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Abstract : Substitution networks are switching networks which realize one to
one mappings from their input alphabet to their output alphabet. They are used
for example in cryptology for the enciphering of the cleartext and the deciphering of
the ciphertext. We describe here a multistage construction for the design of larger
substitution networks from smaller ones, in such a way that this construction allows

the realization of any input-output bijection.
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Figure 3: A total substitution network on © x ¥/,
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1. Introduction.

Substitution networks are a basic tool in cryptology. Indeed they realize bijec-
tions between an input and an output written in a given alphabet; they are thus used

for the enciphering of the cleartext and the deciphering of the ciphertext ).

Generally the alphabet can be expressed as a set of binary n-tuples. This
poses the important problem of the design of such networks with logical gates, and
in particular the design of networks which can realize all possible bijections on that

alphabet, what we call total substitution networks.

Due to the relative complexity of straightforward designs for large substitution
networks and to the actual limitation of the available chip sizes, one must often
build them from smaller components. In particular it may be necessary to build large

substitution networks by interconnecting smaller ones. This is what we call expansion.

In this paper we describe a three-stage design which builds from total substi-
tution networks on the alphabets ¥ and L' (of respective sizes N and N') and from
Canonical Universal Logical Modules (CULM) (i.e., switching networks that can re-
alize any input-output function), a total substitution network on the alphabet ¥ x &'
(of size N - N'). This design is obtained by a correspondence with the well-known
network of Clos which is used to build permutation networks (see 1)). By iteration, we
can thus build a total substitution network on the alphabet £" (the set of n-tuples in
¥) with a (2n — 1)-stage construction. Given that a total substitution network on the
binary alphabet {0,1} is a modulo two adder, and that the corresponding CULM is
- amultiplexer, total substitution networks on the alphabet {0,1}" can be constructed

with (2n — 1) modulo 2 adders and (2n — 1) multiplexers of size 2"~1.

2. Definitions.

Write {zo,...,2,} for the set containing zo,...,2,. Given m sets Ay, ..., AM
(m > 2), write A; X -+ X A, for the set of M-tuples (ai,...,a,) with a; in 4; for
¢ = 1,...,m. In particular write A™ for the product A X ... X A of m copies of A,

that is the set of m-tuples in A.

Let ¥ be an alphabet of size N. Then a substitution network on ¥ is a switching

network having an N-valued input I (with values in ¥), an N-valued output O (with
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values in ¥) and an M-valued control input C. For each value of the control input
C, the network realizes a bijection between the values of the input I and those of the
output O, in other words a permutation of the alphabet . Every such bijection is
called a substitution. We illustrate that network in Figure 1 and write it Sy.

In practice, one often has N = p* and £ = A¥ for an alphabet A of size p, and
the input and output can be seen as sets of k p-valued inputs and outputs respectively.
One generally takes p = 2. Thus in a concrete design, one can consider that we have

logs(IN) binary inputs and outputs.

If the substitution network Sy can realize all possible V! substitutions, then we

say that Sy is total. In this case it is necessary that M > N!.

Given two alphabets ¥ and X' (of respective sizes N and N'), a © to &' Canon-
ical Universal Logical Module (in brief, a CULM) ) is a switching network having
an input I with values in ¥, an output O with values in ¥’ and an M-valued control
input C such that every mapping from T to ¥' can be realized as input-output func-
tion of that network under an appropriate setting of the value of C. Note that we
must have M > N'™. We illustrate that network in Figure 2 and write it Cy,n7.

3. The three-stage expansion of total substitution networks.

We are now ready to attack our problem. The expansion of total substitution
networks means the construction of larger total substitution networks from smaller
ones. We will describe here a three-stage construction of a total substitution network

on the alphabet ¥ x ¥'. The design is organized as follows:

Let A and A’ be the respective alphabets of the control inputs of ¥ and X'

Then we obtain the following three stages:

— The first stage contains a total substitution network on ¥ and a X' to A
CULM.

— The second stage contains a total substitution network on £’ and a ¥ to A’
CULM.

— The third stage is similar to the first one.

This construction is illustrated in Figure 3.
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We will now explain how this construction has been found and why that substi-

tution network is total. This will be done by an analogy with permutation networks.

A permutation network on n lines is a switching circuit with n inputs and n
outputs, which can realize any one to one connection between the inputs and the
outputs. This type of network is used for example in telephony (see 1)). If each
line traversing that network carries signals in a p-valued logic, then that permutation

network can be seen as a substitution network on an alphabet of size p™.

However, it is not in this way that we will make our analogy, but rather as
follows: A permutation network can realize all permutations on the set of input lines,
while a total substitution network can realize all permutations of the input alphabet.
We will thus relate the input lines of a permutation network to the values of the input
of a total substitution network. Given a design for the construction of a permutation
network (for example Clos’s network), it can be expressed mathematically as a law
for the decomposition of permutations, and this law can be translated in terms of the

alphabet as a design for total substitution networks.

Consider indeed Clos’s network. It is a three-stage design for constructing a
permutation network on a - b lines with 2a copies of a permutation network B on b
lines and b copies of a permutation network A on @ lines. We illustrate it on Figure
4 for a = 3 and b = 2, and we number the lines with elements of Z, X Z,, where
Zy = {0,..,a — 1} and Zy = {0,...,b — 1}. It is well-known that this construction

forms a permutation network (see V).

Now this fact means that a permutation of Z, x Z, can be decomposed as the

product of three permutations, corresponding to the three stages of the network:

— The first permutation maps every (z, y) of Z, X Z, on some (m,(z), y), where

Ty is a permutation of Z corresponding to y.

— The second permutation maps every (z,y) of Zy X Z, on some (z, p,(y)),

where p, is a permutation of Z, corresponding to z.
— The third permutation is of the same type as the first one.

Now if we replace Zy and Z, by ¥ and ¥’ and line permutations by substi-

tutions, then we obtain the construction of Figure 3. Indeed, a substitution 7, on

3



Y determined by some y in X' can be obtained by making y “act” on the control
input of a total substitution network on ¥, But as the correspondence between the
values of the control input and the resulting substitution is not predefined (and can
be arbitrary), we need to use a ' to A CULM to realize the action of y on the control
input of that total substitution network on ¥. This explains thus the first stage of

the design of Figure 3. The two remaining stages can be understood similarly.

Let us say a few words on the control of CULM’s in our construction. A detailed
analysis of their structure can be found in ). We can however state a few elementary
facts. If the alphabets ¥ and ¥’ have respective size ¢ and ¢, then the control of a
% to ¥’ CULM must have size ¢'%, and so we can choose the alphabet ¥'” for the
control; given a bijection 7: ¥ — {0,...,6—1}, we associate to a function ¢ : & — %’
realized by the CULM the control input (¢(r=2(0)),...,¢(r" (o — 1))).

4. Some applications.

Since Benes V), it is customary to generate permutation networks on n* lines
with 2n—1 stages of n*~! permutation networks on n lines, by an iterative application
of Clos’s three-stage decomposition. Using our construction of Section 3 (from a
preliminary draft of this paper), M. Davio 2) did a similar thing for total substitution
networks. We show in Figure 5 (for n = 3) his design for a total substitution network
on the alphabet ¥y x ... X £, built with 2n — 1 stages using each one CULM and
one total substitution network. Note the regular interconnection pattern between
the stages: the first n — 1 interconnections consist in a rotation (Z,,...,I;) on the
n alphabets, and the remaining n — 1 interconnections form the inverse rotation
{ Bt Bl

In the same way as one builds permutation networks on 2" lines from binary
cells with a (2n — 1)-stage construction %), one can build with total substitution
networks on the binary alphabet A = {0,1} a total substitution network on the
alphabet A". In fact, a total substitution network on A is a binary adder . Moreover,
the corresponding A"™! to A CULM is simply a multiplexer of size 2"~!. The
form taken by every stage (without taking into account the interconnection with the
preceding and following stages) of the resulting total substitution network is shown

in Figure 6.



One further interest in using the basis 2 for our construction is a property of the
corresponding permutation network of Benes and Waksman, that there is a simple
control algorithm for the construction of any permutation, called “looping” %). In fact,
the looping algorithm can be translated to that type of total substitution networks.
This is done in an example in 2). In this reference, other properties of the multistage
design for total substitution networks are analysed (for example asymptotical cost

and delay, comparison with other designs, etc.).

5. Conclusion.

We have presented here a multistage design for the construction of large total
substitution networks. In particular, it is possible to build a total substitution network
on the alphabet {0,1}" with 2n — 1 stages containing each an adder modulo 2 and a
multiplexer of size 2", and the “looping algorithm” of Waksman %) can be used as

control algorithm of such a network.
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