N.“aN°, we must get N/ =1,

because Ak is the only non-trivial normal subgroup of

r r =
S, (since k»5). We have thus N /N, N7y n) & M/N;

T /N

EN/NA Ne, and similarly S, T N°ZI'N /Nr . N/NA Np .

Therefore A, is a composition factor of Nr/NA r, and

hence of N'. As Pd N, N permutes the orbits ’JZ),“...,L/E

of P, and as r <k, Ak is not a composition factor of
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is a normal subgroup of Nf&q}X...X N

. Hence it is one of (meﬂj-.--mf¢rf) t which
Ty
fazy

i sl (5 : a
position factor of N#&_ for some 1i. Nowldbil=p ’

So Ak is a com-

where a <m+n (since lJL i\s ap™), and P‘A’id N'@"il’ 1 . Applying
Lemma 2.1; A, is a section of GL(a,p)<£GL(m+n,p), and
(iii) holds.

Now suppose that n=0. Then d=q+k <2k, and G is more
than ¥%d-fold transitive, and must then contain Ad, whieh

is impossible.

Remark: The theorem is still true if we suppose that
G is k=fold transitive and contains a p-subgroup P
fixing exactly k points and whose non-trivial orbits

are im number not bigger than g or k-1.

As a consequence, we can easily prove some known
results like theorem 13.11 of [19], which is due to
Miller.

Now we prove a consequence that we will need:

Proposition 2.3. Let p be a prime number bigger than 3,

If G is a (p+2)-fold transitive group of degree d=p2+p+1,

then G contains Ad.

Proof. Take k=p+1, q=1, n=2. Then k25, k>q, and G is
a (k+1)-fold transitive group of degree qpn+k. Now Ak
is not a section of GL(2,p). Hence, by Theorem 2.2, G

must contain Ad.

§3. Constructing Steiner systems from multiply transitive

permutation groupse.

A Steiner system S(t,k,v) is a pair @,R) of sets,
JU .
where’dblzv,BEE y each element of B has cardinal k

and t elements of Jb belong to exactly one element of% .
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The elements of Jb are called '"voints" and those of D "blocks".

Let G be a t-fold transitive group on a set J}, with
|| =v >t >1. Suppose that for some A Sdb, with 4] =t-,
G{AS has imprimitivity blocks of size b on J"-'\A, where b
is a non-trivial divisor of v-t+1. Let B’!"'" ,Bm be these
blocks, where bm=v-t+1. If we take another subset A' of
b of size t-1, then 4 '=A% for some g &G, and B,lg,...,Bmg
are imprimitivity blocks of Gf ,} on M\A', For any t
distinct points «,,..., téJb let us define B(«,jyee., t)
=f°(,|,...,°(tk’UB, where B is the imprimitivity block of
fequ---a t\’ containing a(t We have the following pro-
perties:

(1) [B(qyenny)|=t=14b

(ii) If f)’EB(o(,I,..., t)\{,],...,a(tlg,then B( ,l,...,o«’t)
=B(X)y000, X190
G I8 {'en o il ={ﬁ],...,ﬂt_q§, then B¢ ,a..,%)
=BBseeesli ,c;(t).

(iv) For gé&GaG, B(c( T g;) B(D(,],...,v(t) é

Letg {B("( ,...,o(t)loc Sy X;f o for 1;43}

Proposition %.1. The system (ﬂffa,?)) is a Steiner system

S(t,t=-1+b,v) if and only if for pairwise distinct points
dq,...,o(t, we have B(G(ﬂ""’o(f)=B(°(’l"”dt-2’°{t’°(t—’1)‘
Proof.If @,%) is a Steiner system S(t,t-1+b,v), then
B(:X,I,...,dt)=B(-"<,1,...,o(t_2, D%,*’(t_,l), because these blocks
both contain the t points « ,...,o(t. Suppose now that
B(Xggeeey t) =B( ¥ qreeesi oo t,"{c_,‘) for any pairwise
distinct points o(,],...,"{t. Then we apply (iii) and hence
B(a(/]“._,o(t)=13(€,],...,ﬁ:) if{o(,l,...,o(t}ﬂ/p,l,___,[;t}_

We prove now that if ﬂ’l""’p’t are pairwise distinct

elements of B(o(,],...,O(t), then B(()’,],...,(}t)zB(o(,I,...,O(t).
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We do it by induction on k=l{°(,l,...,0{t§ \#’I""’Ft},'
k=0, then the result follows by the above remark. If k >0,

then “ji: 3 =f , and we have B(a(',],...,ﬂ(b)

¢ 7" ’f*c-- hk

:B(dj:'] ,"(j ) and B(ﬂqv--wﬂt) B(ﬂe,],-o-,@{g )e Now
(;Fte- B(dj,] 58 o( )\‘ﬂ( ,...,q' g and therefore
B("(j geeey ’ B ) B( ./I’...’O(J )- Now ke=1=.

g :
e o 0 L £ B ® o0
|iq{ ’ ’O(Jt 1 ?t%\{ﬂ? ’ ’(312 %l, ond g EE 1 . ’(J}t)
—B(o(a ,...,o( ,{;() ). Therefore B(af,],...,o(t)=B(§,|,...,ﬁt),
which is what we had to show. We get then a Steiner

system, because for any t distinct points /‘J”l"'"’ﬁt’

any block B(X,],..., t) containing ﬁq,...,ﬁt is equal to
B(3qseeesfBi)e
We make now the following definition [40]: A permuta-

tion group G on U’b is generously t-fold transitive on A

B
)’A{' Sge1e

generously t-fold transitive if G), } = t+’1 for such A.

if for any AS OV witn N =t+1, G is almost
We have the following implications:

G is (t+1)-fold transitive —» G is generously t-fold
transitive :‘;‘» G is almost generously t-fold transitive

? G is t-foldtransitive.

Proposition 3.2. The system @,d) is a Steiner system

8(t,t-1+b,v) whenever one of the following holds:
(i) G is generously t-fold transitive on (.

(ii) G is almost generously t-fold transitive on (U , and t25.

Proof. Let zré B(dq,...,o{t)\)/o(,] ,...,O(t% » where o, ,...,o(t
are pairwise distinct points of J . If there is g EaG
such that ngar, g stabilizes §0<,1,...,°(t} and o(tg= Dwé-—’l’
=8 j g_
then 5—5. GB(O(,],...,‘Xt) _B(N’lg""’dtg)=B(""°{t""’O(t—’l)

=B(o(,],,.,,o(t_2,o<t,0{t_,]) by properties (iii) and (iv)
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defined above. It is easily seen that such a permutation
exists 1f G is generously t-fold transitive or if G is
almost generously t-fold transitive with ¢ 23 (Take
g:(J)(dt_q,dt)(dq)...(Wt_g)...in the first case and
gzqg)(q%’dt—ﬂ’dt-Z)(*ﬂ)"‘(q£~5)"‘ in the second case.
Hence B(o{,],...,o(t)\(o(,,,...,ot;cg_c B('</|,...,°4t, og_,]) and
thus B(4q,...,Kt):B(«H,...,Nt_e,’%,%%_q). By Proposition
3.1, the result follows.

Proposition 3.%. If for pairwise distinct points<¥a,...,

&, ,Wwe have B({ 4000 ,X )=fk‘,...,4 gLIB, where B is the
t A Ll i 1 t f
union of all orbits of G % on UL\l“ P § which
X/‘I,..., t /'l t
have some prescribed lengths, then ,R) is a Steiner

system S(t,t-1+b,v).

Proof. It follows by hypothesis that B(o(;,eee,®_o&X > % _q)
=B(<H,...,dt). Hence we have a Steiner system by Proposi-

tion %.1.

It can easily be shown that if all orbits of G
‘ «/I 9e e ,q/t
on (/\;\f’*(,l geee ,0(1% have pairwise distinect length, then G

is generously t-fold transitive.

Note that the group G is a subgroup of the automor-

phism group of the system @,R).

We can find another way of constructing Steiner sys-

tems S(t,k,v) from t-fold transitive groups.

Proposition %.4: Let G be a t-fold transitive group on

a set (fj , with /dbf:v. Suppose that there is some AS L
such that 4=k >t and for g&G, AB=Aor IAAA%/ 5 TF
fg={l\g[g éc;;, then W ,B) is a Steiner system S(t,k,v,),

whose automorphism group contains G.
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Proof. If we take t pairwise distinct points OQ,...,O%,
then there is an element g of G such that {q%,...,d%i <5Zl,
because G is t-fold transitive. But then ﬁ<q,..., tk [kg
(a block): any t points lie in a block. If they were in
another block A #Ag /l, then we would have Ahg;é A and
iVQlAh]\Ag ,=|Ahgf]ﬂ1, which contradicts the hypothesis.
Hence ,)) is a Steiner system S(t,k,v) and G is an au-

tomorphism group of @,R).

Note that the result is still true if we suppose

only that G is transitive on the subsets of size t of ).

§4., Some assumed results and more propositions.

Proposition 4.1 ﬁil If G 1is a primitive group on a set

Ly if p2 divides the order of G and if G contains an
element of order p with less than p cycles of length p,

then G is doubly transitive.

Proposition 4.2[?7]. If G is a primitive permutation

group on a set ), if for some prime divisor p of |G|,
a Sylow p-subgroup P has O or 1 fixed point and all
non-trivial orbits of length p, then IP[:p or G is

doubly transitive.

Proposition 4.5[35]. If G is a doubly transitive group

of degree n=kp+t (where p is prime) which does not
contain An’ if p divides (Gl and if a Sylow p-subgroup

P of G has t fixed points and k orbits of length p, then
either lP]:p or n<12,

Proposition 4.4[{14], If G is a doubly transitive group

of degree n which does not contain An, if the stabilizer
H of two points has order divisible by p, if a Sylow

p-subgroup Q of H has no orbit of length exceeding p,

then 'Q,=p.
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Proposition 4.511 il. If G is a group of order not divi-

sible by ng, if G has a quadruply transitive action on

a set A of gize n+1 and a transitive action on a set

| of size n, then n=3.

We prove now a proposition about primitive groups of

degree 2p, where p is a prime.

Proposition 4.6. Let G be a primitive group of degree 2p

on a set ‘ﬂ), with p prime. If G contains an insoluble
group H with two orbits of length p on W, then G is

doubly transitive.

Proof. Suppose that G is simply transitive. Then [49,5’].2]
G has rank 3, with subdegrees 1, s(2s+1), (s+1)(2s+1),
where 2p=(2s+1)2+1. Let r} and ré be the two orbits of

H on ¢/l. Then H acts faithfully on each, otherwise G
would be doubly transitive by [19,13.1](In fact, G would
contain Agp)' Let Y €W and g €G. Then H® is doubly
transitive on rﬂg and fag. If ),egiﬂfsg, then Ha.is
transitive on rl\\)ﬂ and (Hg)a,is transitive on Fjg\ﬁ}.
Now I l’\(g}l =]|".g\{JH =p-1=2s(s+1) >s(2s+1). Hence

(f' ur%) \{J‘(A (5’)" where A (b’) is the orbit of length
(S+’l)(25+’l) of Gy. Therefore (s+1)(2s+1)2% ,(P uf‘g)\fﬁl
=p+p—ﬂ—{l£n ra.gl ; and.IriﬂGgJ?/29—’1-(84—’1)(23+’1)=s(2s+fl)o
Now, as G is primitive, there is some g€ G such that

']"2,£ r,]g;é '31 , and we get \r,]g /\r2,)s(2s+’1), f f_,]g f\r,] I)s(Esm),
and so p=‘|‘,]gnr,]r+{r,]g /]FB\Z,ES(ESM), that is 232+28+’l
:ﬁ462+25, and hence 525;%, which is impossible, because

P>,
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Chapter II. Primitive groups of degree p2+p+1, where p

is a prime number.

Let G be a primitive group on a set dbof size n=p2+p+1
(where p is prime), such that p2 divides the order of G.
Let P be a Sylow p-subgroup of Gj; it fixes a point & of L.
We may suppose that p >3, because groups of degree 7 and

1% are knowne.

§5. The general case - A theorem of Tsuzuku.

Proposition 5.1 G is doubly transitive.

Proof. P fixes a point « of tb. We look at the other orbits
of P on (o If P has p+1 orbits of length p, then G is
doubly transitive by Proposition 4.2. If P has k orbits
of length p and n-kp fixed points on JL, where k< p,

then the pointwise stabilizer Q of one of these orbits
of length p has order divisible by p and contains an
element with less than p cycles of length p. Hence, by
Proposition 4.1, G is doubly transitive. If P has an or-
bit [ of length pg, then G, has an orbit containing
. If G was not doubly transitive, then Gq would have
another orbit A , and by [”19,’]8.’!_}, we would have PA;é’l i
and so [A]2p. But |4|S n-1- “nlzp, and we would have [84] =p,
and hence 'Pf=p by [55], which is impossible. Hence G is
doubly transitive.

Proposition 5.2 r9]. P has a fixed pointcx, an orbit A

of length p and an orbit r‘of length p2.

Proof. As G, is transitive on(fb\%é, which has size

o
divisible by p, % is the only fixed point of P on L.
If P had no orbit of length pa, then it would have p+1

orbits of length p, and we would have lP[:p by Proposition
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4.5, which is impossible. Hence P has an orbit rof
length p2, and therefore it has also an orbit A of
length p, otherwise it would fix another point more

than A on (/]/ o

Lemma 5.3 [9]. If p5 divides the order of P, then Pp is

transitive on r.

Proof. For B&A 5 PA QZ{;(GQM). If B, was not transitive
on r, then we would have lelﬁp by proposition 4.4,
and hence ‘PI:pg, which is impossible. Hence Px is

transitive on I . (We may also use Proposition 4.1).

In his thesis, Mc Donough [9] gave elementary proofs

of these two results. We reproduce them heres

Alternative proof of 5.2. If P has p+1 orbits (/b,],...,

\f[)pM of length p on (I, then write ia j if PJ\,i=PUL:j. It
is an equivalence relation. As p2 divides the order of

P, for .each i there is some Jj such that i%j. Take now

such i in an equivalence class of size r, where r< %(p+1)
(there is such a class, since there are at least two
equivalence classes of~ ). Take j such that iotj.

Pose N =fix Pw"i and O=fix Pw}j. For 3¢l , R:deiéjp((}”@),
and by Witt's lemma, N:NG(R) is doubly transitive on fl.

If S is the subgroup of CG(R) stabilizing all non-trivial

orbits of R, then S4N and S,\,é’], since S2 P. Hence S is
s
i

1=R ,

transitive on N . Now, for each f/bi outside A, S
which has order p. Therefore, [S:SUL\A] is a power of p,

and as (p, l/\l)=’l, T=S is transitive on A . Similarly,

A
we get a group U fixing WO and transitive on . Now
NN O= {v{}, and if we take g €U such that «®4s, then

<"I','I'g7=l‘4 has support /\Vﬂg} and is doubly transitive

on it, As “\l:rpm, M has a support of size rp+2, and by
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El9,’l§.1_j , G is n—(rp+2)+2=(p‘2—(r—’i )p+1)=-fold transitive.
As TEH(p+1), we get po-(r=1)p+1 2 po+p+1-Kp(p+1)=kp(p+1)+1
> p+2, and G is (p+2)-fold transitive. But then G=A
eor Sn by Proposition 2.3, and we get a contradiction,
because a Sylow p-subgroup of An (or Sn) has an orbit

of length pa. The result follows.

2

Alternative proof of 5.3. If p” divides the order of P,

and if PA is not transitive on T , then PA has p orbits
r,l,...,f;) on I, each of size p, because PAd P. We put
- - - # - - - .
invg if P[“-i... PAF’-' This i1s an equivalence relation. As
P is transitive on ', P permutes the subgroups Paria
and hence each equivalence class has the same size r,
and T [ p. Now r#p, otherwise | P =p2. Therefore r=1,

_ r.
and for each Jj#i, Pur. J£1. Let Jé€ r,], and choose a Sylow

2§

p-subgroup W of Go(,_:r which contains I}‘pl. Then W is conju-
gate to PA’ and hence it has p orbits of length p and
p+1 fixed points. It has already the p-1 orbits |—2,...,
r'p of Byry. S0 it must have another one, [ ), included
in R]UA\{::{,‘)(}. 3 ¢ ]',']/\r,'1=125, then [% ,WJ:’i, because
R i it
A Tralm T
p-subgroup of G, and has p+1 orbits of length p, which

for i»1. But then <(P,,W) is & Sylow

is impossible. Hence F,]n I','I;éya. But then <Pﬂ,w> is
transitive on r,]UF’,'], and as (' T',lvf-,'l[,p)ﬂ, the group
X=<{p ] x(:(PA,W» is transitive on r‘,]ul}. But as
|<Pﬂ,w>ri'=p for i1y Xri:’l for such i. So X fixes
nur)

L2p-1¥n, and hence G=A_  or S by EC},’IB.B] and we

J\( rLuTJl) and is transitive on 7 vl l. Now

get a contradiction, because PA is transitive on [

when G=A_ or G=S_.
n n



We can now easily prove the result of Tsuzukusg

Theorem 5.4!:’18]. If p5 divides the order of P, then

G=PSL(3,p), PGL(3,p), A, or S .

Proof. By Proposition 5.%, the group P, has p+1 fixed

A
points and an orbit I of length p2. Let g &G such that
h-\) ]—g‘ is minimal for being bigger than pg. Then (cfr.
[6]), F®\I"is a block of(PAg,£3>. Hence “.g\,-! divides
p°, that is [FB\F|=1 or p. If |r&\r) =1, then <&, 8,5 >

is doubly transitive of degree p2+’l, and by 19,13.2},

G is (p+2)-fold transitive, and therefore G=A_ or 8 by
Propoglition 2.5, If lr'g\f'!=p, then let A ={/b\r. For any

h &G, we have: \llf\/.\h,= ]db\(rurh)lzn_ (."’Urh]{_—' A= 'rurgj 1.
Hence, by proposition 3.4, (4,R), whereﬁj) ={Ah l héG}

is a Steiner system 8(2,p+’l,p2+p+’l), that is a projective
plane ﬂ of order p. Now G AutTl and G is doubly transi-
tive. By C’I2J,TI is desarguesian and PSL(3,p)S G (In fact,
we COh obtain a coordinatisation of T’ over GF(p) without

using E’IEJ, because we know some properties of P.)

§6. The case where JPI:pE: Triple primitivity.

We know that for PQAP(G), P has a fixed point «,
an orbit & of length p and an orbit T of length pg. Let
A= AV“{‘%. We suppose now that IP[=p2. Pose X:Gﬂ! 'y
transitive on I .As Qd P, Q is half-transitive on T

and Q=P Y. Then | Q|=p, Qé‘dp(Y) and Q is not

it has p orbits M ..., on it, each of length p. Let
17? 9 P 9

?:{r,],...,rpk.
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Proposition 6.1. The group Y leaves each E invariant,.

X acts on ¥Y-and X.=Y=X ,. For any Z€X, Z_=7 ,=2n07Y

I A' J Lo Ay 7 AI ’
and in particular CG(Q)fpch(Q)ﬂ'zQ' The group CG(Q)
acts doubly transitively on ¥ and /| '. The group Y
acts faithfully on each ri' The permutation characters

of Xa( on A and :I? are the same.

Proof. As Y4 X and X is transitive on ', Y is half-tran-
sitive on . As p2 does not divide the order of Y and
Y contains Q, the orbits of Y on " are precisely the
sets ri' Now Y4 X, and so X permutes the sets ri’ and
hence acts onE. As QEJP(GO{[}) for el NG(Q) is doubly
transitive on A' 59,9.4]. as €4(Q)IN,(Q) and C,4(Q)2 P,
which acts nontrivially on A", OG(Q) is transitive on
A'; as P is transitive on A, CG(Q) is doubly transitive
onﬂ\'. In particular, X is doubly transitive on A'. Let

g 1
N=X_; then N2 Y and N/Y2 N®

5

[, otherwise Nrwould be a subgroup of G with degree not

exceeding p+1, which is impossible since p+’l<-51-1- - Q;E

« Now N acts faithfully on

; A
and G does not contain A [’19,15.’11. If Ny#Y, then Ny #1
and as N _, -:.lXQ< y we must get N, +transitive, and hence
N, has p+1 orbits of length p and has order divisible

by pz, which is impossible. Therefore N, =Y, and if NAY,
then NA' is regular on A'; hence [N:YJ:’I or p+l1. If N

does not act faithfully on I—i’ then N,—i acts as a p'-group
on A' and has at most p-1 orbits of length p on ", which

is impossible, because G does not contain an element of

order p with less than p cycles.Therefore N acts faith-

1 L, ..
fully on each Fi, and NA Y¥N/YEN l/Y o’ By Frattini

re NG Ao N (QF
argument, N 1': NNI‘.,:{Q‘)'Y)aHd hence N 9_"’ N :\"_" Nﬂ‘Q )

b i Ny (Q%) ”
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1 ( '
and so the order of NA divides p-1. But as ’NA /:’I or
I
p+1, we get‘Nb l:’] and hence N=Y. Therefore, XA,=Y=X§,
and Y acts faithfully on each ;. For Z<X, we have Zg

r.

’ .
=20 Xz=Z2nY=Z2NX, =2, +, aDd as CG(Q) 1=Q *, we must get

“a
CG(Q)(\Y=Q, and so CG(Q)iF=CG(Q)A'=Q' Hence GG(Q)/Q acts
faithfully on A' and¥ . Thus CG(Q)I must be doubly tran-
sitive, otherwise it would normalise PE (by Burnside's
prime degree theorem), and then CG(Q)A' would normalise
PA', which is impossible. Now X, acts on both A and F
with the same kernel Y. If X«/Y is soluble, then both
actions are equivalent, and hence the permutation cha-
racters of these actions are the same, If X@(/Y is inso--
luble, then X, is doubly transitive on both A and ¥
because p=lAl= ,:?l (by the same theorem of Burnside).
Let'Tl'A be the permutation character of X, on 4 , and

’T'l’IJ the 'one on f. Now T, =1+ and T&:’H}[’, where crand/l/
are irreducible. IfﬂA;é'Tr , then cp%:{’;é’];éﬁ[), and (‘TFA ,'Tfi)f]:
this means that X°< is transitive on Ax?, and hence that
p2 divides the order of X,/Y, which is impossible. Hence
Tcﬂz‘)f;,

Proposition 6.2 [9]. The Sylow p-subgroup P is elementary

abelian and Q is a direct factor of CG(Q).

Proof. As lP':pa, P is abelian. By Proposition 1.74 1iE
V is the transfer CG(Q) ——>P, then QN ker V=1, because
N (P)£C,(Q). If P is not elementary abelian, then
C(Q) G

P is cyclic and hence Pfy ker V=1, This means that V is
surjective and CG(Q) has a normal p-complement. But then

CG(Q)/Q has also a normal p-complement, which is impossible
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¥, :
because OG(Q) _-_CG(Q)/Q has no normal p'-group. Hence
P is elementary abelian and so Q is a direct factor of

P. By Proposition 1.2, Q is a direct factor of CG(Q).

Proposition 6.3. If py11, then p=7 (mod.8), CG(Q) is -

triply transitive on A' and G is triply transitive ondb.

Proof. If CG(Q) is not triply transitive on A', then
CG(Q%‘A' is soluble (Burnside), and then OG(Q)/Q has

p+1 Sylow p-subgroups. As it is a group of degree p,

then p&11 by [5;[. Therefore, as p>11, CG(Q) must

be triply transitive on A'. Now X, has the same character
X on A andf, with (& ,3)=2. Hence Xy has two orbits on

A xTof respective lengths ap and bp, where a+b=p and

adb. Hence X has two orbits on A, and of lengths

«{ray |
a and by and X, (BeA) has two orbits on ¥, also of
lengths a and b. As Xo(is transitive oni_‘, X must be

transitive on A' x¥, and hence X; &is transitive on A',

i

Therefore,X | is transitive on A', with subdegrees 1,

s |
a, be As (a,b)=1, X{’-’I\I is imprimitive on A! 59,17.5_].
Hence p+1=k(a+1) for some k. For each (3ed, we get an
orbit B{5 of length a of X oni:, and Xq, permutes the

p sets B(g. Hence they form the blocks of a (p,a,./\)-—
design, that is a set of p points, with blocks of size

a and with qr\blocks passing through any two points. The
number of blocks is p=A(g)/(S‘), and hence (p-’])} a(a=1),
and similarly, (p-1) ,b(b-’l). Now p+1=k(a+1), and so
b=p+1-a=1=(k=1)(a+1). Thus (p-1) , (a(a=1)b+b(b=1)a)=
ab(a+b-2)=ab(p-2), and so (p—’l)l ab=a(k-1)(a+1). But
then (p-1) [ a(k-1)(a+1)-(k=1)a(a-1)=2a(k-1)=2((a+1)k-k-a)

=2(p+1-k-a)=2(p-1)+2(2-k-a), and so (p-1) 12(a+k—2).
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Obviously k+a »2, and so p-1<2(a+k-2), that is (a+1)k-2
L 2(a+k-2), or (a—’l)(k-E)\CO. Hence either a=1 or k=2
and azg_f/l-. Note that we can get this result in the proof
of theorem 2 in [2]. In this theorem it is also proved
that p=7 (mod.8) if a#1 and that p is a Mersenne prime
if a=1. As p>» %, we must have p=7 (mod.8) in both cases.
We get also (ap,bp+p-’1)=(ap,p2+p—’])=(a,p2+p-/l):’l and

2

e,
(bp,ap+p-1)=(bp,p“+p=1)=(b,p +p-1)=1.

For ﬁéd, Xdﬂ has orbits of lengths p-1, ap and bp

on %\{4 ,(5’} . Hence G is triply transitive on (l or G A

has orbits on Lj))\f«(,ﬁ} of the following lengths:

1°) p-1, ap, bpe. In case 1° and 2°, Q acts tri-
2°) p-1, pg. vially on one of these orbits.
3°) ap+p-1, bp. In case 3° and 4°, the two
4°) ap, bp+p=1. orbits have coprime lengths.

Hence Gd_ is imprimitive in these 4 cases E!9, 17.5 & ’18._13 .
We investigate blocks of Gy on Ub\)j"fft. Let B be an
imprimitivity block of G9< on %)\)j"f} containing ﬁéA.
Then BAA is a block of P onh, and hence |BaA| divides
p. If Bna=A, then P stabilises B, and hence B/ I =@,
otherwise B would contain I and would be W \f{}. If
|B n4]=1, then B ATA®, and as Q fixes A, Q stabilises B.
Hence B Al is a union of sets ri. Now BAT is a block
of P on I'. Hence an I'I =p, .otherwise ]B[=p2+’1, which is
impossible. Hence !B] =p+1 or ]Bj:p.
As the orbits of G son W\f«,B} have pairwise distinct
lengths, we may apply Proposition %.3: G is a group of
automorphisms of a Steiner system S(2,1+b,n), where b

is the size of an imprimitivity block of G, on l/b\{“(}'.
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But we have proved that b=p or b=p+1. If b=p, then we get
a system 8(2,p+’l,p2+p+’l), and then G2PSL(3,p) as in
5

Proposition 5.4, which is impossible, because p” divides

the order of PSL(3,p). If b=p+1, then the number of
e 2
o [F +P+EL//P+3 (P7+p+ 1P vich is i
blocks 1is ( 2 . (2 = D+2 , Which is impossible,

because this number is not an integer. So we get a

contradiction, and G must be triply transitive onub.

Proposition 6.4. If p£11, then NG(Q) is triply transitive

on A' and G is triply transitive on .

Proof. If X is triply transitive on A', then we prove
the triple transitivity of G as in Proposition 6.3%.
Suppose now that X is not triply transitive on AA', then
X/YECG(Q)/QQJPSL(&p) [5], and Xu{ﬁ has two orbits of
length %(p-1) on \fl}\{o{,&}. Now (Xb<,ﬂ).“':_v(Xd,}) and so X4p
has 3 orbits on ¥, of lengths 1, Ré;’l_ and 251 . The
orbits 'of X&[,) on UD\{«,(B} have lengths %(p-1), %(p-1),p,
¥p(p-1), ¥p(p=-1). Any orbit of G p ON W\{ﬂi,ﬁ% is a union
of these. If G, is not primitive on db\{oﬁ, then we get
the same contradiction as in Proposition 6.3. By El9,’18.£|,
QQ;é’I for any orbit @ aof GO“} on JL\{K,{?-(,, and hence Gv{ﬁ
has no orbit of length smaller to p. We get then the
following possibilities for the degrees of the orbits

of G4($ on Ub\{"(,(%}':

1) 2p-1, ¥p(p-1), ¥p(p-1).

2) %(3p-1), ¥p(p=1), %(p-1)(p+1).

3) py E(p=1)(p+1), %(p=-1)(p+1).

4) p, ¥p(p-1), %(p-1)(p+2).

5) 2p-1, ¥%p(p-1).

6) %(3p-1), ¥%(p=1)(2p+1).
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7) Py (p=1)(p+1).

8) %(p-1)(p+2), ¥p(p+1).

9) %(p=1)(p+1), %(p"+2p-1).
10) #p(p=1), #(p"+3p-2).

41 ) p2+p—1.

By [%9,4?.5], the smallest and the longest orbits have
not coprimé orders. Hence we have only three possibilities:
- G is triply transitive.

- the case 2) with p#5.

- the case 6) with p=7.

In the last two cases, we have an orbit eJof length
p+¥k(p-1), with %(p-1)2 3. It is easy to show that Gyp
is primitive on . Hence, by [19,13.9], Gp 2 hy(3p1)e
By [ﬂ], we must have an orbit of size é%fi.é%fé or
,db\{q}'is a power of 2, which is impossible. Hence G
is triply transitive on ¢.

By [ﬁ9,9.%], NG(Q) is triply transitive on A'.

Theorem 6.5 The group G is triply primitive on UL.

Proof. Let B be a block of Gqﬁ on Ub\jk,ﬁ}'containing
yé A\fﬁ}. Then B A (A\{B}) is a block of X,q on s \{pS
and hence r:[B[\(A\{ﬁ})l divides p-1. As (r,p2+p-1)=1,
|IB{=1 or B iﬁ\{ﬁ}. In this case, as Q fixes A.\iﬁ} and
is transitive on each ri’ BN is a union of some sets
C.. Hence |Bl=kp+r, with 1§ kg p. If t-B=1, then G
has t blocks conjugate to B and intersecting Al\ﬁﬁ.
Hence t(kp+r)£;ﬁ¥p—1, that is tkSp. Now kp+r divides
p2+p—ﬂ and so (kp+r) l(p2+p-4)-t(kp+r)=p(p—tk), and
as (kp+r,p)=1, we have kp+rl p-tk. But kp+r > p» p-tk >0,
and hence p-tk=0 As tl p-1, we get t=1, k=p and r=p-1;
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thus IB]=p2+p—1. Hence G%ﬁ has only trivial blocks, and

therefore G is triply primitive.

Proposition 6.6. X is not quadruply transitive on A

and G is not quadruply transitive ontb,

Proof. Suppose that X is quadruply transitive on b,
Then p2 does not divide [XA|andX/Y acts onI‘ and A'. As
|§‘=p and.IA"=p+1, we get p=3% by proposition 4.5, which
is impossible. Hence X is not quadruply transitive on
A'. Therefore G is not quadruply transitive on&M, other-
wise NG(Q) would be quadruply transitive on N[?9,9.%],

and X would also be quadruply transitive on A'.

Proposgition 6.7. p>11.

Proof. If p=5 or p=11, then q=p2+p~1 is prime. But then
Gdc,(ﬁelk) is a transitive group of prime degree, but
not a Frobenius group. Hence Gqﬂ is doubly transitive

by Burnside's prime degree theorem, which is impossible,
because G is not quadruply transitive. Therefore 5#£p#11.
If p=7, then X/Y acts faithfully and triply transitively
on A' and acts faithfully(nli; but we can see that no
group acts in such a way on sets of lengths 8 and 7.

Therefore p#7, and we conclude that p >11.

Most results of this chapter were proved by Mc Donough
[9] or by Neumann and Praeger (unpublished). In the fol-
lowing chapter, we will prove some new results in the

case where p2 divides exactly the order of G.
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Chapter III. Further results in the case where lPl=p2.

§7. General properties of the elements of G\X.

<X,

PI’O;QOSitiOD. 7.1 ° FOI‘ i:/l ge e 0 ’p, G r

SR LET,
Proof. Suppose that x €G stabilizes ri but not A'. We
know by, Proposition 6.2 that CG(Q)=QXO, and C acts
doubly transitively on A' and £. Each orbit of C inter=-

sects T, in one point, and hence C =C_ has p orbits
. jraf s

of length p-1 on r\f‘i and one orbit on A'. Let H=

' X o : .

<CG(Q|)-”J'.& , (eri&) e As ri _fi_, []'_ is an orbit of H
.

and H ~=Q rl. Now there is an orbit of (C{r.})x which
intersects both A' and r\ri, otherwise we L::’Ollld. have
A'=A'X or A'* would be the union of orbits of length p-1.
Hence H is transitive on A' WV (F\I‘i)=Ub\ri.Now [’HHL] 3o

and hence H ~ 1s transitive on ‘/L\E because (Idb\rilap)=/]
i N
[19,17.1]. But then G is quadruply transitive by ["9’/'5'/']’

3

which contradicts Proposition 6.6. Hence G‘
¥

&EX.

Corollary. If rix=rj, then x €& X (because there is y&X

with T‘J.*Y: ]’l and hence T’jyX= fj Vi

Proposition 7.2. If x& G\X, then|[r*\I>1.

Proof. Suppose that |F*\r|=1. Let {/3}=FX\I'. Then 39 = <
for some y € X, and MI\r= {«f. Let H=<P,Q*7>. Then H

- b .
is transitive on MuT*£v\& and B =P2 Hence [H:H,]=p

and as (p,|r vi®D=1, H, must be transitive on rvr¥Y

o
[’19,’17.’1] and therefore G must be quadruply transitive
on# [19,13.1), which is impossible. Hencelrx\rl;é’i and

sg [FENvla.

Proposition 7.%. If for x€G, I’iX= q\{dﬂ}(}{&’}, where arC—A'
and Jeri, then()(x,A)g[)(«’)T:) and [F*\rl=p.

We prove first the following lemma:
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Lemma 7.4. For any x €G and i=14...,D, Gxnr;éﬂ.

Proof. Suppose that Fixnr=g. Then rle A' and hence
for g eQ¥, [F8\T[£1. Therefore Q*< X by proposition
7+2. But then Qx is a subgroup of X which has order p

and fixes p points of r, which is impossible. Hence

M al 4p.

Proof of 7.3. We know that CG(Q)=Q X e, CJ)’ri}=CJri and
GG(Q)J{ri? :QXCaI‘i- Let D=C, ri. We know that D has p
orbits of length p-1 on T\ f'i and two orbits A and A
on L\'\%of respective lengths a and b, as in Proposition
6e%. Let H:(QX,Q,D>=<QX,CG(Q)'Jfrﬂ). ThenTl = {y}vl; is
an orbit of H and I\ l"i is contained in an orbit of H,
By Proposition 7.2 , Irx\rb 1, and hence (T'\I“i)x;é f'\f'i.
By Lemma 7.4, there is a I’J such that FJ.X intersects
both {',\T'i and A'\{yf. If A_n MABAL O¥, then H is
transitive on (r\ri) Uﬁa Ullb=(9, and then p5=[Q[. | Of
divides |H|= [@l.]H,,]f (-f»;er\ri), which is impossible.
Hence either Aan fX;égb’:ADan or Ab(] TX#Q=A3(1

We may suppose the first. Then Tl, A=A U(F\F.)and A
are the orbits of H on (). If Hpis transitive on A,
then K=(Hﬂ,X T; > is transitive on Alv /":(/b\ri and fixes
T'i pointwise. But then G is quadruply transitive on Jb
E’I9,’15.’l], which is impossible. Hence H_ is not transi-

1

tive on N . Now H_ncontains D, which has a fixed points
and p orbits of length p-1. Hence HT‘I is half-transitive
on A, with orbits of length t, where t2p-1. We write
t=s(p=1)+r and k= M’/t; of course k $1. Then p(p=-1)+a
=k(s(p-1)+r)=ks(p-1)+kr. Now D fixes at least r points

on each orbit of H‘TI on/\, and a points on A, Hence kr Jae
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If kr=a, then p(p—’]):Mf —a=]1\l -kr=ks(p-1), and so ks=p.
But then k I (ks,kr)=(p,a)=1 (because a ¢p), which is
impossible. Therefore kr ¢a. But as O£ kr< a £p-1 and
kr=a (mod.p-1), we conclude that kr=0 and a=p-1. As
XX{I'Z]} has the same orbits on A' as D, we conclude that
(XX,B'\S'Jk ):?(XK,{') and so (X.(,A)r:}_’(X*,*I:'). Since kr=0,

we have r=0 and ks=p+1. Let L be the subgroup of H
leaving all orbits of HTI on A invariant. Then H/L acts
faithfully on the set of these k orbits. If s3$1, then
kspezi<p and so H/L is a group of degree smaller than

p, and hence a p'=-group. But then Q<&L, Q*< L and so
H=<Q,QX,D>5L, which is impossible. Therefore s=1 and
H“has orbits of length p-1. Hence Aa must be one of them,
because D stabilizes it and has p orbits of length p-1
on /\\L\.a. Therefore L\a is a block of H on !\,/land so Q¥ ;
fixes no point of A . If [BQAa\[‘X, then (sx_ «El"and/gx—
is fixed by Q; but then 3 is fixed by QF, which is impos-
sible. Hence Aagr"‘\r, and so {F’X\Tl & anV)'a’H =p. Now
Abz {ﬂ} for some (3 €4', If A ¢€r*, then (> would be moved
by QF, which is impossible. Hence f3 &1 and {‘X\rm%L V{J} .

Therefore \FX \ r,=p.

As G is triply primitive on W, there is an element
x of Gyp (BE4) such that (AMEHTZ A\{B) and (A\§BY)*q (a\gs)) 40.
But then \A' nA'X|>5 and so er\rlsp-e. Now, for any
x £€G such that irx\l'l,{'p—zz, there is x'€ G_«g_k(a,}réﬂ)
such that h—x\r‘:|rx'\r’. Indeed, there are at least
three points «',p',y' in A' ﬂA'X. Then o<'=¢("X,(5'=(3"x,
¥ =y'" for some &",B",y" €A'. There are y,z &€X such that
o T =" ,gy':tq",)y=3",a<'z==—i,§'2=(3,'br'z-—-x. But then x'=yxz
GG"((SX’ and lf" SESANY =“_XZ\H=|rxz\rz‘=|rx\r|, because

i—Z=r= [‘-y.
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Therefore, if for x &G, II“X\Nﬁp-—E, then we may sup-

pose that x &Goﬁf”b"

§8. Certain groups containing Q.

We ccnsider subgroups M of G, such that Q =M but
M $X. Then M has three sorts of orbits:
1°) The orbits (ﬂ),],...,dbm which intersect both A' and I
As M $X, we have m#O,
2°) The orbits 'ﬂq,...,'ﬁv which lie inside Iy if they
exist. As Q <M, each T, is the union of some sets i’J..
3°) The orbits A’I""’nw which lie inside A', if they

exist.

m
We pose Qiz,/;.in A"§iz°,bin i',9= ikz')’l 91, t-i=)9il and
m
o= 8= Zqt;

We will investigate the case where M satisfies one
of the . following properties:
(I) For any x €M, M*=r or FX\r=0@ (it is equivalent to
say that B%=Bor @*n OB =) and +t< p.
(II) For any x €M, *=F or r*\t=© and t <p. The group

M has support F'u@ (that is each I\i is trivial).

(ITI) is a particular case of (I), and the number of
points of A' fixed by M is p+l1-t 22. If we take x &G
such that ‘Fx\ﬂ is minimal positive, then IF*\rlg p-2 <P,

and so0 <Q,Q*)» satisfies (II). Suppose that M satisfies (I):

Proposition B.1. For i=1,...,0, Qi is a block of M onb’b..

Moreover, for any i,Jj &m, Mie }—M e. z , and so the action
i§ 1
of M on Z the set of blocks ofu[,i conjugate to @

does not depend on i. Q acts on E with only one fixed

point, and |El =1+kp, where 1 £k< p=1; the group M acts
2
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primitively on& . Moreover, t >1, v70 and for j=1,...,v,
<M = .
M“n.—ME' If k=1, then each tl‘}’l.
Proof. M satisfies (I). If 9.1 was not a block of M on
ini, then we would have some g'EM such that Gig;éei and
Gig ﬂe.l;é,@. But then we would have Gg;é@ and Bn (9%;4,@, which
contradicts (I). Hence Gi is a block of M on dbi. The
same argument shows that M{eig =M293E for i,jg<m. If 5i
is the set of blocks of Jl,i conjugate to Gi, then the
action of M on Ei is the same as the one on é'a.. Hence M
acts on £, which does not depend on i. As each ti(p and
as Q acts without fixed point on T', Q may not stabilize
any @ig which lies in ', and hence Q fixes only one point
of & (corresponding to Gi). Hence l£\=’1+kp, with 1< k< p.
Now t »1 by proposition 7.2. If k)%, then p2= (rl> , \f Qé_l
2
:tkp}tpé-, which is impossible, since t 22. Hence k £¥p,
- ' 2
and so,ké%—— o If v=0, then tkp= | Lfé;[ = |Fl=p“, and
SO p [tk. But then k=p, since t <p. Therefore v »O0.
For j=14¢..,v, M, leaves some l'_;._Eﬂa. invariant. Hence
J
M, €X b roposition 7.1, and so M SMy for some
= y prop 70, T {88
i=1,ee.,m. This means that M fixes one point of ¥,

-3
m,

J
If M was imprimitive on £, then a block would have

T
J

QME, we must have s=’|, that is Mn E M, W

. 3 s

and as M
size 1+1p, with 1<1 <k, because Q acts on € with one
fixed point and k orbits of length p. But then 1+1p
divides 1+kp and ;E%!Hl'p, with 1'>21; this gives
14kp=(1+1p)(1+1'p) ?,(’I+p)2> ’i+p2, which is impossible.
Therefore M is primitive ong. If k=1, then each t;>1,
otherwise Jbi=UEj\\’5\')U\’A't , where yeA' and deé rj, and so

t =p by proposition 7.5, which is impossible.
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Proposition 8.2. If M satisfies (II), then M is %—fold

transitive of rank 1+k on ¥ (that is with non-trivial

subdegrees equal to p). For i=1,...,v, the group L=MnX

leaves eachl«ll.invariant and M_n =M.. If k>1, then each
A i -3

t:=1 (i=1,...,m), M is soluble and Mé=’i.

Proof. The group L=Mn X:M.{eig (i=14+4..,m) fixes some point
of A', and we may suppose that it is « . Then L has p-t+m
=|2\6] +m orbits on A. Consider the action of L on L and
on the sets él Suppose that L has 1 non-trivial orbits
on &, of respective sizes M DyeeeylyPe LT @i' (conjugate
t0 ©,) is in the orbit of size m;p, then [ foy'l :L{Qi,}]
=m.p. As WM .| is transitive on O,? s+ each orbit of

J {6; a t;
L),ei,} on Qi' has length equal to at least m—)-
[19,17.1]. As (t;,m;p)Smy, it follows that Lo, ,} has
at most mj orbits on 9'1' sy and hence L has at mo;t m'j
orbits on (Qi')L (the union of blocks in the orbit of
length mjp:)L. If k; is the number of orbits of L on @i’
then Eii a§=,]mj=k. Let Ifi={rj692[ F'j -‘:.?lg and E'»—_,{/\L{S.Ci.
Then L acts on 'fi with k. orbits, where kiSEi‘S k. Now
)42' [:p—kt, and L has s orbits on ¥', with 1 s <p-kt.
Therefore I has (zl ki)+s orbits on ¥. But L&X ey and
we know that X4 has the same permutation character on
MNand £. Hence p—-t+m=s+§l ki. This gives:
p—t+m=s+§l k, < SI: k; +s Lkm+s <km+p-kt=p-t+m+(k-1) (m-t)
< p-t+m because k21 and m<t,.

Therefore k=ki=—]&'i for i=1,...,m, and s=p=-kt, 0=(k-1)(m-t).

This means first that if k>1, then m=t, that is ti:’1
for i=1,...,m. Secondly, L has p-kt=|E'| orbits on¥':

in other words L leaves each rJ €¥' invariant. Thirdly,
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L has k orbits on I’i and on -§i‘ If k=1, then L is tran-
sitive on @i, and hence it has two orbits ong&: M is
doubly transitive on & (and so it has rank 1+k).

k?>1, then (IV'.[E,E):(MJLJ.‘,W]._), and hence L has k orbits

on 2\{9’}, where D is the point of -] corresponding to
the sets ei' As each non-trivial orbit of L on € has
length not smaller than p, it follows that they have
length p, and so M is g--fold transitive of rank 1+k
on&. By 8.1 , we know that for i=1,¢04,V, We have Mﬂ <M

x i
by proposition 8.1. Let us prove the converse: The group

g

MZCL and hence Méleaves each rJ :ﬂl invariant. As
ra and M{ has no p-element, it follows that
ne

M1«
z;’j T 3t i _
ME' =1, and so MZ =1, and therefore ME =MTL s dinelly,

i
if k >1, then Mg fixes each ﬂj’ each dbi and A'\O point-

wise, and so Mi=/l' It remains then to show that MEMZ
is soluble in this case: if it was not, then we would
have M ZPSL(2,p-1) and p would be a Fermat prime [8],

which is impossible because p=7 (mod.8).

To prove that MZis soluble when k=1, we need the

following lemma:

Lemma 8.3. For 1,J=T1,ee¢4D, G{ri & I'ijX

Proof. Suppose false. Then there is x¢& G\X which leaves
ri VE invariant. Thus Fln A'#Qj for some rl G.EE. By Lemma
7o, i"lnr;é@. By Proposition 6.2, we know that CG(Q)=C XQ
for some subgroup C of G. By Propositions 6.3 and 6.7,

C is triply transitive on A', and hence C4 is doubly
transitive on ¥. Now C{l’ k is transitive on A' and on
_,l_\{rk . As C is doubly transitive oni it follows that
"(ﬁ’rj_t is transitive on E\{f‘l& + Therefore C; is tran-

AR
frifs 4rs)

sitive on A'X (E‘\{Fi\) and hence C is transitive
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on A'. But each orbit of C intersects each fi e ¥in
exactly one point, and so Cfrlt' =C ,-1- Therefore Cfrif' ’{rj‘
=C rov G As D=C r Vr:j is trans‘itive on A' and as some
rlx intersects both a' and r\(ri UFJ.), the group H=
<D,Q,D*,Q"> must have an orbit A\ such that A' S A fr\(f"iufzj)
and NNT#@; then “\l=zp+p+’l, where 1 £z<£ p-2. Now H
leaves rl UF’J. invariant, and so K=Hl'iu . 1is half-tran-
sitive on \. By proposition 7.1, K<£X because KfG{ri{ .
Therefore K leaves A' invariant; but D €K and D is tran-
sitive on A'. Hence A' is an orbit of K, and as K is
half-transitive on /N, it follows that p+”l=m'| divides
IM:zp+p+’l. But then p+1 | z, which is impossible, since
1% z <p. Therefore we have a contradiction, and so
i Tyt =t

Proposition 8.4. If M satisfies (II) and if k=1, then

M £ is soluble.

Proof. Let N=ME. Then N acts faithfully on each'T& and on
£. Let q4=|N, |/p. Then for U€&, Nghas q; orbits on T,
each of length p. Hence N has a; orbits on éXni, each
of length (p+1)p, and fory eT]i, Na has a3 orbits ong,
each of length (p+1 )/qi. i é,],...,{q_ are the orbits
i
=N_=1 for each Jj, otherwise p2

923- b3

would divide the orsder of N. Hence N_a_acts faithfully

of Ng on fl., then N

on each Ej. I1f Nl}is doubly transitive on 2\{9?, then
it must also be doubly transitive on each éj’ and N&
has the same permutation character on Z andéj. For

T éfj, Ny, has two orbits on é,j’ and hence it must have
two orbits on é\{@'}, of respective lengths a and b. But

Nﬁn& Nﬂ, which is half-transitive on{. As we may not
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have 1=a=b, it follows that Nq has at most two orbits
onZ, and so q;< 2 in this case. If N§ is not doubly
transitive on§i“®§, then N& is soluble by Burnside's
prime degree theorem, and so N.is a Zassenhaus group of
degree p+1, ¥ is insoluble and not triply transitive.
It is known that such group must be isomorphic to
PSL(2,p). Thus [Nﬁssﬁp(p—ﬂ), and for Ttéfj, Ny, has four
orbits onzj, of respective lengths 1,1,251 and E%i. As
thTSNﬂ’ which is half-transitive on €, it follows

that Nﬂ has at most two orbits ong, and so qi$f2 also
in this case. Therefore lﬂi}$2p in any case. By propo-
sition 7.1, it is clear that rﬂilﬁp while FWil=2p is
impossible by Lemma 8.3, because M g&X, Therefore we

have a contradiction, and so Mé:must be soluble.

We sum up our results: If M satisfies (II), then
M¥acts on & as a soluble primitive %-—fold transitive
group of degree 1+kp, where 15k S_Rg-l—. TR iy omw 5 V'
fﬂijl>2p and ﬂizMﬂi; the group L=M nX stabilizes each

Fj ¢Tl,. Note that v£0. If k=1, then each t;>1. If k)1,

then each ti=1 and so M_=1; therefore M is soluble in

&
this case.
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Note added in proof:

With the results of chapter III, we can prove the

following:

Proposition 8.5. The group Y is soluble and X:NG(Q).
Proof. Take x such that “hx\r’ is minimal positive. Then
M=(Y,Y"> satisfies (II) and we know that M acts on a set
g, with Mz.soluble and p}JNQ . Hence YEE§Y/Y{ is soluble
and Yé-is a normal p'-subgroup of Y. By proposition 6.1,
¥ acts‘faithfully on each ri. Therefore ¥S=1 and Y2YT
is soluble. Thus Q:OP(Y) and so Q char Y <X, which
implies that Q<gX. Now NG(Q) stabilizes A' and so we
must have X=NG(Q).



