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Abstract. Morrone and co-workers have proposed a model for edge detection in grey-level

images, based on psychophysical experiments in human vision. Assuming a one-dimensional

visual signal, edges correspond to points of maximal Fourier phase congruence of the signal,

and are localized at peaks of an energy function obtained as the quadratic combination

of convolutions of the signal with two filters in Fourier quadrature (i.e., forming a Hilbert

transform pair); such properties were explained in the case where the one-dimensional visual

signal was periodic. In this report we make an in-depth theoretical study of this phase

congruence model for two-dimensional non-periodic images. We consider one-dimensional

edges and features (in the sense that significant grey-level changes occur along a single

direction), but whose orientation is not fixed. We extend previous work in several respects:

— The mathematical framework is improved: both the signal and the filters are two-

dimensional and non-periodic; new mathematical properties are obtained.

— We consider edges having various orientations, and characterize mathematically the

joint determination of orientation and position of edges.

— We show that usual models for edge detection involving a single filter are a particular

case of this phase congruence approach.

— We introduce some further filter combinations for classifying types of edges.

We discuss also of types of unidirectional edges and local features that can be encountered

in natural images (steps, lines, ramps, Mach bands, compound edges, etc.), and of the ap-

propriateness of the model to their detection and localization. In order to make this report

mathematically self-contained, we have included a detailed exposition the basic mathemat-

ical theory of the Fourier and Hilbert transforms.

Key words. Edge and feature detection, edge types, symmetry, integrable and square-

integrable functions, Fourier integral, Fourier phase and amplitude, constant phase, phase

congruence, quadrature, directional Hilbert transform, linear and quadratic filters, energy

feature detector.



Résumé. Morrone et ses collaborateurs ont proposé un modèle pour la détection d’arêtes

dans les images à niveaux de gris, basé sur des expériences psychophysiques concernant

la vision humaine. Supposant un signal visuel unidimensionnel, les arêtes correspondent

aux points de congruence maximale des phases de Fourier du signal, et sont localisées aux

sommets d’une fonction d’énergie obtenue par une combinaison quadratique du signal avec

deux filtres en quadrature de Fourier (c.a.d. formant une paire de la transformée d’Hilbert);

de telles propriétés furent expliquées dans le cas où le signal visuel unidimensionnel était

périodique. Dans ce rapport nous faisons une étude théorique en profondeur de ce modèle

de congruence de phases pour des images bidimensionnelles non péridodiques. Nous con-

sidérons des arêtes et traits unidimensionnels (dans le sens que les changements significatifs

de niveaux de gris ont lieu dans une seule direction), mais dont l’orientation n’est pas fixée.

Nous étendons les travaux précédents sur plusieurs points:

— Le cadre mathématique est amélioré: tant le signal que les filtres sont bidimensionnels

et non-périodiques; de nouvelles propriétés mathématiques sont obtenues.

— Nous considérons des arêtes ayant des orientations variées, et caractérisons mathé-

matiquement la détermination conjointe de l’orientation et de la position des arêtes.

— Nous montrons que les modèles usuels pour la détection d’arêtes impliquant un seul

filtre sont un cas particulier de cette approche par congruence de phases.

— Nous introduisons de nouvelles combinaisons des filtres pour classer les types d’arêtes.

Nous discutons aussi des types d’arêtes et traits locaux unidirectionnels qu’on peut rencon-

trer dans les images naturelles (pas, lignes, bandes de Mach, arêtes composites, etc.), et de

l’adéquation de ce modèle pour leur détection et leur localisation. Afin de rendre ce rapport

autonome du point de vue mathématique, nous avons inclu un exposé détaillé de la théorie

mathématique de base des transformées de Fourier et de Hilbert.

Mots clés. Détection d’arêtes et de traits, types d’arêtes, symétrie, fonctions intégrables

et carré-intégrables, intégrale de Fourier, phase et amplitude de Fourier, phase constante,

congruence de phases, quadrature, transformée de Hilbert directionnelle, filtres linéaires et

quadratiques, détecteur de traits d’énergie.



1. Introduction

Edges are visually salient features in a grey-level image, whose positions in the plane form a one-

dimensional structure. They include boundaries between distinct regions of a picture, as well as

discontinuities inside such regions, or line drawings in sketches [1]. They can have various grey-level

profiles, such as steps, lines, roofs, and combinations of these [2]. Numerous papers have appeared

on the subject of edge detection, and research carries on with this topic, for no method presented so

far is completely satisfactory. One of the first problems faced by anyone attempting to devise a new

edge detector is to define precisely what is an edge. We see three types of definitions:

— Physical definition: An image is formed as light coming from certain sources is reflected to-

wards the viewer by surfaces in three-dimensional space. Thus edges are the optical projection

of object discontinuities, such as: changes in surface reflectance or orientation, object termi-

nation (leading to boundary contours), occlusion, shadows, etc. Edge characteristics are thus

determined by photometric properties of various materials. This approach has been cham-

pioned by Horn [2], and recently illustrated in [3]. It can be characterized as objective and

materialistic.

— Physiological or psychophysical definition: Edges correspond to what humans (or primates)

perceive as such. This does not say what are the characteristics of an edge (such as the

kind of grey-level profile in its neighbourhood), but only where an edge must be detected

in a given image. Here the emphasis is put on the definition of the edge detector rather

than that of the edge. Visual response to artificial images are measured by psychophysical or

electrophysiological studies, and edge detection operators are then modeled after the behaviour

of visual neurons. This approach traces back from the experiments by Hubel and Wiesel [4]

on “edge and bar detectors” in the primary visual cortex of monkeys. It can be considered as

subjective.

— Mathematical definition: The grey-level image is a mathematical function, and edges form the

locus of points where that function satisfies certain mathematical properties, such as: step

discontinuity of the function or of one of its derivatives [5], non-analyticity, zero-crossing of

the Laplacian [6], peak in the absolute value of the gradient of the Laplacian [7], Fourier

phase congruence [8,9], etc. Alternatively the edge detection process can be modeled as a

mathematically ill-posed problem which must be regularized [10]; for example in [11] a filter

detecting step edges was considered as the regularization of differentiation. This approach can

be characterized as objective and idealistic; indeed it relies often on abstract models of “ideal”

edges with added noise.

Following Marr [12] there is a tendency to combine these three approaches, and to define edge

detection in terms of photometry, physiology, and mathematics. In practice it is impossible to

demand that an edge map computed from an image according to a mathematical algorithm, the

human perception of edges in that image, and the optical projection of discontinuities in the scene

giving rise to that image, should all three coincide exactly. However it is reasonable to ask that these

three edge maps should be close to each other.

The phase congruence model for edge detection [8,9] considers that edges in a one-dimensional

visual signal correspond to points where the cosine curves composing the signal (in a Fourier decom-

position) have their phases in conjunction; this is for example the case for an ideal step or triangular

line, see Figure 1. As indicated in [9], such edges can be detected as peaks of an energy function
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obtained as the sum of squares of convolutions of the signal with two constant phase filters forming

a Hilbert transform pair (we will explain this in detail in Section 4, where we investigate the model).

This abstract mathematical model has been deepened in [13,14,15], and more general models using

quadratic combinations of various pairs of filters have been studied [16,17,18,19]. Similar approaches

have been tested [20,21] in order to model the human visual system. Authors agree that the quadratic

approach allows the accurate detection of both step and line edges, something which is difficult to

achieve in usual methods using a single filter, such as [7].

In fact this mathematical model arises from psychophysical experiments on human detection

of edges or Mach bands in vertical gratings (images whose grey-level is constant in the vertical

direction) [22,9,23]. Related psychophysical [24] and electrophysiological [25] studies suggest that

the responses of simple cells in the visual cortex have Fourier phases corresponding to those of the

two filters used in phase congruence model [9]. Hence this approach to edge detection has a sound

foundation in both mathematics and physiology. However there has to our knowledge been no study

of its relation to photometry: what are the Fourier phase characteristics of edges arising in natural

images from the optical projection of object discontinuities?

In this paper we make a systematical study of this model for one-dimensional edges in two-

dimensional images. By one-dimensional edges we mean local images features where the grey-level

changes significantly in one direction and is relatively constant in the perpendicular direction, such

as steps, lines, and roofs having a relatively constant orientation; however the orientation of the edge

is not fixed, we deal also with the selection of edge orientation. We exclude from this study the

analysis of bi-directional visual features, where there are significant variations of grey-levels in two

directions, such as corners, end-stopped edges, or strongly curved edges; these have been sudied in

[26,27,28,29,30,31,32]; the latter four references are related to the phase congruence approach.

Another extension of edge detection with which we do not deal here, is the detection of

spatiotemporal edges in moving images. For example in [33,34] moving images constitute a signal

on a three-dimensional space-time, and spatiotemporal edges are surfaces in space-time; in [33] they

are detected through an energy function obtained as a quadratic combination of convolutions of the

signal with spatiotemporal filters in phase quadrature; in [34] one uses instead the sum of two filters

which are in phase quadrature both in space and in time.

This paper is organized as follows. In Section 2 we discuss briefly the various types of edges

that can be found in natural images, from the three points of view of optics, psychophysics, and

computation; in particular we recall some advantages of quadratic edge detectors, and especially of

the phase congruence model.

Section 3 is devoted to the mathematical foundations of the model: the Lp spaces and convo-

lution, the Fourier transform, constant phase signals, phase quadrature and the directional Hilbert

transform, the analytical signal and its energy, etc. This makes our paper self-contained from a

mathematical point of view.

The phase congruence model of edge detection in non-periodic two-dimensional images is

described in Section 4. We specify the spatial and Fourier requirements on the two filters, and

we give the mathematical properties of the energy function as well as of other quadratic operators

obtained from the convolution of the image with these two filters; then we interpret traditional

single-filter approaches to edge detection (such as Canny’s operator [7]) in terms of energy and phase

congruence. Next we give a mathematical justification to the traditional method of selecting the
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edge orientation by taking filters at various orientations and choosing at each point the orientation

giving the greatest energy function.

Finally Section 5 discusses various questions related to this model: the digitization of the

filters, possible extensions towards the detection of bi-directional features (corners, end-stopped

edges, junctions, or strongly curved edges), applications to other vision tasks, etc. That section ends

with the conclusion.

2. Types of edges and visual features in natural images

This section is somewhat complementary to the remainder of the paper, because we will discuss

here photometry and psychophysics rather than mathematics. We will describe several types of

luminance profiles that we call edges, and which types of scene events give rise to them. Finally

we will examine briefly how they are perceived by the human visual system, and how this can be

relevant for computer vision.

Horn [2] showed that it is possible to describe the form of luminance profiles of edges in a

grey-level image, according to the corresponding types surface discontinuities in the scene giving rise

to that image, provided one makes some simplifying assumptions, such as:

— The surface of the objects in the scene is piecewise smooth.

— The reflectance of objects is Lambertian, that is: every surface patch looks equally bright from

any viewing direction, and its brightness is proportional to the amount of light it receives.

— The primary illumination is coherent, in other words there is a single light source spanning a

small solid angle (e.g., the sun, or a light bulb).

In general, things are more complicated. First, the surface is not always smooth, it can be grainy.

Second, the reflectance of a patch on the surface of an object has two components [3]: a matte

body reflectance, which is not necessarily Lambertian, and a glossy surface reflectance, which is

not necessarily specular (mirror-like); moreover these two reflectance components may have distinct

chrominances (in a coloured object, the gloss is generally whiter). Third, mutual reflections between

the objects must be taken into account.

However, a simplified model of scene illumination, geometry, and reflectance can lead to qual-

itative distinctions among the various profiles given in the literature as models of ideal edges. As a

consequence, it is possible to infer three-dimensional scene events from luminance profiles in a single

two-dimensional image.

Let us first describe several types of luminance profiles encountered in practice. Afterwards

we will explain briefly which types of scene events give rise to them.

We show in Figure 1 seven types of one-dimensional luminance profiles, and the names we

have chosen to distinguish them. These profiles can be considered as representatives of primary types

of edges. It is possible to add to the list the grey-level inversion of a line, bar, or roof, which are not

shown.

We discriminate clearly between what we call a line edge and a bar edge; the latter has a

plateau between the sides. The line corresponds to what Horn [2] calls a peak, and it is considered

by him as a fundamental type of edge. In some other studies (for example [35,36]), authors call a line

edge what we classify as a bar. The confusion between the two comes from the fact that early line

detectors were designed for the recognition one-pixel wide lines, and used convolutions with 3 × 3

masks for this purpose; now in a digital framework, there is no distinction between one pixel thick
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bars and lines. Note that the phase congruence model recognizes a symmetric triangular line as a

feature at all scales, while it classifies a bar as a feature at coarser scales only; at finer scales, a bar

is recognized as a pair of two steps.

There can be progressive or sharp steps, in the sense that the transition between the low

to the high grey-level can be continuous or abrupt. The difference between the two is physically

meaningful, as recognized in [2] (we will see this again later). The convex edge was recognized by

Ling [35] as distinct from the step; in other studies the convex edge has been ignored (for example

by [2]) or identified with the step (as in [36]).

Roofs are commonly acknowledged in computer vision. This is not the case for Mach bands,

which have generally been discussed only in relation to human visual perception (see in particular

[22,9,23,21]). However they occur naturally at the extremity of extended edges, where the grey-level

changes gradually over a relatively long distance (extended edges arise for example at the border of

cast shadows). Marr [37] acknowledged Mach bands and extended edges, distinguishing the latter

from the featureless gradual luminance profile due to the shading of a curved surface.

As shown in Figure 2, the above-mentioned primary edge profiles can be combined in several

ways in order to produce more complex edge profiles, that we call secondary. First, the grey-levels

of several profiles can be arithmetically added; we label this combination by giving the names of the

primary profiles separated by + signs. We illustrate this operation in Figure 2 (a) with the step,

line, and roof from Figure 1; the two additions shown there were recognized by Horn [2] as physically

significant. Second, one can put the primary edge profiles in succession; this combination is labelled

by giving the names of the primary profiles separated by commas. This is shown in Figure 2 (b)

with a sharp step followed by a convex edge, and with two opposite convex edges; these two similar

new profiles emulate an inverted line edge, and they were recognized by Ling [35], who called them

valley edges.

In their 1970 study on edge detection [38], Herskovitz and Binford noticed that steps, lines,

and roofs were the most frequent edge profiles in natural images [2]. Ling [35] examined edge

profiles in images of surface mounted devices, and found these three profiles, but also convex edges

and the compound edges of Figure 2 (b) that she called valley edges. In order to justify these

experimental findings, let us now explain briefly how events in a scene geometry lead to the various

types of luminance edges described above. For a more detailed exposition, the reader should refer

to the literature (e.g., [2,39,35,40]); otherwise she can verify our assertions by a simple geometric

reasoning, or by observation of natural scenes.

We make the simplifying assumptions that there is a single source of light, the scene geome-

try consists of smooth surfaces having the same reflectance, and that reflectance approximates the

Lambertian rule as follows: the apparent brightness of a surface patch increases as the direction of

the surface normal approaches that of incoming light.

When two faces of an object meet at a convex angle, since that angle is not really sharp, the

corresponding luminance profile will be a gradual step or bright line (see Figure 1), or an addition

of the two (see Figure 2 (a)). When these faces meet at a concave angle, the same happens, except

that mutual reflections between the two faces lead to the addition of a positive roof in the luminance

profile of the edge; we can thus get a compound step plus line plus roof edge (see Figure 2 (a)).

When a surface occludes part of another, the border between the two in the image is very

sharp (since the effect of light diffraction is negligible); hence the luminance profile of the edge will
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generally involve a sharp step. When the occluding surface makes a convex angle at that border,

this sharp step can be flanked by a gradual line or step (the luminance profile corresponding to the

convex angle); on the other hand when that occluding surface is curved along that border, the sharp

step is combined with a convex edge. When the occluded surface is also round, an opposite convex

edge appears at the other side of the step. Thus quite complex luminance profiles can arise in such

situations, but one observes frequently [2,35] a step or convex edge (see Figure 1), or one of Ling’s

valley edges shown in Figure 2 (b).

When two objects are juxtaposed, their surfaces meet in a groove, and the corresponding

luminance profile is generally a negative (dark) line, sometimes combined with a positive (bright)

one. Finally cast shadows have generally elongated edges: the boundary between the shadowed part

of the surface and the illuminated one is fuzzy, because the light source is not punctual. At the

extremities of such extended edges, the luminance profiles are similar to those of Mach bands (the

junction between a plateau and a ramp, see Figure 1).

We have briefly explained how various surface discontinuities lead to different types of edges

in the luminance profile. Note that changes in the orientation of a surface (w.r.t. illumination or

viewpoint) have in general a weak influence on the chrominance of the resulting image: the surface

will appear lighter or darker, but the hue and saturation of its reflected colour will not change, except

at specular highlights [3]. Thus a change in image chrominance is often an indication of a change

in the chromaticity of the surface reflectance, or a transition between two surfaces having different

colours [3]; such chromatic edges are generally simple steps. This justifies the restriction to grey-level

images for the analysis of complex edges.

Let us now relate edges to human vision. The human visual system perceives upward and

downward steps, as well as light and dark lines, as distinct events [22,9,23]. Other types of edges

are generally perceived as a step, a line, or a mixture of both; for examples roofs are perceived as

lines [22]. We give an illustration of this fact in Figure 3. It represents a vertical grating which is

horizontally periodic; the grey-level profile is a triangular wave at the top row, a square wave at

the bottom row, and at intermediate rows it is a convex linear combination of the two, evolving

gradually from triangular to square wave. One perceives light and dark lines at the top, but upward

and downward steps at the bottom. At the middle the grey-level profile is as in Figure 4, and there

is a mixed perception of a step flanked by a line on its left; this line is similar to a Mach band.

Globally, the compound feature is seen slightly to the left of its true position, and this shift in

location is consistent wih the phase congruence model (as we will explain with more technical details

in Section 4). Other examples of mixed visual features can be found in [9].

The name of Mach bands refers to the discovery by the physicist Ernst Mach that the junction

between a ramp and a plateau in the luminance leads to the perception of a narrow band (or line)

at the end of the plateau; that band is light when the plateau is at the top of the ramp, and dark

when the plateau is at the bottom of the ramp. As remarked in [22], such lines are also perceived at

positive and negative roofs, for example in a triangular wave. We can thus consider roofs and Mach

bands as similar types of features, which are equivalent up to the addition of a linear ramp signal;

positive roofs or Mach bands lead to the perception of a light line, while negative ones lead to the

perception of a dark line. There is not a complete agreement as to the exact position of the perceived

line [23,21]: exactly at the junction, or on the side of the plateau, or on the side of the ramp? This

indicates that the edge detectors of the human visual system may have a non-zero response to the
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underlying linear ramp (this problem will be discussed more precisely in Section 4).

A common interpretation of Mach bands is that they are visual illusions produced by the

mechanism of lateral inhibition. As we must recognize the albedo of objects under various illumi-

nation intensities, the visual system does not measure the absolute luminance of each point, but

luminance contrasts between neighbouring areas. Thus the grey-level of each point is compared to

those in its neighbourhood. Then at the location of a positive roof or Mach band, the grey-level is

higher than the average in its neighbourhood, leading to the perception of a light line, and conversely

for the dark line seen at a negative one. This has led many authors to consider Mach bands as a

“visual illusion”, and not as true edges.

There are several arguments against this interpretation. First, experiments by Morrone et al.

[22] on periodic vertical gratings (images whose grey-level is constant in the vertical direction and

periodic in the horizontal one) have shown that the sharpness of the perceived Mach band is not

related to the sharpness of the angle between the ramp and the plateau in the grey-level profile; it

depends rather on Fourier phase characteristics of the image. Second, lateral inhibition should also

apply to colours, since the spectrum of sunlight varies a great deal between morning and evening, and

we can still perceive the intrinsic colour of objects and distinguish hues which differ by much less than

the daily variation of the sunlight spectrum [41]. However in isoluminant chromatic images (made

with colours having all the same lightness), Mach bands are not seen. This was found by coworkers

of Koffka (see [42], pp. 170-171), and has been verified in recent experiments (D. Burr, private

communication). Now it is well-known that the perception of the structure of an image (figure and

ground, perspective, etc.) depends on luminance changes, and vanishes for isoluminant chromatic

images (see [42], pp. 126-128, where it is called the “Liebmann effect”). This has been verified in

neurophysiological studies of Livingstone and Hubel (see [43,44,45]), and it is justified by the above-

mentioned fact that changes in surface orientation lead to variations in the image luminance, but

without changes in its chrominance. We can thus agree with Koffka that Mach bands are not side-

effects of visual mechanisms such as lateral inhibition, but rather a form of perceptual organization

in the image: Koffka classifies correctly a discontinuity in the second derivative of luminance as an

edge!

One property of human vision which must be taken into account for artificial vision, is that

each visual attribute (for example a feature) corresponds to a size scale. For example a black cat seen

from afar looks like a black blob; at moderate distance, limbs are distinguished; closer yet, the fur

appears as a texture; within hand reach, individual hair are perceived. This was seriously recognized

by Marr [12], who linked this fact to the existence of banks of visual filters tuned to different size

scales. Since then, it is customary to analyse images with filters at several size scales (usually 3 or

4), with a scale factor of 2. One should note that the nature of an edge can be scale-dependent. We

illustrate this in Figure 5, where an edge profile is shown with various spatial magnification factors;

whenever it is enlarged, what we see correponds to what will be detected in the original profile at a

smaller scale. Here it appears that a bar edge at coarse scale becomes a pair of step edges at a finer

scale, and then a set of four Mach bands at a still finer scale. Thus, whenever one speaks of an edge,

one must specify its scale; in practice, it corresponds to the size scale of the filters used to detect

it: filters with wide grey-level profile detect features at coarse scale, and those with narrow profile

detect features at fine scale.

Marr and Hildreth [6] required from significant features that they appear at all scales used.
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One can even envisage “ideal” edges which should be detected and localized at the same position for

all possible scales, arbitrarily small or large. In the case of the edges of Figure 1, an ideal line would

be a Dirac delta, an ideal step a Heaviside step function, an ideal roof or Mach band would have

its ramps on the two sides extending to infinity. Such ideal edges do not occur in natural images,

but they can be used as a mathematical check for an edge detector: verify that when applying the

detector to the ideal edge, that edge is properly detected and localized, and no additional feature is

detected. We will indeed use such a condition in Section 4 when we will specify our filters. As we will

also see there, a usual edge detector localizing edges at maxima of the absolute value of the filtered

image has in general an underlying ideal edge, for which it gives an optimal response at all scales.

We can mention in particular that for step detectors based on Gaussian-smoothed gradients, such as

Canny’s [7], a signal with constant Fourier phase π/2 is a perfect downward step (the phase is −π/2
for a perfect upward step); on the other hand for the phase congruence model, a perfect edge is any

signal having constant Fourier phase, and this is an example of the fact that the phase congruence

model generalizes some previous methods by allowing a wider family of edges to be detected.

Besides considerations in the Fourier domain and related experimental results on human vision,

one of the rationales behind using a pair of filters (as in the phase congruence model), instead of

a single one (as in older methods), is that two filters can respond to distinct types of features; for

example an odd-symmetric filter would respond maximally to steps, and an even-symmetric one

would respond maximally to lines and roofs [18,15]. Indeed, it is known [13] that traditional step

detectors based on odd-symmetric filters detect two neighbouring steps in a line, and lead thus to

edge duplication. Even then, the justification for combining them quadratically is not evident: one

could for example apply separately a step detector and a line/roof detector, and combine together

the two edge maps obtained separately. We will show in Section 4 that this leads again to edge

duplication: for a combined step + line edge (see Figure 2 (a)), the two detectors will localize the

step and the line at opposite sides of the true edge location.

This argument does not exclude the use of quadratic combinations of three or more filters, as

suggested in [18]. We can justify our choice of only two filters on the following grounds:

— In human visual perception, it seems that every edge is seen as a mixture of a line and a step;

this suggests a combination of two filters, an even-symmetric one leading to the perception

of a line (a “line detector”), and an odd-symmetric one leading to the perception of a step

(a “step detector”). This correlates with classical neurophysiological findings concerning the

behaviour of simple cells in the primary visual cortex of monkeys [4].

— We can classify edge profiles in two groups: the first one contains odd-symmetric signals super-

posed on a dc level (in their Fourier decomposition, all nonzero frequencies have phase ±π/2);
the second one contains even-symmetric signals (in their Fourier decomposition, all frequencies

have phase 0 or π). Thus the first group contains the Heaviside step, while the second one

contains Dirac’s delta and any symmetric roof. Every edge would thus be decomposed into

the sum of two edges from the two groups.

— We have not yet seen any theoretical or practical argument showing the advantage of taking

more than two filters for unidirectional features. On the other hand, with two constant-phase

filters in Fourier quadrature (that is, their respective constant Fourier phases differ by π/2,

and their Fourier amplitudes are equal), we have an elegant mathematical theory of phase

congruence developed in Sections 3 and 4.
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We do not exclude the possibility that future studies may suggest the need for more than two filters.

Note that some authors [13,16,17,18,19,29,30,31,33] have applied the quadratic approach (tak-

ing the sum of squares of convolutions of the image with two filters), in the case where the two filters

have indeed constant Fourier phase (respectively 0 and π/2), but have different Fourier amplitudes,

and so do not satisfy the requirement of Fourier quadrature of the phase congruence model. Serious

reason should be given for omitting this constraint on the filters, because we will see in Section 4 that

it leads to many interesting results. One possible justification would be that line and step edges in

natural images have different Fourier amplitude spectra, so that the two filters in the edge detector

should be adapted to this fact. There can also be mathematical justifications; see for example [17],

where the pair of filters consisting of a n-th derivative of a Gaussian and of its derivative is shown

to satisfy the causality requirement in scale-space.

There remains one question: does the phase congruence model accurately detect and localize

edges in natural images? We can give here a partial theoretical answer. The ideal steps, lines, and

roofs shown in Figure 1 have constant phase at the edge location (the phase is zero for lines and roofs,

but −π/2 for positive-going steps); as we will see in Section 4, the energy function obtained as the

sum of squares of convolutions of the signal with two constant phase filters in phase quadrature, has

an absolute maximum at this edge position. Ramp edges and Mach bands are a linear combination

of a symmetric roof and a linear ramp signal; by choosing the two filters in such a way that they

have a zero response on linear signals, the energy function will be the same as for a symmetric roof,

and it will have an absolute maximum at the edge position. The compound step + line or step

+ line + roof edges shown in Figure 2 (a) are the sum of a signal with constant zero phase and

another one with constant −π/2 phase; hence they have all Fourier phases comprised between 0 and

−π/2 at the edge location; it is thus likely that these phases will be maximally congruent at a point

near the edge location, where the energy function will reach a local maximum. For example in the

grating of Figure 3, whose grey-level profile in the middle rows is shown in Figure 4, maximum phase

congruence is achieved slightly to the left of the true edge location, and this is consistent with visual

perception.

From a practical point of view, experiments made among others by Morrone, Owens and,

Venkatesh [1,8,9,13,14] indicate that this model gives satisfactory results in natural images.

A related question is whether the phase congruence model can give false edges, in other words

if one can get local maxima of the energy function which do not correspond to true edges. For

example Kube and Perona [17] have shown that for many choices of the pair of filters (in particular,

Hilbert transform pairs), edges can appear at a coarse scale, which do not correspond to edges at finer

scales, and there are some reasons to suspect that they might correspond to spurious local maxima

of the energy function. They illustrated this fact with the pair consisting of the second derivative

of a Gaussian and its Hilbert transform. This problem is rather delicate. For example in the edge

shown in Figure 5, it is legitimate to postulate that there is a single bar edge at coarse scale, two

step edges at medium scale, and four Mach bands at fine scale, and it is not obvious if the evolution

in scale space through these three edge maps will be continuous. We feel that filter specification in

the Fourier domain is unsufficient, and we give in Section 4 some requirements in the spatial domain

that the filters must satisfy in order to avoid the detection of false edges in ideal steps, lines and

roofs. More research should be conducted on non-Fourier requirements for quadratic edge detectors.

The problem of choosing a good pair of filters is not yet solved.
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Another possible answer to this question is to restrict edges to regional maxima of the energy

function, that is points where that function has a maximum within a certain radius r corresponding

to the scale of analysis (in fact, to the spatial extent of the filters), so that purely local maxima

are eliminated. Indeed, for ideal edges, the energy function reaches an absolute maximum at the

edge location, and we might plausibly deduce that for several ideal edges distant from each other

by at least 2r, each one may give a regional maximum of the energy function within radius r. We

have taken this approach in Section 4. Further research should elucidate criteria for selecting “good”

maxima of the energy function, or equivalently, “good” maxima of phase congruence.

3. Mathematical foundations of the phase congruence model

In order to make this paper self-contained, we recall the mathematics underlying the phase congru-

ence model; this will essentially be Fourier analysis in L1 and L2, and some elementary facts derived

from it. We introduce first our notation:

Write IR for the set of real numbers and C for the set of complex numbers. Let E = IRd for

some integer d ≥ 1; we will consider all signals in the spatial or Fourier domain as functions E → C

(or E → IR). Although the phase congruence model will be studied in the next section for d = 2 or

d = 1, we make no such assumption here, in order to allow the extension of this model to volumetric

or moving images (cfr. the spatiotemporal edge model of [33,34]).

We write: x, y, z, etc. for real or complex variables; x, y, z, etc. for vectors in E ; f , g, etc.
for functions IR → C; F , G, etc. for functions E → C. We write x · y for the scalar product of x and

y ∈ E , and |x| for the Euclidean norm of x, that is |x| = (x · x)1/2. For x ∈ C, let x be its complex

conjugate and |x| its absolute value. For a function F : E → C, we define F and |F | by F (x) = F (x)

and |F |(x) = |F (x)|. We define the signum function sgn on C by

sgn(x) =
{
x/|x| if x 6= 0;
0 if x = 0.

In particular for x ∈ IR, we have sgn(x) = 1 if x > 0 and sgn(x) = −1 if x < 0.

The reflection Fρ of a function F is given by Fρ(x) = F (−x). We say that F is even-

symmetric if Fρ = F , odd-symmetric if Fρ = −F , and conjugate-symmetric if Fρ = F . Every

function F can be decomposed in a unique way as the sum of an even-symmetric function and an

odd-symmetric one, namely (F + Fρ)/2 and (F − Fρ)/2. We say that the function F vanishes at

infinity if lim|x|→∞ F (x) = 0.

For any u ∈ E , let τu be the translation by u, which moves horizontally by u the graph of a

function F , that is τu(F ) is defined by τu(F )(x) = F (x − u). We define cisu, the “cisoid” function

of frequency u, by setting for x ∈ E :

cisu(x) = exp(2πiu · x) = cos(2π u · x) + i sin(2π u · x). (3.1)

Note that we consider frequency in cycles per unit, and not angular frequency in radians per unit;

in this we follow [46].

We will write n for a unit vector in E (n · n = 1); in the next section, it will be interpreted as

the unit vector normal to the edge. It partitions the space E into the three sets

E+
n = {x ∈ E | n · x > 0},

E−
n = {x ∈ E | n · x < 0},
E0
n = {x ∈ E | n · x = 0}.
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We define also the three functions posn, negn, and sgnn on E by setting for x ∈ E :

posn(x) =

{
1 if n · x > 0,
0 if n · x ≤ 0;

negn(x) =

{
1 if n · x < 0,
0 if n · x ≥ 0;

sgnn(x) =

{
+1 if n · x > 0,
0 if n · x = 0,

−1 if n · x < 0.

(Cfr. the definition of the signum function sgn above). Note that sgnn = posn − negn.

Suppose that E = E1 × E2, the product of two orthogonal subspaces E1 and E2 of respective

dimensions d1 and d2 (where d1, d2 ≥ 1 and d = d1 + d2 ≥ 2); every x ∈ E can be written as

an ordered pair (x1,x2), where x1 ∈ E1 and x2 ∈ E2. Given a function F : E → C, for any

x1 ∈ E1 and x2 ∈ E2 we define the E1-section Fx1
: E2 → C : x2 7→ F (x1,x2) and the E2-section

Fx2 : E1 → C : x1 7→ F (x1,x2), in other words Fx1
(x2) = Fx2(x1) = F (x1,x2) (see [48], p. 63).

We use on the space E the Lebesgue measure and integral as in [47] (see also [48,49]). We

write dx for dx1 · · · dxd, the d-dimensional Lebesgue measure element in an integral (cfr. [46]). Thus

we write
∫
S F (x) dx or simply

∫
S F for the integral of F over a Lebesgue measurable set S ⊆ E ; the

notation
∫
S dxF (x) is even more convenient for multiple integrals (cfr. [50]). Note that in measure

theory, “integrable” means “integrable in absolute value”: a measurable function F is integrable over

S if and only if |F | is integrable over S, in other words
∫
S |F (x) dx| < +∞. From now on all subsets

of E and all functions on E are implicitly assumed to be Lebesgue measurable.

A negligible set is a set whose Lebesgue measure equals zero. As customary, we say “almost all

. . . ” for “all . . . , except in a negligible set”, and “almost everywhere” means “for almost all points”;

this can be abbreviated by “a.e.”. For example, we say that function F is a.e. even-symmetric if

F (x) = F (−x) almost everywhere.

A function F is called locally integrable if for any compact subset S of E , the restriction of F

to S is integrable, in other words
∫
S |F | < +∞. The Lebesgue set of a locally integrable function F

on E is the set of all points x ∈ E such that

lim
r→0

1

rd

∫

|t|<r

|F (x− t)− F (x)| dt = 0. (3.2)

It contains in particular all points where F is continuous. Moreover, allmost all points of E belong

to the Lebesgue set of F (see [46], pp. 12 and 13, or [48], pp. 92 and 93).

We define the equivalence relation ≡ on functions by setting F ≡ G for two functions F,G if

F (x) = G(x) a.e.; in particular F (x) = G(x) for all points x at which both F and G are continuous;

furthermore, if F and G are locally integrable, then F (x) = G(x) for all points x in the Lebesgue

set of both F and G. Clearly the equivalence ≡ is compatible with algebraic operations, and for

integrable functions, F ≡ G implies that
∫
F =

∫
G.

3.1. Lp spaces and convolution

Let p be such that 1 ≤ p ≤ ∞. For p < ∞, the Lp norm ‖ ‖p of is defined by ‖F‖p =(∫
E |F (x)|p dx

)1/p
for every function F : E → C. For p = ∞, the L∞ norm ‖F‖∞ of F is the

essential supremum of all |F (x)|, in other words the least m ∈ [0,∞] such that |F (x)| ≤ m almost

everywhere.
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Let Lp be the set of functions F such that ‖F‖p < ∞; it is a vector space in which ‖ ‖p is a

norm in the classical sense [47,48,49]. For example L1 is the space of integrable functions; functions

in L2 are called square-integrable; functions in L∞ are called essentially bounded. For any F,G in

Lp, F ≡ G if and only if ‖F − G‖p = 0. Let Lp/≡ be the set of equivalence classes of ≡ over Lp.

Then the Lp norm makes Lp/≡ into a metric space, where the distance between two functions F

and G is ‖F −G‖p. A well-known theorem states that the metric space Lp/≡ is complete (i.e., every

Cauchy sequence converges).

For p <∞, functions in Lp are locally integrable; hence allmost all points of E belong to their

Lebesgue set. Furthermore these functions satisfy the property of Lp-continuity, namely that for F

in Lp,

lim
u→0

‖F − τu(F )‖p = 0. (3.3)

A proof can be found in Proposition 8.5 of [48]. Note that (3.3) does not necessarily hold for p = ∞.

In the sequel, we will use the following integrability criterion:

Lemma 3.1. Let the function F : IRd → C be such that for every subset I of {1, . . . , d} there is some

p(I) with 1 ≤ p(I) < ∞ for which the function IRd → C : (x1, . . . , xd) 7→
∏

i∈I xi · F (x1, . . . , xd) is
in Lp(I) (in particular F is in Lp(∅)). Then F is integrable.

Proof. Let S = [−1, 1] and T = IR \ S = {x ∈ IR | |x| > 1}. Take I ⊆ {1, . . . , d} of size n

(0 ≤ n ≤ d); let G be the function IRd → C : (x1, . . . , xd) 7→ ∏
i∈I xi, let q = p(I), and let V be

the set of points (x1, . . . , xd) such that |xi| > 1 for i ∈ I and |xi| ≤ 1 for i /∈ I. If q = 1, then

FG is integrable, and as |F | ≤ |FG| on V , F is integrable on V . Otherwise let q′ = q/(q − 1); thus

1 < q′ <∞. We have
∫

V
|1/G|q′ =

(∫

S

1q
′

dx
)d−n(∫

T

1/|xq′ | dx
)n

= 2d−n
(
2/(q′ − 1)

)n
= 2d(q − 1)n.

As FG is in Lq, Hölder’s inequality gives then
∫

V
|F | =

∫

V
|FG · 1/G| ≤

(∫

V
|FG|q

) 1
q ·

(∫

V
|1/G|q′

) 1

q′

= ‖FG‖q ·
(
2d(q − 1)n

) q−1

q <∞.

Hence F is integrable over V . As IRd is the union of all such sets V for I ranging over the set of

parts of {1, . . . , d}, F is integrable over IRd.

For any two functions F and G, their convolution F ∗G is given by

[F ∗G](x) =
∫

E
F (x− t)G(t) dt (3.4)

(whenever the integral exists). This operation is bilinear and commutative. Moreover, it commutes

with translation, that is F ∗ τu(G) = τu(F ∗ G) = τu(F ) ∗ G for all u ∈ E . The convolution by a

function in L1 is a stable operation w.r.t. the Lp norm (see Theorem 1.3 of [46] and Theorem 8.7 of

[48]):

— Young’s inequality: Let F be in L1 and G in Lp (1 ≤ p ≤ ∞). Then (F ∗G)(x) is defined
almost everywhere, F ∗G belongs to Lp, and ‖F ∗G‖p ≤ ‖F‖1‖G‖p.

In particular the convolution operation is a bilinear product operation in L1/≡, which is associative

in the sense that for F,G,H in L1, F ∗ (G ∗H) ≡ (F ∗G) ∗H .

A slightly stronger result holds for the convolution of a function in Lp with one in Lp/p−1 (see

Theorem 8.8 of [48]):
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— p-p’ convolution property: Let F be in Lp and G in Lp′

, where 1 ≤ p, p′ ≤ ∞ and

(1/) + (1/p′) = 1. Then (F ∗G)(x) is defined for all x ∈ E , F ∗G is uniformly continuous and

bounded: for all x ∈ E ,
∣∣[F ∗ G](x)

∣∣ ≤ ‖F‖p‖G‖p′ . Furthermore, F ∗ G vanishes at infinity,

provided that one of the following is satisfied:

(a) p, p′ <∞;

(b) p = ∞ and F vanishes at infinity;

(c) p′ = ∞ and G vanishes at infinity.

A particular case is p = 1 and p′ = ∞: the convolution of a function in L1 and one in L∞ is uniformly

continuous and bounded. Another one is given by p = p′ = 2.

The above two properties are interesting enough to justify the choice of functions in L1 for the

filters applied to the image. Besides, grey-levels of pictures usually belong to a bounded range; so in

view of the p-p’ convolution property, if we want to have the picture convolved with a mask to get

its grey-levels in the same range, we must require the convolution function to be in L1. Furthermore,

the uniform continuity of the result of the convolution is interesting in view of digitization, as we

will explain in Section 5.

In the sequel, we will generally restrict ourselves to the spaces L1, L2, and L∞. For example

in Section 4, all visual signals will be the sum of three components in L1, L2, and L∞ respectively.

3.2. The Fourier transform in L1 and L2

As said above, we follow [46] in considering that frequency is in cycles per unit, and not angular

frequency in radians per unit. Thus the factor 2π precedes the frequency in the argument of an

imaginary exponential (cfr. (3.1)). As in [46], we write F̂ for the Fourier transform of a function F ;

the Fourier transform of an expression (. . .) will be written (. . .)∧.

The Fourier transform F̂ of an integrable function F is defined pointwise by the Fourier

integral:

F̂ (u) =

∫

E
F (x) exp[−2πiu · x] dx. (3.5)

In particular
∫
E F = F̂ (0).

For a non-integrable function, the above formula does not apply. Since the Fourier transform

preserves the L2 norm of functions in L1 ∩ L2, and L1 ∩ L2 is dense in L2, we can extend it to

an isometry of the complete metric space L2/≡. In other words the Fourier transform of a square-

integrable function F is the function F ∗ in L2, unique up to equivalence by ≡, such that for every

sequence of functions Fn in L1∩L2 satisfying limn→∞ ‖Fn−F‖2 = 0, we have limn→∞ ‖F̂n−F ∗‖2 = 0.

Thus the Fourier transform is defined on L2/≡ rather than L2, in other words the Fourier transform

of a square-integrable function is not defined pointwise, but up to a negligible set. For a function F

which is both integrable and square-integrable, the two definitions of F̂ in L1 and L2 coincide up to

equivalence by ≡.

Given an integrable or square-integrable function F , write FA for the Fourier amplitude of F ,

that is FA(u) =
∣∣F̂ (u)

∣∣, and FΦ for the Fourier phase of F , that is F̂ (u) = FA(u) exp
[
iFΦ(u)

]
.

Let us recall the main properties of the Fourier transform (see Chapter 1 of [46]). By default,

all functions are assumed in L1 ∪ L2. First the uniqueness property: for F,G in L1 ∪ L2, F̂ ≡ Ĝ if

and only if F ≡ G; furthermore, for F,G in L1, F̂ ≡ Ĝ implies the pointwise equality F̂ = Ĝ. Next,
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we have several elementary formulas. First, the commutation with reflexion:

(
Fρ

)∧
=

(
F̂
)
ρ
. (3.6)

Let us write F∨ for (Fρ)
∧
= (F̂ )ρ. When F is integrable we have

F∨(u) =

∫

E
F (x) exp[2πiu · x] dx.

By (3.6) and the uniqueness property, F is a.e. even-symmetric (resp., a.e. odd-symmetric) if and

only if F̂ is a.e. even-symmetric (resp., a.e. odd-symmetric). Next:

F̂ (u) = F̂ (−u). (3.7)

From (3.6) and (3.7) we get:

F̂ = F∨ and F
∨
= F̂ . (3.8)

For h ∈ E we have:

[τh(F )]
∧
= cis−h · F̂ ; (3.9)

[cish · F ]∧ = τh(F̂ ). (3.10)

Besides the definition, there are important differences between the Fourier transform in L1

and L2:

— Riemann-Lebesgue theorem: For F in L1, F̂ is uniformly continuous and bounded on E :∣∣F̂ (u)
∣∣ ≤ ‖F‖1 for all u ∈ E ; moreover F̂ vanishes at infinity.

— Plancherel theorem: For F in L2, F̂ is in L2, ‖F̂‖2 = ‖F‖2, and Fρ ≡ ̂̂
F , in other words

F ≡ F̂∨.

Thus the Fourier transform is an invertible isometry on L2/≡. On L1 we have the following result

concerning the inversion of the Fourier transform:

— L1 Fourier inversion theorem: Given F in L1 such that F̂ is in L1 ∪ L2, then F is in L2

and Fρ ≡ ̂̂
F , in other words F ≡ F̂∨.

There remain two fundamental formulas:

— Convolution formula: Let F be in L1 and G in L1 ∪ L2. Then [F ∗G]∧ = F̂ Ĝ (a.e. for G

not integrable).

— Multiplication formula: Let F,G be either both in L1 or both in L2. Then FĜ and F̂G

are integrable and
∫
E FĜ =

∫
E F̂G.

For F,G both in L2, by (3.9) and the Plancherel theorem, the Fourier transform of τx(F
∨) : t 7→

F̂ (x− t) is cis−x(F
∨)∧ = cis−x · F : t 7→ exp[−2πi t · x]F (t); the multiplication formula gives then

∫

E
F̂ (x− t)Ĝ(t) dt =

∫

E
exp[−2πi t · x]F (t)G(t) dt.

We get thus the following:
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— Dual convolution formula: Let F,G be both in L2. Then [FG]
∧
= F̂ ∗ Ĝ.

Given a bijective linear transform α of E , the function G defined by G(x) = F (α(x)) has its Fourier

transform given by Ĝ(u) = |det(α)|−1F̂ (α−T (u)), where det(α) is the determinant of α and α−T is

the inverse transpose of α. In particular if α is an isometry (α is its own inverse transpose), then

Ĝ(u) = F̂ (α(u)), in other words the Fourier transform commutes with α. For example reflection

commutes with the Fourier transform (cfr. (3.6)); the Fourier transform commutes also with rotations

of E .
The following property is fundamental for multidimensional Fourier analysis: a multidimen-

sional Fourier transform on a product space can be decomposed into a sequence of Fourier transforms

on each of the subspaces in the product. Suppose that E = E1 × E2, the product of two orthogonal

subspaces E1 and E2 of respective dimensions d1 and d2 (where d1, d2 ≥ 1 and d = d1 + d2 ≥ 2).

We define the Fourier transform inside E1 as the transformation FE1
of functions F : E → C which

applies to every E2-section Fx2 the Fourier transform for functions E1 → C; thus for every x2 ∈ E2
we have

[
FE1

(F )
]x2

=
[
Fx2

]∧
, in other words, the function E1 → C : x1 7→ FE1

(F )(x1,x2) is the

Fourier transform of the function E1 → C : x1 7→ F (x1,x2). For example if F is integrable, for every

u1 ∈ E1 and x2 ∈ E2 we have

FE1
(F )(u1,x2) =

∫

E1

F (x1,x2) exp[−2πiu1 · x1] dx1.

We define similarly FE2
, the Fourier transform inside E2, by

[
FE2

(F )
]
x1

=
[
Fx1

]∧
for all x1 ∈ E1.

— Decomposability: Let E = E1 × E2, the product of two orthogonal subspaces E1 and E2.
For any function F : E → C, let FE1

(F ) be its Fourier transform inside E1 defined by[
FE1

(F )
]x2

=
[
Fx2

]∧
for all x2 ∈ E2; define similarly FE2

(F ), its Fourier transform inside

E2, by
[
FE2

(F )
]
x1

=
[
Fx1

]∧
for all x1 ∈ E1. Then F̂ = FE1

(FE2
(F )) = FE2

(FE1
(F )). In

particular, if F (x1,x2) = F1(x1)F2(x2) for two functions F1 : E1 → C and F2 : E2 → C, then

F̂ (u1,u2) = F̂1(u1)F̂2(u2).

For F integrable, this is shown by a straightforward application of Fubini’s theorem. For F square-

integrable, the result follows because L1 ∩ L2 is dense in L2, and both FE1
and FE2

preserve the L2

norm; alternately, one can use the multiplication formula with G(x1,x2) = G1(x1)G2(x2), where G1

and G2 are in L1 ∩L2. A consequence of this property is that a multidimensional Fourier transform

can be decomposed into a series of one-dimensional Fourier transforms.

Finally, write xn for the coordinate of the vector x in the direction of a unit vector n (thus

xn = x · n). The following will be used in the sequel:

— L1 Fourier derivative formula: Let G be given by G(x) = xnF (x); if F and G are both

in L1, then F̂ is derivable in xn, and ∂/∂xnF̂ = −2πiĜ.

We deduce the first consequence of the Riemann-Lebesgue theorem and the Fourier inversion formula:

Lemma 3.2. Let F be in L1 ∪ L2 and such that F̂ is integrable. Define Fu by

Fu(x) =

∫

E
F̂ (u) exp[2πiu · x] du (3.11)

for x ∈ E . Then F ≡ Fu, Fu is uniformly continuous and bounded on E , and it vanishes at infinity.
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In the remainder of this paper, we will use the notation Fu introduced here.

Let us consider in particular real-valued functions. When F is real-valued, (3.7) gives F̂ (u) =

F̂ (−u) for any u ∈ E , in other words F̂ is conjugate-symmetric. In particular, F̂ is even-symmetric

(resp., odd-symmetric), if and only if F̂ is real (resp., imaginary). As F̂ is conjugate-symmetric,

FA is even-symmetric and FΦ is odd-symmetric. Moreover, for every unit vector n, F̂ is (up to

equivalence by ≡) determined by its restriction posn · F̂ to E+
n . When F̂ is in L1 ∪ L2, combining

(3.6), (3.8), and the fact that
(
negn · F̂

)
ρ
= posn · F̂ , we get

(negn · F̂ )∨ = (posn · F̂ )∨,

while the Fourier inversion formula gives

(negn · F̂ )∨ + (posn · F̂ )∨ ≡ F̂∨ ≡ F ;

as F is real-valued, both equations combined give:

F ≡ 2ℜ
[
(negn · F̂ )∨

]
≡ 2ℜ

[
(posn · F̂ )∨

]
. (3.12)

When F̂ is integrable, (3.11) and (3.12) give

Fu(x) =

∫

E
F̂ (u) exp[2πiu · x] du =

∫

E
FA(u) cos

[
2πu · x+ FΦ(u)

]
du

= 2ℜ
[∫

E+
n

F̂ (u) exp[2πiu · x] du
]
= 2

∫

E+
n

FA(u) cos
[
2πu · x+ FΦ(u)

]
du

(3.13)

for any half-space E+
n .

Given a function F and a point p ∈ E , we call the Fourier transform of F at p the Fourier

transform of the function resulting from F when the origin of E is shifted to p; in other words it is

[τ−p(F )]
∧
= cisp · F̂ .

Here, the Fourier amplitudes are those of F , but the Fourier phases are advanced proportionally to

2π p: [
τ−p(F )

]Φ
(u) = FΦ(u) + 2πp · u.

Let us write FΦ(u,p) for the Fourier phase of F at p for the frequency u, in other words

FΦ(u,p) = FΦ(u) + 2πp · u. (3.14)

Then, for F real-valued and F̂ integrable, (3.13) can be written:

Fu(x) =

∫

E
FA(u) cos

[
FΦ(u,p)

]
du = 2

∫

E+
n

FA(u) cos
[
FΦ(u,p)

]
du. (3.15)

Let us briefly recall the definition of the Fourier transform for tempered distributions. We

refer to [46], Section 1.3, or to [48], Sections 8.1 and 8.5, for further details. A Schwartz function is a

C∞ function such that itself and all its derivatives, multiplied by any polynomial, remain bounded.

A tempered distribution is a continuous linear functional on the space of Schwartz functions; the

tempered distribution ψ associates to a Schwartz function S the value 〈ψ, S〉. A tempered function
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is a function F such that there is some N ≥ 0 for which the function x 7→ (1 + |x|)−NF (x) is

integrable; for examples functions in Lp (1 ≤ p ≤ ∞) are tempered. A tempered function F induces

a tempered distribution F dist given by 〈F dist, S〉 =
∫
E FS; we generally identify F with F dist, and

set thus 〈F, S〉 =
∫
E FS.

The Fourier transform ψ̂ of a tempered distribution ψ is the tempered distribution given by

〈ψ̂, S〉 = 〈ψ, Ŝ〉. For a function F in L1∪L2, the definition of F̂ in the sense of tempered distributions

coincides with that given above, thanks to the multiplication formula
∫
E F̂S =

∫
E FŜ which holds

for any Schwartz function S.

The above properties given for the Fourier transform in L1 or L2 have a counterpart for

tempered distributions.

3.3. Constant zero Fourier phase

When we want to obtain results concerning the pointwise values of a function F , this can be achieved

by considering F̂ if the latter is integrable. This was for example the case in Lemma 3.2, and we will

continue in this way in order to show that functions with constant zero Fourier phase have generally

an absolute maximum at the origin.

Lemma 3.3. Let F 6≡ 0 be integrable and having real non-negative values. Then:

(a) For t 6= 0, |F̂ (t)| < F̂ (0).

(b) Given G such that |G(x)| ≤ F (x) for all x ∈ E , then for t 6= 0, either |Ĝ(t)| < F̂ (0), or there

is some ϕ such that G ≡ eiϕcist · F , that is Ĝ = eiϕτt(F̂ ).

Proof. For t 6= 0 we have

|Ĝ(t)| =
∣∣
∫

E
cis−t ·G

∣∣ ≤
∫

E
|cis−t ·G| =

∫

E
|G| ≤

∫

E

F = F̂ (0).

Thus |Ĝ(t)| ≤ F̂ (0), and the equality holds if and only if |G| ≡ F and cis−t ·G has constant complex

argument a.e. on E , in other words cis−t · G ≡ eiϕF , that is G ≡ eiϕcist · F . By the uniqueness

property in L1 and (3.10), the latter is equivalent to Ĝ = [eiϕcist · F ]∧ = eiϕτt(F̂ ). Thus (b) holds.

Taking G = F , as eiϕcist(x) 6= 1 almost everywhere, the equality F ≡ eiϕcist · F implies that

F ≡ 0. Thus F 6≡ 0 gives |F̂ (t)| < F̂ (0), and (a) holds.

Corollary 3.4. Let F be in L1 ∪ L2 such that F̂ is integrable and has real non-negative values.

Then:

(a) For t 6= 0, |Fu(t)| < Fu(0).

(b) Given G such that |Ĝ(x)| ≤ F̂ (x) for all x ∈ E , then for t 6= 0, either |Gu(t)| < Fu(0), or

there is some ϕ such that Gu = eiϕτt(Fu).

Proof. By Lemma 3.2,
̂̂
F = (Fu)ρ and

̂̂
G = (Gu)ρ. By Lemma 3.3, the result follows for (Fu)ρ and

(Gu)ρ, and it is then easily seen that this means that it holds for Fu and Gu.

Thus a real-valued function F with constant zero Fourier phase has an absolute maximum at the

origin, provided that its Fourier transform F̂ is integrable. We show below that this happens if F is

bounded in a neighbourhood of the origin.

Proposition 3.5. Let F be in L1∪L2 such that F is a.e. bounded in a neighbourhood of the origin

and F̂ has real non-negative values. Then F̂ is integrable.
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Proof. For r > 0, let Vr be the set of all x ∈ E having |x| < r. There are m, r > 0 such that for

almost all x ∈ Vr we have |F (x)| < m. Let the function G be given by G(x) = exp[−π |x|2]; for
every integer n, define the two functions Hn and Kn as follows:

Hn(x) = G(n−1 x) = exp
[
−π |x|2/n2

]
,

Kn(x) = ndG(nx) = nd exp
[
−πn2 |x|2

]
.

It is well-known (see [46]) that G = Ĝ, and so that Kn = Ĥn and Hn = K̂n. As Hn is in L1 ∩ L2,

the multiplication formula implies that FKn and F̂Hn are integrable, and
∫
E FKn =

∫
E F̂Hn. As

|F (x)| < m a.e. in Vr , we get

∣∣∣
∫

Vr

FKn

∣∣∣ ≤
∫

Vr

|FKn| ≤ m ·
∫

Vr

|Kn| ≤ m ·
∫

E
|Kn| = m ·

∫

E
Kn = m · K̂n(0) = m ·Hn(0) = m.

Take an integer n0 such that 2πr2n2
0 > d; then the calculation of ∂Kn/∂n shows that for n ≥ n0 and

|x| ≥ r we have 0 ≤ Kn(x) ≤ Kn0
(x). Hence:

∣∣∣
∫

E\Vr

FKn

∣∣∣ ≤
∫

E\Vr

|FKn| ≤
∫

E\Vr

|F |Kn0
≤

∫

E
|F |Kn0

.

Combining both inequations above, for n ≥ n0 we have

∣∣∣
∫

E
FKn

∣∣∣ ≤ m+

∫

E
|F |Kn0

. (3.16)

Hence
∫
E FKn remains bounded for n→ ∞. The functions Hn are positive and increase with n. As

F̂ has non-negative real values, the functions F̂Hn are non-negative and increase with n; moreover

for n→ ∞, Hn(x) → 1, and so FHn → F . Hence by the Lebesgue monotone convergence theorem,

the multiplication formula, and (3.16), we obtain

∫

E
F̂ =

∫

E
lim

n→∞
F̂Hn = lim

n→∞

∫

E
FĤn = lim

n→∞

∫

E
FKn <∞,

that is F̂ is integrable.

Note that the fact that F belongs to L1 ∪ L2 is not crucial in our proof; the latter can be extended

to the case where F is a tempered function whose Fourier transform (in the tempered distribution

sense) is also a tempered function. On the other hand the requirement that F is a.e. bounded in a

neighbourhood of the origin is necessary (in fact Fu is bounded everywhere by the Riemann-Lebesgue

Lemma).

We conclude that for a real-valued function F in L1∪L2 such that FΦ is constant zero and F

is a.e. bounded in a neighbourhood of the origin, F̂ is integrable and Fu has an absolute maximum

at the origin.

3.4. The Hilbert transform and phase quadrature

The Hilbert transform is defined for functions IR → C, and it plays an important role in the one-

dimensional phase congruence model. In the earliest version of the model proposed by Morrone and

Owens [8], the energy function was defined as the sum of squares of the one-dimensional signal and its

Hilbert transform. In the second version proposed afterwards by Morrone and Burr [9], this energy
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function was defined as the sum of squares of the convolutions of the one-dimensional signal with

two filters forming a Hilbert transform pair. In [15] we have highlighted the hidden mathematical

asumptions underlying both versions of the phase congruence model. As we will deal with oriented

edges in two-dimensional images, a muldimensional model of oriented energy functions must be built.

Hence we will extend the Hilbert transform in an anisotropic way to functions IRd → C; this will be

the directional Hilbert transform, which will be defined w.r.t. a unit vector n.

Two functions f, g : IR → C are said to be in quadrature, or to form a quadrature pair if we

have ĝ(ν) = −i sgn(ν)f̂(ν) for almost all ν ∈ IR; when f and g are real-valued, this means that they

have the same Fourier amplitude for positive frequencies, but that the phase of g is shifted by −π/2.
Note that the order of f and g in this relation does not really matter, since the ordered quadrature

pair (f, g) implies the ordered quadrature pair (g,−f), and that f and g are generally squared in an

energy function.

Let f : IR → C be in Lp, where 1 ≤ p < ∞; its Hilbert transform H[f ] can be defined in two

ways:

H[f ](x) = lim
ε→0

1

π

∫

|t|≥ε

f(x− t)

t
dt,

= lim
ε→0

1

π

∫

IR
f(x− t)

t

t2 + ε2
dt,

(ε > 0). (3.17)

In fact (see [46], p. 218, or [51], p. 255), the two expressions coincide on the Lebesgue set of f ; thus

they are equal almost everywhere, and in particular for all points at which f is continuous. The

Hilbert transform is linear, translation-invariant (g(x) = f(x − h) implies H[g](x) = H[f ](x − h)),

scale-invariant (for a > 0, g(x) = f(x/a) implies H[g](x) = H[f ](x/a)), and antisymmetric (H[fρ] =

−H[f ]ρ). It has two important properties. First, the following result due to M. Riesz (see [51],

p. 287, or [46], p. 188):

— Lp stability: For 1 < p <∞, there is some constant Ap such that for every f in Lp, H[f ] is

also in Lp, with ‖H[f ]‖p ≤ Ap ‖f‖p.
Pichorides [53] found the best value of Ap for real-valued functions in Lp: tan(π/2p) for 1 < p ≤ 2,

and cot(π/2p) for 2 ≤ p <∞. Next, the following is well-known (see [51], p. 257):

— Quadrature formula in L2: For any f in L2, H[f ]∧(ν) = −i sgn(ν)f̂(ν) for almost all

ν ∈ IR.

Thus Hilbert transform pairs of functions in L2 are in quadrature; we have then ‖H[f ]‖2 = ‖f‖2
by the Plancherel theorem, and this agrees with the Pichorides bound for real-valued functions:

A2 = tan(π/4) = cot(π/4) = 1. We get also H
[
H[f ]

]
≡ −f , since both have the same Fourier

transform; this is called the skewed symmetry of the Hilbert transform. In fact for 1 < p < ∞ the

skewed symmetry is also valid for functions in Lp, while the quadrature formula holds for functions

in L1 ∩ Lp. This will be shown afterwards in the more general framework of the directional Hilbert

transform for functions on IRd.

For f in L1, one can only prove results such as the following: for every t > 0, the Lebesgue

measure of the set of all x ∈ IR such that |H[f ](x)| > t is at most e · ‖f‖1/t (see [46], p. 188). In

fact the Pichorides bound gives Ap → ∞ for p → 1. We will show later on how to obtain Hilbert

transform pairs in L1.

Let us now consider functions defined on the space E = IRd, where d ≥ 1. We will show how

to extend the notions of quadrature and Hilbert transform defined for d = 1 to the multidimensional
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case. Let n be any unit vector. Two functions F,G : E → C are said to be in n-quadrature, or to

form a n-quadrature pair if we have Ĝ(u) = −i sgnn(u)F̂ (u) for almost all u ∈ E ; when F and G

are real-valued, this means that they have the same Fourier amplitude, but that the phase of G is

shifted by −π/2 for frequencies in E+
n (or by π/2 for frequencies in E−

n ). Note that the following four

equalities are equivalent:

Ĝ(u) = −i sgnn(u)F̂ (u);
F̂ (u) = i sgnn(u)Ĝ(u);

Ĝ(u) = i sgn−n(u)F̂ (u);

F̂ (u) = −i sgn−n(u)Ĝ(u).

Hence the order of F and G in such a relation does not really matter; anyway F and G will be

squared in the energy function.

Let Ln be the vector space generated by n. We can consider E as the product of the two

orthogonal subspaces E0
n and Ln, the latter being identified with IR (every t ∈ IR corresponding to

tn ∈ Ln). Thus every x ∈ E can be written in a unique way as a pair (y, t) ∈ E0
n× IR; in fact t = x ·n

and y = x − tn. We illustrate this in Figure 6 for d = 2. Recall that for a function F : E → C,

every y ∈ E0
n gives the E0

n-section Fy : IR → C : t 7→ F (y, t), while every t ∈ IR gives the Ln-section

F t : E0
n → C : y 7→ F (y, t). Then the n-quadrature formula becomes: Ĝ(y, t) = −i sgn(t)F̂ (y, t) for

almost all (y, t) ∈ E0
n × IR. The following result links n-quadrature to quadrature for functions on

IR (here all functions are assumed to be integrable or square-integrable):

Lemma 3.6. For F,G : E → C, F and G are in n-quadrature if and only if for almost all y ∈ E0
n, Fy

and Gy are in quadrature. In particular for every function H : E0
n → C:

(i) For f, g : IR → C in quadrature, the functions Hf : (y, t) 7→ H(y)f(t) and Hg : (y, t) 7→
H(y)g(t) are in n-quadrature.

(ii) For F,G : E → C in n-quadrature, the functions HF : (y, t) 7→ H(y)F (y, t) and HG : (y, t) 7→
H(y)G(y, t) are in n-quadrature.

Proof. Define F̃ and G̃ as the respective Fourier transforms inside Ln of F and G, in other words

F̃y =
[
Fy

]∧
and G̃y =

[
Gy

]∧
for all y ∈ E0

n . By the decomposability property of the Fourier

transform, F̂ and Ĝ are the Fourier transforms inside E0
n of F̃ and G̃ respectively, that is F̂ t =

[
F̃ t

]∧

and Ĝt =
[
G̃t

]∧
for every t ∈ IR. Now since

[
F̃ t

]∧
is the Fourier transform of F̃ t for variables

in E0
n, w.r.t. which sgn(t) is a constant, we have −i sgn(t)

[
F̃ t

]∧
=

[
−i sgn(t)F̃ t

]∧
; this gives thus

−i sgn(t)F̂ t =
[
−i sgn(t)F̃ t

]∧
for all t ∈ IR. Hence the following statements are equivalent:

• For almost all (y, t) ∈ E0
n × IR, Ĝ(y, t) = −i sgn(t)F̂ (y, t).

• For almost all t ∈ IR,
[
G̃t

]∧
= Ĝt ≡ −i sgn(t)F̂ t =

[
−i sgn(t)F̃ t

]∧
.

• For almost all t ∈ IR, G̃t ≡ −i sgn(t)F̃ t.

• For almost all (y, t) ∈ E0
n × IR, we have

[
Gy

]∧
(t) = G̃y(t) = G̃t(y) = −i sgn(t)F̃ t(y) =

−i sgn(t)F̃y(t) = −i sgn(t)
[
Fy

]∧
(t).

Hence F and G are in n-quadrature if and only if for almost all y ∈ E0
n, Fy and Gy are in quadrature.

Take f, g defined on IR and H defined on E0
n. By the decomposability of the Fourier trans-

form, the Fourier transforms of the functions Hf : (y, t) 7→ H(y)f(t) and Hg : (y, t) 7→ H(y)g(t)

satisfy [Hf ]
∧
(y, t) = Ĥ(y)f̂ (t) and [Hg]

∧
(y, t) = Ĥ(y)ĝ(t); hence ĝ(t) = −i sgn(t)f̂(t) implies that

[Hg]
∧
(y, t) = −i sgn(t)[Hf ]∧(y, t), and (i) holds.
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For F,G in n-quadrature and H defined on E0
n, we have [HF ]y = H(y)Fy and [HG]y =

H(y)Gy, and as H(y) is a constant w.r.t. t ∈ IR, H(y)Fy and H(y)Gy are in quadrature whenever

Fy and Gy are in quadrature. Thus (ii) holds.

The following is a multidimensional generalization of Proposition 3 of [15]:

Proposition 3.7. Let F,G be in L1 and forming an n-quadrature pair. Then for almost all y ∈ E0
n

we have
∫
IR Fy =

∫
IRGy = 0; in particular

∫
E F =

∫
E G.

Proof. Since F and G are integrable and in n-quadrature, for almost all y ∈ E0
n, Fy and Gy are

integrable (by Fubini’s theorem) and in quadrature (by Lemma 3.6). For such a y we have we have[
Gy

]∧
(ν) = −i

[
Fy

]∧
(ν) for almost all ν > 0 and

[
Gy

]∧
(ν) = i

[
Fy

]∧
(ν) for allmost all ν < 0. By

the Riemann-Lebesgue theorem,
[
Fy

]∧
and

[
Gy

]∧
are continuous; the continuity at 0 gives then

both
[
Gy

]∧
(0) = i

[
Fy

]∧
(0) and

[
Gy

]∧
(0) = −i

[
Fy

]∧
(0), in other words

∫
IRGy =

[
Gy

]∧
(0) = 0 =[

Fy

]∧
(0) =

∫
IR Fy. By Fubini’s theorem we have

∫
E F =

∫
E0
n

dy
∫
IR Fy =

∫
E0
n

dy 0 = 0 and similarly∫
E G = 0.

In electrical engineering parlance, “F and G have zero dc level”. Write ξn for the function E → C :

x 7→ xn = x · n. The following generalizes Proposition 4 of [15] to multidimensional functions:

Proposition 3.8. Let F,G be in L1, forming an n-quadrature pair, and such that ξnF and ξnG

are in L1. Then ξnF and ξnG are in n-quadrature.

Proof. By the L1 Fourier derivative formula, we have [ξnF ]
∧
= (−2π i)−1∂/∂xnF̂ and [ξnG]

∧
=

(−2π i)−1∂/∂xnĜ. Since F and G are in n-quadrature and F̂ and Ĝ are continuous (by the Riemann-

Lebesgue theorem), we have Ĝ(u) = −i F̂ (u) for all u ∈ E+
n and Ĝ(u) = i F̂ (u) for all u ∈ E−

n ; it

follows then that ∂/∂xnĜ(u) = −i ∂/∂xnF̂ (u) for all u ∈ E+
n and ∂/∂xnĜ(u) = i ∂/∂xnF̂ (u) for all

u ∈ E−
n . Hence for all u /∈ E0

n we have

[ξnG]
∧
(u) = (−2π i)−1∂/∂xnĜ(u) = −i sgnn(u)(−2π i)−1∂/∂xnF̂ (u) = −i sgnn(u)[ξnF ]∧(u),

and so ξnF and ξnG are in n-quadrature.

Let us now define a multidimensional generalization of the Hilbert transform which will produce

pairs of functions in n-quadrature. For F : E → C, its Hilbert transform in the direction n, or

n-directional Hilbert transform, is the function Hn[F ] defined by
(
Hn[F ]

)
y
= H

[
Fy

]
for all y ∈ E0

n. (3.18)

When F is in Lp (where 1 ≤ p < ∞), then (by Fubini’s theorem) Fy is in Lp for almost all y ∈ E0
n,

and for any such y, H
[
Fy

]
is defined; hence Hn[F ] is defined almost everywhere. By (3.17) and the

definition of the E0
n-sections (with z = (y, x) = y + xn), we have:

Hn[F ](z) = lim
ε→0

1

π

∫

|t|≥ε

F (z− tn)

t
dt,

= lim
ε→0

1

π

∫

IR
F (z− tn)

t

t2 + ε2
dt,

(ε > 0). (3.19)

The two formulas given here coincide almost everywhere. This definition (3.19) can be found in

[52], p. 49. As the one-dimensional Hilbert transform, this multidimentional directional Hilbert

transform is linear, translation-invariant (G(x) = F (x − h) implies Hn[G](x) = Hn[F ](x − h)),

scale-invariant (for a > 0, G(x) = F (a−1x) implies Hn[G](x) = Hn[F ](a
−1x)), and antisymmetric

(Hn[Fρ] = −Hn[F ]ρ). The Hilbert transform Lp stability (with the norm Ap), its quadrature formula

and skewed symmetry in L2 extend naturally to Hn:
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Lemma 3.9. For every function F : E → C:

(i) If F is in Lp for 1 < p <∞, then Hn[F ] is also in Lp, with ‖Hn[F ]‖p ≤ Ap ‖F‖p.
(ii) If F is in L2, then Hn[F ]

∧
(u) = −i sgnn(u)F̂ (u) for almost all u ∈ IR. Moreover, ‖Hn[F ]‖2 =

‖F‖2 and Hn

[
Hn[F ]

]
≡ −F .

For every function G : E0
n → C:

(iii) For f : IR → C in Lp (1 ≤ p <∞), the functions Gf : (y, t) 7→ G(y)f(t) and GH[f ] : (y, t) 7→
G(y)H[f ](t) verify GH[f ] = Hn[Gf ].

(iv) For F : E → C in Lp (1 ≤ p < ∞), the functions GF : (y, t) 7→ G(y)F (y, t) and GHn[F ] :

(y, t) 7→ G(y)Hn[F ](y, t) verify GHn[F ] = Hn[GF ].

Proof. (i) By the Hilbert transform Lp stability we have
∫
IR
∣∣H

[
Fy

]∣∣p =
∥∥H

[
Fy

]∥∥p
p
≤ Ap

p

∥∥Fy

∥∥p
p
=

Ap
p

∫
IR
∣∣Fy

∣∣p. By Fubini’s theorem, we get:

∫

E

∣∣Hn[F ]
∣∣p =

∫

E0
n

dy

∫

IR

∣∣(Hn[F ]
)
y

∣∣p =

∫

E0
n

dy

∫

IR

∣∣H
[
Fy

]∣∣p ≤
∫

E0
n

dyAp
p

∫

IR

∣∣Fy

∣∣p = Ap
p

∫

E
|F |p.

Hence ‖Hn[F ]‖pp ≤ Ap
p ‖F‖pp.

(ii) By Fubini’s theorem, Fy is in L2 for almost all y ∈ E0
n. For such a y we have by the

Hilbert transform quadrature formula in L2:
[(
Hn[F ]

)
y

]∧
(t) = H

[
Fy

]∧
(t) = −i sgn(t) ·

[
Fy

]∧
(t) for

almost all t ∈ IR. By Lemma 3.6, F and Hn[F ] are in n-quadrature. It follows that |Hn[F ]
∧
(x)| =

|F̂ (x)| almost everywhere, and so the Plancherel theorem gives ‖Hn[F ]‖2 = ‖Hn[F ]
∧‖2 = ‖F̂‖2 =

‖F‖2. Since Hn[F ] is in L2, Hn[F ] and Hn

[
Hn[F ]

]
are in n-quadrature. Thus Hn

[
Hn[F ]

]∧
(u) =

−i sgnn(u)Hn[F ]
∧(u) = (−i sgnn(u))2F̂ (u) a.e., and so Hn

[
Hn[F ]

]
≡ −F .

(iii) We have [Gf ]y = G(y)f and
[
GH[f ]

]
y
= G(y)H[f ], and as G(y) is a constant w.r.t.

t ∈ IR, we get H
[
G(y)f

]
= G(y)H[f ]. Hence H

[
[Gf ]y

]
=

[
GH[f ]

]
y
. The result follows then from

the definition (3.18) of Hn.

(iv) We have [GF ]y = G(y)Fy and
[
GHn[F ]

]
y
= G(y)Hn[F ]y = G(y)H

[
Fy

]
, and as G(y)

is a constant w.r.t. t ∈ IR, we get H
[
G(y)Fy

]
= G(y)H

[
Fy

]
. Hence H

[
[GF ]y

]
=

[
GHn[F ]

]
y
. The

result follows then from the definition (3.18) of Hn.

The following result generalizes item (ii) of Lemma 3.9 to Lp for p 6= 2. In particular for d = 1 it

applies also to the ordinary Hilbert transform, for which we found no trace of this property in the

literature. We will use it in order to give a criterion for obtaining n-directional Hilbert transform

pairs in L1 which are in n-quadrature.

Lemma 3.10. Let 1 < p < ∞. For F in Lp we have Hn

[
Hn[F ]

]
≡ −F . For F in L1 ∩ Lp,

the Fourier transform of Hn[F ] (in the tempered distribution sense) is a function, and we have

Hn[F ]
∧
(u) = −i sgnn(u)F̂ (u) a.e.

Proof. Take F in Lp. Since L2 ∩ Lp is dense in Lp, for every ε > 0 there is some G in L2 ∩ Lp

such that ‖F − G‖p < ε. Item (ii) of Lemma 3.9 gives Hn

[
Hn[G]

]
≡ −G, so that by item (i) of

Lemma 3.9 we get:

∥∥Hn

[
Hn[F ]

]
+ F

∥∥
p
≤

∥∥Hn

[
Hn[F ]

]
−Hn

[
Hn[G]

]∥∥
p
+ ‖F −G‖p < A2

pε+ ε,

leading to Hn

[
Hn[F ]

]
≡ −F .

Suppose now that F is in L1 ∩ Lp; then F̂ is a function, while Hn[F ]
∧
is a priori a tempered

distribution. Take this same G; we have thus ‖Hn[F −G]‖p ≤ Ap‖F −G‖p < εAp. Since Hn[G]
∧ ≡
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−i sgnnĜ (by item (ii) of Lemma 3.9), and both the Hilbert and Fourier transforms are linear, the

following equality holds in the tempered distribution sense:

Hn[F ]
∧ + i sgnnF̂ = Hn[F −G]∧ − i sgnnĜ+ i sgnnF̂ ;

thus for any Schwartz function S we have:

〈Hn[F ]
∧ + i sgnn F̂ , S〉 = 〈

(
Hn[F −G]

)∧
, S〉 − i 〈sgnn Ĝ, S〉+ i 〈sgnn F̂ , S〉

= 〈
(
Hn[F −G]

)∧
, S〉 − i

∫

E
sgnn ĜS + i

∫

E
sgnn F̂S (since F̂ and Ĝ are functions)

= 〈Hn[F −G], Ŝ〉 − i

∫

E
G(sgnn S)

∧ + i

∫

E
F (sgnn S)

∧ (by the multiplication formula)

=

∫

E
Hn[F −G]Ŝ + i

∫

E
(F −G)(sgnn S)

∧ (since Hn[F −G] is a function)

Now by Hölder’s inequality we have (for p′ = p/(p− 1)):

∣∣∣
∫

E
Hn[F −G]Ŝ

∣∣∣ ≤ ‖Hn[F −G]‖p · ‖Ŝ‖p′ < Apε‖Ŝ‖p′

and ∣∣∣
∫

E
(F −G)(sgnnS)

∧
∣∣∣ ≤ ‖F −G‖p · ‖(sgnnS)∧‖p′ < ε‖(sgnnS)∧‖p′ .

Hence ∣∣〈Hn[F ]
∧
+ i sgnn F̂ , S〉

∣∣ < ε
(
Ap‖Ŝ‖p′ + ‖(sgnnS)∧‖p′

)

for any ε > 0, from which we conclude that Hn[F ]
∧ = −i sgnn F̂ in the tempered distribution sense;

as F̂ is a function, this means that Hn[F ]
∧ ≡ −i sgnn F̂ .

Note that the proof of the n-quadrature formula does not extend naturally to the case where F is not

integrable, even if we assume that F̂ (in the tempered distribution sense) is a function; this is due to

the fact that we cannot write 〈sgnn F̂ , S〉 = 〈F̂ , sgnn S〉 in general, because sgnn S is not necessarily

a Schwartz function (it can be discontinuous).

The following result gives us a criterion for obtaining Hilbert transform pairs in L1 and in

quadrature. Write ξ for the identity mapping x 7→ x on IR:

Lemma 3.11. Let 1 < p, q < ∞, and let f be a function in Lp such that the function ξf is in Lq.

Then f is integrable and

H[ξf ] = ξH[f ]− 1

π

∫

IR
f. (3.20)

Furthermore, the following four statements are equivalent:

(i)
∫
IR f = 0.

(ii) H[ξf ] = ξH[f ].

(iii) ξH[f ] is in Lq.

(iv) H[f ] is in L1.

Proof. The integrability of f follows from Lemma 3.1. The first expression of (3.17) implies that:

H[ξf ](x) = lim
ε→0

1

π

∫

|t|≥ε

(x− t)f(x− t)

t
dt = lim

ε→0

1

π

(
x ·

∫

|t|≥ε

f(x− t)

t
dt−

∫

|t|≥ε

tf(x− t)

t
dt
)

= x · lim
ε→0

1

π

∫

|t|≥ε

f(x− t)

t
dt− lim

ε→0

1

π

∫

|t|≥ε

f(x− t) dt = xH[f ](x)− 1

π

∫

IR
f.
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Thus (3.20) holds.

Let us now show the equivalence between (i), (ii), (iii), and (iv). As f is in Lp and ξf is in

Lq, by the Hilbert transform stability property, H[f ] is in Lp and H[ξf ] is in Lq. As f is in L1 ∩Lp,

f and H[f ] are in quadrature by Lemma 3.10.

If (i):
∫
IR f = 0, then (3.20) gives (ii): H[ξf ] = ξH[f ]. As H[ξf ] is in Lq, (ii): H[ξf ] = ξH[f ]

implies that (iii): ξH[f ] is in Lq. If (iii): ξH[f ] is in Lq, as H[f ] is in Lp, applying Lemma 3.1 to

H[f ], we obtain (iv): H[f ] is in L1. As f is in L1, and f and H[f ] are in quadrature, if (iv): H[f ]

is in L1, then by Proposition 3.7 (in fact, by Proposition 3 of [15]) we deduce that (i):
∫
IR f = 0.

Thus f and H[f ] will form a quadrature pair in L1. Note that by Proposition 3.7 we have then also∫
IRH[f ] = 0.

Let us give two examples where this result can be used. First, if f is bounded in a neighbour-

hood V of the origin, and if for some ε > 0 we have |f(x)| ≤ 1/x1+ε outside V , then f belongs to

Lp for 1 < p <∞, and ξf is in Lq for max(1, 1/ε) < q <∞. Second, if f has a bounded support V

(that is, f(x) = 0 for x /∈ V ), and if for 0 < δ < 1 we have |f(x)| ≤ 1/xδ for x ∈ V , then f is in Lp

for 1 < p < 1/δ, while ξf belongs to Lq for 1 < q < ∞. In both cases f will be integrable, forming

a quadrature pair with H[f ], and H[f ] will be integrable if and only if
∫
IR f = 0.

Let us briefly explain what happens when condition (i) is not satisfied. We suppose that f is

in L1 ∩ L2, with ξf also in L2, but
∫
IR f = m 6= 0. Then f and H[f ] are in quadrature, but H[f ] is

not integrable; in fact the Fourier transform of H[f ] is discontinuous at the origin, where it jumps

from im to −im. Furthermore, (3.20) gives ξH[f ] = H[ξf ] +m/π, and as H[ξf ] is in L2, ξH[f ] is

not square-integrable; in fact for every ε > 0, the set of all x ∈ IR such that |xH[f ](x) −m/π| > ε

has finite measure. Furthermore, ξf and ξH[f ] are not in quadrature. This shows in particular that

Propositions 3.7 and 3.8 are not true for functions in L2 instead of L1.

In [15] we considered the particular case where f is given by the Gaussian

Gσ(x) =
1

σ
√
2π

exp
[−x2
2σ2

]
, (3.21)

whose Hilbert transform is the function

Kσ(x) =
2√
π
Gσ(x)

∫ x/σ
√
2

0

exp(s2) ds. (3.22)

Clearly Gσ and ξGσ belong to Lp for all p, and
∫
IRGσ = 1. We have ξKσ = H[ξGσ] + 1/π, and in

fact limx→±∞ xKσ(x) = 1/π, so that Kσ(x) is asymptotically in 1/πx. If one take for f the n-th

derivative G
(n)
σ of Gσ, then H[f ] will be the n-th derivative K

(n)
σ of Kσ, which is asymptotically

proportional to 1/ξn+1 (because n is the least m ≥ 0 such that
∫
IR ξmG

(n)
σ 6= 0). On the other

hand, if f is a difference of Gaussians Gσ1
− Gσ2

(where σ1 6= σ2), then H[f ] = Kσ1
− Kσ2

is

asymptotically proportional to 1/ξ3 (because
∫
IR ξ2

(
Gσ1

−Gσ2

)
= σ1

2 − σ2
2 6= 0). Thus functions

involving the Hilbert transform Kσ of the Gaussian Gσ have a relatively slow decay (in addition to

their computational complexity). This example shows that the celebrated Gaussian, which is usually

considered as an optimal smoothing function, is not a very good candidate for building Hilbert

transform pairs of integrable filters.

In [9] the following function g : IR → IR is considered:

g(ν) = exp
(
− [ln(|ν|/P )]2

2[q ln 2]2

)
. (3.23)
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Since g is square-integrable, there is a square-integrable function f such that f̂ = g. Here P is

the peak frequency of f , and q its half bandwidth in octaves at height exp(−1/2). This choice of

g = f̂ results from data obtained in psychophysical measurements of human visual response. Since

g and all its n-th derivatives g(n) are integrable (for all n > 0), repeated application of integration

by parts gives g(n)
∨
= (−2π i ξ)ng∨ ≡ (−2π i ξ)nf , and as g(n) is square-integrable, it follows that

(−2π i ξ)nf is square-integrable and
[
(−2π i ξ)nf

]∧ ≡ g(n) for all n > 0. As f and all ξnf are square-

integrable, by repeated application of Lemma 3.11, f and all ξnf will also be integrable; furthermore,

as g(0) = g(n)(0), we have
∫
f =

∫
ξnf = 0. Now H[f ]

∧ ≡ −i sgn · g, and the same argument shows

that the above properties hold with H[f ] and sgn · g instead of f and g. The functions f and H[f ]

were proposed in [9] as filters for building the energy function.

In order to generate n-directional Hilbert transform pairs of integrable functions on E which

are in n-quadrature, we can take functions of the form given in item (iii) of Lemma 3.9, namely for

f : IR → C satisfying the conditions of Lemma 3.11, and for an integrable function G : E0
n → C,

the functions Gf : (y, t) 7→ G(y)f(t) and GH[f ] : (y, t) 7→ G(y)H[f ](t) are integrable and verify

GH[f ] = Hn[Gf ]. We can also generalize Lemma 3.11 to the multidimensional case. Recall the

function ξn : E → C : x 7→ xn = x · n.

Proposition 3.12. (a) Let 1 < p, q <∞, and let F be a function in Lp such that the function ξnF

is in Lq. Then for almost all y ∈ E0
n, Fy is integrable and for every xn ∈ IR,

Hn[ξnF ](y, xn) = xnHn[F ](y, xn)−
1

π

∫

IR
F (y, t) dt. (3.24)

Moreover, the following four statements are equivalent:

(i) For almost all y ∈ E0
n,

∫
IR F (y, t) dt = 0.

(ii) Hn[ξnF ] ≡ ξnHn[F ].

(iii) ξnHn[F ] is in L
q.

(iv) For almost all y ∈ E0
n,

(
Hn[F ]

)
y
= H

[
Fy

]
is integrable.

(b) Let {e1, . . . , ed−1} be an orthonormal basis of E0
n and let ed = n; for i = 1, . . . , d let ξi be the

map E → IR : x 7→ x · ei. Let the function F be such that for every subset I of {1, . . . , d} there is

some p(I) with 1 < p(I) < ∞ for which the function
(∏

i∈I ξi
)
· F is in Lp(I) (in particular F is in

Lp(∅) and ξnF = ξdF is in Lp({d})). Then F is integrable, the statement of (a) holds, and F and

Hn[F ] are in n-quadrature. Moreover, if F satisfies anyone of the conditions (i) to (iv) of (a), then

Hn[F ] is integrable.

Proof. (a) Since F is in Lp, by Fubini’s theorem we have
∫
E0
n

dy
∫
IR
∣∣Fy

∣∣p =
∫
E |F |p < ∞, and

so
∫
IR
∣∣Fy

∣∣p < ∞ for almost every y ∈ E0
n. Similarly, since ξnF is in Lq, we get

∫
IR
∣∣(ξnF

)
y

∣∣q =∫
IR
∣∣ξFy

∣∣q < ∞ for almost every y ∈ E0
n. Hence for almost all y ∈ E0

n we have Fy in Lp and ξFy in

Lq, and so Fy is integrable by Lemma 3.11. Then:

(
Hn[ξnF ]

)
y
= H

[(
ξnF

)
y

]
= H

[
ξFy

]
by (3.18)

= ξH
[
Fy

]
− 1

π

∫

IR
Fy by (3.20)

= ξ
(
Hn[F ]

)
y
− 1

π

∫

IR
Fy =

(
ξnHn[F ]

)
y
− 1

π

∫

IR
Fy by (3.18)

This gives thus (3.24).
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Now the equivalence between (i), (ii), (iii), and (iv) is obtained in the same way as in

Lemma 3.11. By item (i) of Lemma 3.9, Hn[F ] is in Lp, while Hn[ξnF ] is in Lq. For almost

all y ∈ E0
n, Fy is in L1 ∩ Lp, so that Fy and H

[
Fy

]
are in quadrature by Lemma 3.10. Thanks to

(3.24), (i) implies (ii). As Hn[ξnF ] is in L
q, (ii) implies (iii). If (iii) holds, as Hn[F ] is in Lp, the

above argument with Hn[F ] instead of F gives (iv). If (iv) holds, Fy and H
[
Fy

]
being in L1 and in

quadrature imply that
∫
IR F (y, t) dt = 0 (by Proposition 3.7, or Proposition 3 of [15]).

(b) By Lemma 3.1, F is integrable. Let p = p(∅) and q = p({d}). Since F is in L1 ∩ Lp, F

and Hn[F ] are in n-quadrature by Lemma 3.10. Now F satisfies the conditions of statement (a),

and in particular conditions (i) to (iv) are equivalent. Assume that one of them holds; thus we

have (ii): Hn[ξnF ] ≡ ξnHn[F ]. For a subset J of {1, . . . , d − 1},
(∏

j∈J ξj
)
· F is in Lp(J) and(∏

j∈J ξj
)
ξn · F =

(∏
j∈J ξj

)
· ξdF is in Lp(J∪{p}), where 1 < p(J), p(J ∪ {p}) <∞. By item (iv) of

Lemma 3.9, Hn

[(∏
j∈J ξj

)
·F

]
=

(∏
j∈J ξj

)
·Hn[F ] and Hn

[(∏
j∈J ξj

)
·ξnF

]
=

(∏
j∈J ξj

)
·Hn[ξnF ] ≡(∏

j∈J ξj
)
· ξnHn[F ]. By item (i) of Lemma 3.9, we deduce that

(∏
j∈J ξj

)
· Hn[F ] is in Lp(J) and(∏

j∈J ξj
)
· ξnHn[F ] is in L

p(J∪{p}). Thus Hn[F ] satisfies the same above-mentioned condition as F ,

and so Hn[F ] is integrable by Lemma 3.1.

A simplified form of statement of (b) applies when we take the same p for all I ⊆ {1, . . . , d}. Suppose
here that we have any basis {u1, . . . ,ud} of E (not necessarily orthonormal) for which there is some

p with 1 < p <∞ such that for every subset I of {1, . . . , d} the function x 7→
(∏

i∈I x · ui

)
· F (x) is

in Lp; then for any other basis {e1, . . . , ed} of E , the functions x 7→
(∏

i∈I x · ei
)
·F (x), being linear

combinations of those of the form x 7→
(∏

j∈J x · uj

)
· F (x), will also be in Lp, and so statement (b)

holds then.

If we have a function F satisfying the statement of (a) such that (i) is not verified, one can

construct a new one satisfying (i) as follows: Let a > 0, and define Ha by

Ha(y, t) = F (y, t) − a−1F (y, a−1t);

then clearly
∫
IRHa(y, t) dt = 0 for all y ∈ E0

n. In the Fourier domain we have

Ĥa(u, v) = F̂ (u, v)− F̂ (u, av);

thus if F has on E+
n a constant Fourier phase φ and a Fourier amplitude FA(u, v) decreasing in v,

then for a > 1 we will get Ĥa(u, v) = eiφ
(
FA(u, v) − FA(u, av)

)
, and so Ha will have the same

Fourier phase as F . For example, taking d = 1, if F is the Gaussian Gσ of (3.21), then Ha is the

difference of Gaussians Gσ −Gaσ, which has in common with the Gaussian a constant zero Fourier

phase.

Thanks to Proposition 3.12, we have a criterion for determining whether a function F and

its n-directional Hilbert transform Hn(F ) are in n-quadrature and both integrable. Such pairs of

functions will be the filters used in the phase congruence model for constructing energy functions

leading to edge detection.

There is another generalization of the Hilbert transform to d dimensions, namely the M. Riesz

transform (see [46], p. 224), given by

R[F ](x) = lim
Γ[(n+ 1)/2]

π(n+1)/2

∫

δ≥|t|≥ε

F (x− t)
tn

|t|n+1
dt, ε→ 0, δ → ∞,
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where tn = t ·n. For F square-integrable, this leads to the following equality in the Fourier domain:

R[F ]
∧
(u) = −i un|u| F̂ (u).

We did not use this transform, because it does not lead to a Fourier phase quadrature, since it

modifies also the Fourier amplitude of a function F .

3.5. The complex-valued function associated to a quadrature pair, and its energy

Given a square-integrable function f on IR, the complex-valued function f + iH[f ] has some inter-

esting mathematical properties, in particular the fact that it can be extended to a complex function

which is analytic in the upper half of the complex plane. The use of this function in signal processing

has been proposed by Gabor [54], who called it the analytic signal associated to f , and who introduced

the term energy in order to designate the square of its absolue value, namely f2+H[f ]2 =
∣∣f+iH[f ]

∣∣2.
Owens [55] used extensively this function f + iH[f ] and its analytic extension in the upper half of

the complex plane in order to describe the behaviour of the energy function f2 + H[f ]2 by means

of complex analysis. We will consider here the complex-valued function F + i G for a n-quadrature

pair of functions on E .
Given two functions F,G : E → C, the fact that F and G are in n-quadrature is equivalent to

each of the following identities:

[F + i G]
∧ ≡ 2 posn F̂ ;

[F − i G]∧ ≡ 2 negn F̂ .
(3.25)

More precisely, consider the following four conditions:

(a) For almost all u ∈ E+
n , [F + i G]∧(u) = 2 F̂ (u).

(b) For almost all u ∈ E−
n , [F + i G]

∧
(u) = 0.

(c) For almost all u ∈ E+
n , [F − i G]

∧
(u) = 0.

(b) For almost all u ∈ E−
n , [F − i G]

∧
(u) = 2 F̂ (u).

Then (a) ⇔ (c), (b) ⇔ (d), and any combination of (a) or (c) with (b) or (d) expresses the fact

that F and G are in n-quadrature; in particular (a) and (b) together mean the first identity in (3.25),

while (c) and (d) together mean the second one. Furthermore, if F and G are real-valued, (3.7) and

(3.8) applied to F ± i G imply that (a, b, c, d) are pairwise equivalent, and so each one is equivalent

to the fact that F and G are in n-quadrature.

Thanks to (3.7), for F and G complex-valued, F and G are in n-quadrature if and only if

F and G are in n-quadrature, in other words if and only if both (ℜF,ℜG) and (ℑF,ℑG) are n-

quadrature pairs. Then F + i G = (ℜF − ℑG) + i (ℜG + ℑF ), where ℜF − ℑG and ℜG + ℑF
are in n-quadrature. Thus when considering the complex-valued function F + i G associated to a

n-quadrature pair (F,G), we can assume that F and G are real-valued.

Consider now the family F+
n of all functions H : E → C such that Ĥ(u) = 0 a.e. on E−

n , in

other words of all functions of the form F + i F̃ for F and F̃ in n-quadrature (and we can assume

here that F and F̃ are real-valued). Clearly F+
n is a vector space on C; in particular for any angle θ

and F, F̃ in n-quadrature,

ei θ(F + i F̃ ) =
(
cos θ F − sin θ F̃

)
+ i

(
sin θ F + cos θ F̃

)
(3.26)
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belongs to F+
n , so that

(
cos θ F − sin θ F̃

)
and i

(
sin θ F +cos θ F̃

)
are in n-quadrature; moreover we

have a.e.: (
cos θ F − sin θ F̃

)∧
(u) = exp[i θ sgnn(u)] F̂ (u). (3.27)

By the convolution formula, for F + i F̃ and G + i G̃ in F+
n with at least one of them integrable,

their convolution

(F + i F̃ ) ∗ (G+ i G̃) = (F ∗G− F̃ ∗ G̃) + i (F ∗ G̃+ F̃ ∗G)

belongs to F+
n , so that F ∗G− F̃ ∗ G̃ and F ∗ G̃+ F̃ ∗G are in n-quadrature.

Similarly, if both F + i F̃ and G + i G̃ in F+
n are square-integrable, by the dual convolution

formula and the fact that the convolution of two functions vanishing on E−
n vanishes on E−

n , their

product

(F + i F̃ )(G+ i G̃) = (FG− F̃ G̃) + i (FG̃+ F̃G) (3.28)

belongs to F+
n , so that FG−F̃ G̃ and FG̃+F̃G are in n-quadrature. Here F̃ = Hn[F ] and G̃ = Hn[G],

and in the one-dimensional case where E = IR and the n-directional Hilbert transform reduces to the

ordinary one, such a formula FG − F̃ G̃ was used in [55] as a new type of product of F and G, and

it was written F ⊙G. The advantage of such a product F ⊙G is that the energy associated to it is

the ordinary product of the energies associated to F and G; for example if G has constant energy,

the energy of F ⊙G is proportional to that of F .

Let us now explain how in the one-dimensional case such a complex-valued fonction extends

to a complex function which is analytic in the upper half of the complex plane. Given a square-

integrable function f : IR → IR, let g = f + iH[f ] and h = ĝ, that is h(ν) = 2 f̂(ν) for ν > 0 and

h(ν) = 0 for ν < 0. We extend g to a complex function G by extending the inverse Fourier transform

of h to a complex variable:

G(z) =

∫ ∞

0

h(ν) exp[2πi νz] dν (z ∈ C), (3.29)

in other words for z = x+ i y we have:

G(x+ i y) =

∫ ∞

0

h(ν) exp[−2πνy] exp[2πi νx] dν. (3.30)

Then for for a fixed y > 0, the function Ey defined by

Ey(ν) =

{
exp[−2πνy] for ν ≥ 0,
0 for ν < 0,

is square-integrable, and G(x+i y) as a function of x is the inverse Fourier transform of the integrable

function h · Ey. Thus G(z) is well-defined for ℑz > 0. It is not hard to see that for ℑz > 0, G can

be derived by deriving w.r.t. z under the integral in (3.29):

G′(z) =

∫ ∞

0

h(ν) exp[2πi νz] 2πi ν dν (z ∈ C,ℑz > 0). (3.31)

This result can be proved in the same way as the L1 Fourier derivative formula (see also Theorem 2.27

of [48]). Since G is derivable in the open set ℑz > 0, it is analytic on it. Now g can be obtained

from G as its “non-tangential limit”. This means that for every a > 0, for x real and ℑz > 0, z → x
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subject to |ℜ(z−x)| < a|ℑ(z−x)| gives G(z) → g(x). See [56,57] for more details; a short exposition

of this theory is given in [55].

Let us give a concrete example. We define h by

h(ν) =

{
(n!)−1(2π)n+1tn exp[−2πν] for ν ≥ 0,
0 for ν < 0,

(3.32)

where n ≥ 0. Then h · Ey is integrable for y > −1, and so for ℑz > −1, G(z) can be defined by

(3.29) and has its derivative as in (3.31); in fact G has a pole at z = −i. One can show by induction

on n that G(z) = (1 − i z)−n−1, which is indeed analytic for ℑz > −1. In particular for x real,

g(x) = (1 − i x)−n−1, and we get the quadrature pair (f, f̃) given by:

f(x) = ℜ
{
(1− ix)−n−1

}
=

ℜ
{
(1 + ix)n+1

}

(1 + x2)n+1
,

f̃(x) = ℑ
{
(1− ix)−n−1

}
=

ℑ
{
(1 + ix)n+1

}

(1 + x2)n+1
.

(3.33)

These functions were proposed in [58], where they were called Cauchy functions. They are square-

integrable, and integrable for n ≥ 1. The constant n determines also the number of ripples in the

profiles of f and f̃ . In [58] the values n = 3 and n = 5 were taken in order to define filters modeling

some properties of the human visual response. The main interest of Cauchy functions resides in their

computational simplicity.

Let us now give properties of the energy function F 2+F̃ 2 for F and F̃ in n-quadrature. Recall

the definition given in (3.14) of FΦ(u,p), the local Fourier phase of F at p for the frequency u.

Lemma 3.13. Let G : E → C be square-integrable and such that there is some V ⊆ E with Ĝ(u) = 0

for u /∈ V . Then:
(i) (GG)

∧
= Ĝ ∗ G∨. In particular, if GΦ is constant (on V), then (GG)

∧
= GA ∗ (GA)ρ, a

real-valued non-negative function.

(ii) For u ∈ E and Vu the translate of V by u, we have:

(GG)
∧
(u) =

∫

V∩Vu

Ĝ(v)Ĝ(v − u) dv

=

∫

V∩Vu

GA(v)GA(v − u) exp
[
i
(
GΦ(v) −GΦ(v − u)

)]
dv.

(3.34)

In particular (GG)
∧
(u) = 0 when V ∩ Vu is negligible.

(iii) If Ĝ is integrable, then for almost all x ∈ E we have

(GG)(x) =

∫

V

∫

V
Ĝ(u)Ĝ(v) exp[2πi (u− v) · x] dudv

=

∫

V

∫

V
GA(u)GA(v) cos

[
GΦ(u,x)−GΦ(v,x)

]
dudv.

(3.35)

Proof. (i) By (3.8) and the dual convolution formula, we have (GG)
∧
= Ĝ∗G∨. If GΦ is a constant

φ , we get Ĝ = eiφGA and G∨ = e−iφ(GA)ρ, so that:

(GG)
∧
= Ĝ ∗G∨ = eiφGA ∗ e−iφ(GA)ρ = GA ∗ (GA)ρ,

28



the convolution of two non-negative real-valued functions, which will be non-negative.

(ii) Expanding (i) gives:

(GG)
∧
(u) =

∫

E
Ĝ(v)G∨(u− v) dv =

∫

E
Ĝ(v)Ĝ(v − u) dv.

Since Ĝ vanishes outside V , in the above integral we can restrict the domain to where both v and

v − u are in V , that is v ∈ V ∩ Vu; this gives the first equality in (3.34). In particular the integral

is null when V ∩ Vu has measure zero. Now by definition of Fourier amplitude and phase we have

Ĝ(v) = GA(v) exp[i GΦ(v)] and Ĝ(v − u) = GA(v−u) exp[−i GΦ(v−u)], giving the second equality

in (3.34).

(iii) If Ĝ is integrable, by Lemma 3.2 the formula

G(x) =

∫

V
Ĝ(u) exp[2πiu · x] du

holds almost everywhere; this gives thus

(GG)(x) =

∫

V
Ĝ(u) exp[2πiu · x] du

∫

V
Ĝ(v) exp[2πiv · x] dv.

Fubini’s theorem gives then the first equality in (3.35). By definition of Fourier amplitude and phase,

this becomes

(GG)(x) =

∫

V

∫

V
GA(u)GA(v) exp

[
2πiu · x+ i GΦ(u)− 2πiv · x− i GΦ(v)

]
dudv.

Using definition (3.14) of the local phase at x for frequency u, this gives

(GG)(x) =

∫

V

∫

V
GA(u)GA(v) exp

[
i
(
GΦ(u,x)−GΦ(v,x)

)]
dudv.

As GG is real-valued, the imaginary part of this double integral vanishes; the real part of it gives

then the last member of (3.35).

In the case where G = F + F̃ , where F and F̃ are in n-quadrature, we have V = E+
n , and combining

(i) with (3.25) we get:

(F 2 + F̃ 2)
∧
= (F + i F̃ )

∧ ∗ (F − i F̃ )
∧
= 4 (posn F̂ ) ∗ (negn F̂ ). (3.36)

If FΦ is constant on E+
n , it follows that (F 2 + F̃ 2)

∧
is non-negative real-valued. From the results

of Subsection 3.3, provided that F + F̃ is continuous, (F + i F̃ )
∧
and (F − i F̃ )

∧
will be integrable,

and (F 2 + F̃ 2)(0) > (F 2 + F̃ 2)(u) for all u 6= 0 (this inequality can also be verified from (3.35)).

Formula (3.35) gives here:

(F 2 + F̃ 2)(x) = 4

∫

E+
n

∫

E+
n

F̂ (u)F̂ (v) exp[2πi (u− v) · x] dudv

= 4

∫

E+
n

∫

E+
n

FA(u)FA(v) cos
[
FΦ(u,x)− FΦ(v,x)

]
dudv.

(3.37)

This formula holds almost everywhere, in particular whenever F and F̃ are continuous. It is at the

basis of the phase congruence approach: the energy function at point x measures the degree to which

the Fourier phases at x, namely FΦ(u,x), are similar when u ranges over E+
n . Indeed, the closer

FΦ(u,x) is to FΦ(v,x), the greater is cos
[
FΦ(u,x)− FΦ(v,x)

]
, and so the greater is the integrant

in (3.37).

The following result will be useful in our discussion in Section 4 concerning quadratic operators

in edge detection:
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Proposition 3.14. Let G : E → C and H,K : E → IR be square-integrable functions such that:

(i) GΦ is constant.

(ii) H and K are both a.e. even-symmetric or both a.e. odd-symmetric.

(iii) GA ≥ HA and GA ≥ KA.

Then for any real λ such that −1 ≤ λ ≤ 1, (GG+ λHK)
∧
is real-positive.

Proof. By Lemma 3.13 (i), (GG)
∧
= GA ∗ (GA)ρ, the convolution of two real-valued non-negative

functions. If H and K are both a.e. even-symmetric, then Ĥ and K̂ are both real-valued, and so is

Ĥ ∗ K̂; if H and K are both a.e. odd-symmetric, then Ĥ and K̂ are both imaginary-valued, and so

Ĥ ∗ K̂ is real-valued. Thus in any case Ĥ ∗ K̂ is real-valued, and so

(GG+ λHK)
∧
= GA ∗ (GA)ρ + λĤ ∗ K̂

is real-valued. Now GA ≥ HA and GA ≥ KA; since K is real-valued, KA is symmetric, and so

(GA)ρ ≥ KA. We deduce that:

(GG)
∧
= GA ∗ (GA)ρ ≥ HA ∗KA = |Ĥ | ∗ |K̂| ≥ |Ĥ ∗ K̂| ≥ |λ| · |Ĥ ∗ K̂| = |λĤ ∗ K̂|.

Therefore (GG + λHK)
∧ ≥ 0.

4. Edge detection in the phase congruence model

We will now describe the phase congruence model for edge detection and its mathematical properties,

using the results of Section 3. We deal successively with the filters and their properties, the phase

congruence, the behaviour of this type of edge detector on standard edge profiles (cfr. Section 2),

other quadratic combinations of the filters, in particular single-filter approaches to edge detection

(such as Canny’s operator [7]), and finally the problem of orientation selection.

From now on, we assume that the dimension d of our space E is one or two. When d = 2, we

select a unit vector n, which will be considered as normal to the edge orientation, and we will take

a perpendicular unit vector t, which will be considered as tangential to the edge orientation.

4.1. The filters, their constraints and properties

We take an even-symmetric filter C (for “cosine”), and an odd-symmetric filter S (for “sine”); write

I for the image to be convolved with them; all three must be considered as functions E → IR, and

furthermore C and S are implicitly assumed to be integrable or square-integrable (since we consider

their Fourier transforms as functions). In view of Subsection 3.5, we define the complex-valued filter

F = C+i S, and we write J = I ∗F , that is J = (I ∗C)+i (I ∗S). Then E = |J |2 = (I ∗C)2+(I ∗S)2
will be called the energy function. Note that several authors, in particular [9,55], define

√
E = |J |

as the energy function, but this does not really matter.

As edge detection involves very particular filters being applied to rather arbitrary images, we

choose to impose sharp constraints on C and S, but loose ones on I. The first requirement is a

two-dimensional generalization of the Morrone-Burr condition [9]:

Requirement 1. C 6≡ 0, C is even-symmetric, S is odd-symmetric, Ĉ has real non-negative values,

and (C, S) is an n-quadrature pair.
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Let us write A for the Fourier amplitude of C; then the following is a reformulation of this require-

ment:

For all u ∈ E ,
Ĉ(u) = A(u),

Ŝ(u) = −i sgnn(u)A(u),
where A(u) ≥ 0. (4.1)

Note that several previous studies (in particular [9,15]) have considered one-dimensional functions

satisfying Ŝ(ν) = i sgn(ν)Ĉ(u), in another words such that (S,C) (rather than (C, S)) is a quadrature

pair, but again this does not matter, we have then only to take −S instead of S.

The next requirement will allow us to use the theory of the previous section:

Requirement 2. C is bounded in a neighbourhood of the origin.

This gives us the following consequence:

Proposition 4.1. Ĉ and Ŝ are integrable, and there exist two bounded and uniformly continuous

functions Cu and Su vanishing at infinity, such that Cu ≡ C and Su ≡ S. Moreover, if C or S

belongs to Lp (where p ≥ 1), then it belongs to Lq for every q > p.

Proof. Ĉ is integrable by Proposition 3.5, and as |Ŝ| = |Ĉ|, it follows that Ŝ is also integrable.

Defining Cu and Su according to (3.11), Lemma 3.2 implies that they are bounded and uniformly

continuous, that they vanish at infinity, and that Cu ≡ C and Su ≡ S. If C is in Lp, then for q > p

we have
∫
E |C|q ≤ ‖C‖q−p

∞ ·
∫
E |C|p, and then C is also in Lq; the same holds for S.

Since Cu ≡ C and Su ≡ S, it follows that I ∗C = I ∗Cu and I ∗ S = I ∗ Su, in other words C and S

considered as filters have the same behaviour as Cu and Su. We can thus take the latter in place of

the former:

Requirement 2’. C and S are continuous, in other words C = Cu and S = Su.

Note that Requirement 2’ is stronger than Requirement 2; we can thus forget the latter.

By Proposition 4.1, if C or S is integrable, then it is also square-integrable. Thus requiring

square-integrability on C and S is less restrictive than requiring integrability. As we choose to take

the strongest conditions on the filters and the weakest ones on the image, we postulate the following:

Requirement 3. C and S are integrable.

Another reason for postulating integrability instead of square-integrability, is that a function which

is square-integrable but not integrable has a slow decay: asymptotically it cannot decrease faster

than 1/|x|d.
Requirements 1, 2’, and 3 are the basis of our theory. They lead to the following fundamental

result:

Proposition 4.2.
∫
E C =

∫
E S = 0. Furthermore:

(i) H ∗ C = H ∗ S = 0 for every constant H : E → IR.

(ii) For I = I1 + I2, where I1 is in L1 and I2 is in L2, both I ∗C and I ∗ S are square-integrable,

bounded, uniformly continuous, and they vanish at infinity. Furthermore (I ∗ C)∧ = ÎĈ and

(I ∗ S)∧ = Î Ŝ are integrable and square-integrable.

Proof. By Proposition 3.7,
∫
E C =

∫
E S = 0. If H(x) = c for all x ∈ E , then (H∗C)(x) = c·

∫
E C = 0

and similarly (H ∗ S(x) = 0 for all x ∈ E ; thus (i) holds.
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We know that C is integrable and bounded; hence it is also square-integrable. Take I1 in

L1 and I2 in L2. Since C is both in L1 and in L2, both I1 ∗ C and I2 ∗ C will also be in L2 by

Young’s inequality. Since C is bounded and vanishes at infinity, the p-p’ convolution property for

p = 1 implies that I1 ∗C will be bounded, uniformly continuous, and will vanish at infinity; since C

is in L2, the p-p’ convolution property for p = 2 implies that I2 ∗C will also be bounded, uniformly

continuous, and will vanish at infinity. Thus I ∗C = I1 ∗C+ I2 ∗C will share the common properties

of I1 ∗C and I2 ∗C, namely being square-integrable, bounded, uniformly continuous, and vanishing

at infinity.

The convolution formula gives (I1 ∗ C)∧ = Î1Ĉ and (I2 ∗ C)∧ = Î2Ĉ. Since C is integrable,

Ĉ is bounded by the Riemann-Lebesgue theorem, and we know that Ĉ is integrable by Lemma 4.1;

hence Ĉ is also square-integrable. As I1 is integrable, Î1 is bounded by the Riemann-Lebesgue

theorem, and so Î1Ĉ is integrable and bounded; it is in particular square-integrable. As I2 is square-

integrable, Î2 is square-integrable by the Plancherel Theorem, and as Ĉ is square-integrable and

bounded, it follows from Hölder’s inequality that Î2Ĉ is integrable and square-integrable. Thus

(I ∗ C)∧ = (I1 ∗ C)∧ + (I2 ∗ C)∧ = Î1Ĉ + Î2Ĉ = ÎĈ,

and it will share the common properties of Î1Ĉ and Î2Ĉ, namely being both integrable and square-

integrable.

The same argument works wih S instead of C, and so (ii) holds.

Note that since I ∗ C and I ∗ S are continuous and have an integrable Fourier transform, their

values are given pointwise by the inverse Fourier integral applied to their Fourier transform (cfr.

Lemma 3.2). The corresponding formulas using (4.1) will be given later.

The above three requirements, and their consequences (Propositions 4.1 and 4.2), are the basis

for the interpretation of the energy function in terms of Fourier phase congruence; this will be the

subject of the next subsection. Note that these results are not limited by the assumption that d ≤ 2;

they remain valid in spaces with a higher number of dimensions.

We will now consider further requirements concerning C and S, which are specific to the two-

dimensional case. Then we will examine properties of C and S in the spatial domain, and additional

constraints to be imposed on them, in particular concerning their response on some types of idealized

line, step, or roof signals.

Assume temporarily that d = 2. Given x ∈ E , we write xn and xt for the coordinates of x in

the directions of the two perpendicular unit vectors n and t, in other words x = xt · t+ xn · n; we
can thus write x = (xt, xn). It is natural to assume that when we detect significant events in the

grey-level profile along the normal direction n, both orientations t and −t in the tangential direction

should be treated symmetrically; we have thus the following:

Requirement 4. When d = 2, C and S are symmetric in the direction of t, that is C(xt, xn) =

C(−xt, xn) and S(xt, xn) = S(−xt, xn) for all xt, xn ∈ IR.

Often one assumes the separability of C and S, each one being the product of a “smoothing” function

on xt and an “edge detection function” on xn, the “smoothing” being the same for C and S:

C(xt, xn) = b(xt) · c(xn) and S(xt, xn) = b(xt) · s(xn). (4.2)

Usually, b is a bell-shaped function, such as the Gaussian (cfr. (3.21)). Here Requirements 1 and 4

combined give: b and c are even-symmetric, s is odd-symmetric, b̂ and ĉ have real non-negative
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values, and (c, s) is a quadrature pair. Requirements 2’ and 3 mean that b, c, and s are continuous

and integrable. By Proposition 4.1, b̂, ĉ, and ŝ are integrable.

Several authors (for example [29,30,31]) have considered that either C and S, or Ĉ and Ŝ, are

polar-separable, being the product of a radial function and an angular one (the angle being measured

w.r.t. n), for example:

Ĉ(xt, xn) = R(ρ) · γ(θ) and S(xt, xn) = R(ρ) · σ(θ),
with xn = ρ cos θ and xt = ρ sin θ.

(4.3)

Here Requirements 1 and 4 combined give: γ is symmetric, has period dividing π, and non-negative

values, σ(θ) = γ(θ) for −π/2 < θ < π/2, and σ(θ) = −γ(θ) for π/2 < θ < 3π/2. Requirements 2’

and 3 mean that R and γ are continuous and integrable. Polar-separable filters have some advantages

for edge detection when the orientation of n is allowed to vary.

We do not require either separability condition (4.2) or (4.3), although it could simplify both

theory and implementation; we leave open the possibility of finding interesting non-separable filters.

Well-known models of the receptive field profiles of simple cells in the monkey visual cortex

(the “edge and bar detectors” of Hubel and Wiesel [4]), indicate that these profiles are similar to those

of Gabor cosine and sine functions [59,60]; in other words the even-symmetric and odd-symmetric

functions C and S look like

exp
[
− x2t
w2

t

− x2n
w2

n

]
· cos[2πνxn] and exp

[
− x2t
w2

t

− x2n
w2

n

]
· sin[2πνxn] (4.4)

respectively, where ν is a fixed frequency, while wn and wt are constants measuring the width of

these functions in the normal and tangential directions; normally wt is significantly larger than wn

[31]. The separability condition (4.2) is verified. Note that the two functions given here are not in

n-quadrature, in particular the even-symmetric function does not satisfy item (i) of Proposition 4.2;

we have already [15] pointed some disadvantages of this fact for edge detection. There have also

been criticisms of this model on experimental grounds [58].

From this quantitative model (4.4) we retain only a few qualitative guidelines concerning the

shape of C and S:

— The zeroes of C and S form a discrete set of lines parallel to t. In particular, the signs of

C(xt, xn) and S(xt, xn) do not depend on xt, but only on xn. We illustrate this in Figure 7.

— For a fixed xn, the xn-sections xt → C(xt, xn) and xt → S(xt, xn) are “bell-shaped”; in other

words |C(xt, xn)| and |S(xt, xn)| are decreasing in |xt|.
A rationale for these guidelines is that C and S should signal edges in the normal direction n, and

not in the tangential direction t, for which they should act only as smoothing filters. We will see later

that the behaviour of C and S in the tangential direction is essential for their orientation selectivity.

Let us introduce some further notation. For an integrable function H : E → C and a unit

vector v, we define the function H/v : IR → IR by

H/v(x) =

∫

R

H(x · v + y ·w) dy, (4.5)

where w is the unit vector orthonormal to v. Note in particular that H/t(xt) =
∫
IRH(xt, xn) dxn

and H/n(xn) =
∫
IRH(xt, xn) dxt. By Fubini’s theorem, H/v is integrable, and for every u ∈ IR,

[H/v]
∧
(u) =

∫

E
H(x · v + y ·w) exp[−2πi ux] dxdy = Ĥ(u · v). (4.6)
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We can now state our next requirement, which will be used in its full expression later on,

when we will consider orientation selectivity. Here we will use it in the restricted case where v is n:

Requirement 5. When d = 2, for every unit vector v, C/v and S/v are continuous.

By Proposition 3.7, C/t and S/t are a.e. equal to zero; by Requirement 5, they are identically zero,

in other words

C/t(xt) =

∫

IR
C(xt, xn) dxn = S/t(xt) =

∫

IR
S(xt, xn) dxn = 0 (4.7)

for all xt ∈ IR. More generally, by (4.6) and Requirement 5, for a unit vector v, the following three

statements are equivalent:

(i) C/v(t) = 0 for all t ∈ IR;

(ii) C/v(t) = 0 for almost all t ∈ IR;

(iii) Ĉ(u · v) = 0 for all u ∈ IR.

We have then the following requirement, complementing the previous one:

Requirement 6. When d = 2, for every unit vector v 6= ±t, C/v is not identically zero, in other

words Ĉ(u · v) 6= 0 for some u ∈ IR.

Thus, if one draws in the Fourier plane a line L through the origin, either L is in the direction of t

and Ĉ vanishes on L, or L is in another direction, and Ĉ does not vanish on L. This agrees with the

above guideline (see also Figure 7) concerning the location of the zeroes of C on lines parallel to t.

We have then the following result, which is an immediate consequence of (4.6):

Proposition 4.3. For d = 2, Requirements 5 and 6 imply that for every unit vector v ∈ E+
n , C/v

and S/v satisfy Requirements 1, 2’, and 3 with d = 1.

We can thus apply Propositions 4.1 and 4.2 with C/v and S/v instead of C and S.

When C and S satisfy the separability condition (4.2), Requirement 6 for v = n implies that∫
IR b 6= 0; we can then without loss of generality assume that

∫
IR b = 1, and then we get C/n = c and

S/n = s. Thus C/n and S/n can be considered as a generalization of c and s in the non-separable

case.

Let us now give describe the response of F = C + i S on idealized one-dimensional line, step,

and roof edges, and the requirements to be demanded for each of them. In the two-dimentional case

(d = 2), each such edge has normal orientation n and tangential orientation t, and forms a purely

one-dimensional feature. This means that it is an image I which is constant along the direction of

t, and forms an edge along the direction of n; it satisfies thus an equation of the form

∀xt, xn ∈ IR, I(xt, xn) = P (xn) (4.8)

for a one-dimensional signal P giving the edge profile, and by Fubini’s theorem we get then

(I ∗ F )(xt, xn) = (P ∗ F/n)(xn) (4.9)

for all xt, xn ∈ IR where (I ∗ F )(xt, xn) is defined. On the other hand, in the one-dimensional case

(d = 1), I reduces to P . Thus by (4.9) and Proposition 4.3 the response on a one-dimensional

profile in the two-dimensional case reduces to the one-dimensional case by replacing F = C + i S
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with F/n = C/n + i S/n, which will satisfy Requirements 1, 2’, and 3. Thus the requirements on the

response of F on a one-dimensional ideal edge will apply to F for d = 1, and to F/n for d = 2.

We will choose several types of one-dimensional edge profiles P having clearly a unique edge

located at the line xn = 0, and we will demand that the corresponding energy function |I ∗ F |2
has a local maximum located precisely at the line xn = 0, but no local maximum for xn 6= 0;

in other words |P ∗ F/n| has a unique local maximum, located at the origin. This will lead to a

series of necessary conditions (one for each ideal edge profile), that we will call “Spatial Constraints”

rather than “Requirements”, because they concern only the existence of local maxima of particular

functions built from F/n, and do not intervene in the phase congruence model; to our knowledge,

these constraints cannot be expressed in terms of Fourier analysis.

We first consider the ideal line. In [13] the one-dimensional profile in the normal direction

across an ideal line was modeled as the Dirac delta distribution δ defined by 〈δ,W 〉 =W (0) for any

Schwartz function W , so that δ ∗W =W ; considering F as a Schwartz function, this gives δ ∗F = F

as the response of the one-dimensional filter F on this ideal line profile. In the two-dimensional case,

an ideal line in the direction of t will be the product of a Dirac delta in xn and the constant 1 in

xt, in other words the tempered distribution λ given by 〈λ,W 〉 =
∫
IRW (xt, 0) dxt for any Schwartz

function W , giving thus (λ∗W )(xt, xn) =W/n(xn); considering F as a Schwartz function, this gives

F/n as the one-dimensional response of the two-dimensional filter F on this ideal line in the plane.

As our edge model locates edges at local maxima of the energy function, we demand that this

one-dimensional energy function |F/n|2 has a local maximum at xn = 0 only. As F/n = C/n + i S/n

is continuous, and (F/n)
∧
is real-valued non-negative (by (4.1)) and integrable (by Proposition 4.1),

Corollary 3.4 implies that |F/n(x)| < F/n(0) for x 6= 0; in other words |F/n| has a global maximum

at the origin. Thus the constraint reduces to the following:

Spatial Constraint 1. |F/n| for d = 2, or |F | for d = 1, has no local maximum outside the origin.

As explained in [13] (but only in the one-dimensional case), this constraint expresses the fact that

the edge detector is idempotent: it sees the same edges in the edge map as in the original image.

See also [15] for further comments on this question.

Let us introduce some further notation; given a continuous and integrable function f : IR → C,
let us write Π[f ] for the primitive of f vanishing at −∞; in other words Π[f ](x) =

∫ x

−∞ f(t) dt. If

ξf : x 7→ xf(x) is also integrable, we define Π2[f ] by

Π2[f ](x) =

∫ x

−∞
(x− t)f(t) dt = x

∫ x

−∞
f(t) dt−

∫ x

−∞
tf(t) dt,

in other words Π2[f ] = ξΠ[f ] − Π[ξf ]. It is easily seen that Π2[f ] = Π[Π[f ]], either because it

vanishes at −∞ and its derivative is Π[f ], or by using Fubini’s theorem:

Π2[f ](x) =

∫ x

−∞
dt f(t)(x− t) =

∫ x

−∞
dt f(t)

∫ x

t

du =

∫∫

t≤u≤x

dtdu f(t)

=

∫ x

−∞
du

∫ u

−∞
dt f(t) =

∫ x

−∞
duΠ[f ](u) = Π[Π[f ]](x).

Now let us define the ideal step. It is an ordinary function I (rather than a tempered dis-

tribution), defined by the one-dimensional profile function P given by P (xn) = a for xn > 0 and

P (xn) = b for xn < 0, where a 6= b are two constants; by Proposition 4.2 (i) and the linearity of
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convolution, we see easily that I ∗ F = P ∗ F/n = (b − a) ·H ∗ F/n, where H is the Heavyside step

function given by H(xn) = 1 for xn ≥ 0 and H(xn) = 0 for xn < 0. Thus the maxima of |P ∗ F/n|
are those of |H ∗ F/n|. Now we have

(H ∗ F/n)(xn) =

∫ xn

−∞
F/n(t) dt = Π[F/n](xn).

We demand that |Π[F/n]| has a unique local maximum located at the origin. Since |Π[F/n]|2 =

(Π[C/n])
2 + (Π[S/n])

2, while C/n and S/n are the derivatives of Π[C/n] and Π[S/n], we make the

slightly stronger requirement that the derivative

2C/nΠ[C/n] + 2S/nΠ[S/n]

of |Π[F/n]|2 is equal to 0 only at the origin:

Spatial Constraint 2. For d = 2 we have

(
C/nΠ[C/n] + S/nΠ[S/n]

)
(xn)

{
< 0 for xn > 0;
= 0 for xn = 0;
> 0 for xn < 0.

For d = 1 we have the same with C and S instead of C/n and S/n.

Let us finally consider ideal roofs and Mach bands. Here we have a profile function P given by

P (xn) = axn for xn > 0 and P (xn) = bxn for xn < 0, where a 6= b are two constants; in order

for the convolution (I ∗ F )(xt, xn) to be defined for any such a, b, it is necessary and sufficient that

the function ξnF : (xt, xn) 7→ xn · F (xt, xn) be integrable (or equivalently, both ξnC and ξnS are

integrable). The following result is obtained by applying successively Propositions 3.8 and 3.7 (with

Fubini’s theorem):

Lemma 4.4. If ξnC and ξnS are integrable, then they are in quadrature, and we have

∫

E
xn · F (xt, xn) dxtdxn =

∫

IR
xn · F/n(xn) dxn = 0.

In particular I ∗ F = P ∗ F/n = 0 for I(xt, xn) = P (xn) = cxn + d, with c and d constants.

Let R be the ramp defined R(xn) = xn for xn > 0 and R(xn) = 0 for xn < 0; then by Lemma 4.4,

for the above profile P given by P (xn) = axn for xn > 0 and P (xn) = bxn for xn < 0, where a and

b are arbitrary constants, we have then P ∗ F/n = (b− a) ·R ∗ F/n, and the maxima of |P ∗ F/n| are
those of |R ∗ F/n|. We have

(R ∗ F/n)(xn) =

∫ xn

−∞
(xn − t)F/n(t) dt = Π2[F/n](xn).

We make then the same requirement on the derivative of

|R ∗ F/n|2 = |Π2[F/n]|2 = (Π2[C/n])
2 + (Π2[S/n])

2

as we did for the derivative of |Π[F/n]|2:
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Spatial Constraint 3. Both ξnC and ξnS are integrable. For d = 2 we have

(
Π[C/n]Π

2[C/n] + Π[S/n]Π
2[S/n]

)
(xn)

{
< 0 for xn > 0;
= 0 for xn = 0;
> 0 for xn < 0.

For d = 1 we have the same with C and S instead of C/n and S/n.

As seen above with Lemma 4.4, the fact that ξnC and ξnS are integrable implies that all ideal ramp

edges and Mach bands give, up to a constant factor, the same energy function |I ∗F |2; in particular

the same edges should be detected, at the same locations. We said in Section 2 that there is not

a complete agreement as to the exact position of the line perceived by human observers in a Mach

band or roof edge [23,21]. This indicates that the edge detectors of the human visual system may

have a non-zero response to the underlying linear ramp, contradicting the conclusion of Lemma 4.4.

Therefore the above third constraint is less important than the two previous ones.

Other spatial constraints could be envisaged, for example that F/n is derivable and |(F/n)
′|

has a unique local maximum at the origin.

One choice of filters C and S for which these three spatial constraints are satisfied is by taking

C/n and S/n equal to the Cauchy functions given in (3.33), in other words F/n(x) = 1/(1−ix)m+1 for

m ≥ 2. Here the primitives of F/n take the form Π[F/n](x) = (1/im) · 1/(1− ix)m and Π2[F/n](x) =

(1/m(1 −m)) · 1/(1 − ix)m−1, so that |(F/n)(x)|2, |Π[F/n](x)|2, and |Π2[F/n](x)|2 are of the form

α/(1 + x2)t (α constant, t ≥ 1), a function which has a local maximum for x = 0 only. The same

holds also for the derivatives of F/n.

4.2. Phase congruence

We take an image I in L1 + L2. As said at the beginning of this section, we define F = C + i S,

J = I ∗ F = (I ∗ C) + i (I ∗ S), and the energy function E = |J |2 = (I ∗ C)2 + (I ∗ S)2. From (4.1),

we write Ĉ = A, and then we have Ŝ = sgnnA. We will see now that at every point p the energy

function E(p) measures the degree to which all phases IΦ(u,p) for frequencies u ∈ E+
n are clustered

around a unique value.

Proposition 4.5. Assume that I is in L1 + L2, in other words I = I1 + I2, where I1 is in L1 and

I2 is in L2. Then Ê = 4 (posn ÎA) ∗ (negn ÎA), an integrable function. Furthermore:

(i) If IΦ is constant on E+
n , then Ê = 4 (posn I

AA) ∗ (negn I
AA), a real-valued non-negative

function, and EΦ is constant zero.

(ii) If for a given p ∈ E we have IΦ(u,p) constant for all u ∈ E+
n , then EΦ(u,p) = 0 for all u ∈ E ,

and E(p) > E(x) for all x ∈ E such that x 6= p.

(iii) For every p ∈ E we have

E(p) = 4

∫∫

E+
n
×E+

n

IA(u)A(u)IA(v)A(v) cos
[
IΦ(u,p)− IΦ(v,p)

]
dudv. (4.10)

Proof. By Proposition 4.2 we have Ĵ = ÎF̂ = 2posnAÎ and Ĵ = 2negnAÎ, so that Ê = 4 (posn ÎA)∗
(negn ÎA) by Lemma 3.13 (i) (see also (3.36)). By Proposition 4.1, Ĵ and Ĵ are integrable, so that

Ê, being the convolution of two integrable functions, is integrable.

Now Ĵ(u) = 0 for u /∈ E+
n , while for u ∈ E+

n we have JA(u) = 2A(u)IA(u) and JΦ(u) = IΦ(u).

By Lemma 3.13 (i), if IΦ is constant on E+
n , we get Ê = JA ∗ (JA)ρ = 4 (posn I

AA) ∗ (negn IAA),
and since Ê is non-negative real, EΦ is constant zero. Therefore (i) follows.
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By definition, the phase of I at point p is the Fourier phase of τ−p(I). Now τ−p(I) leads to the

energy function τ−p(E). Suppose that τ−p(I) has constant Fourier phase. Then by (i), τ−p(E) has

zero Fourier phase. Since τ−p(E) is continuous and the Fourier transform of τ−p(E) is integrable,

Corollary 3.4 implies that τ−p(E)(0) > τ−p(E)(z) for all z 6= 0. Therefore (ii) holds.

Finally (iii) follows from (3.35) and (3.37).

This result, especially (iii), is at the basis of the model. Indeed, at a given point p, the more

all Fourier phases IΦ(u,p) = IΦ(u) + 2πp · u for u ∈ E+
n are clustered together, the more all

cos
[
IΦ(u,p) − IΦ(v,p)

]
appearing in (4.10) are close to 1, and the higher is E(p). Therefore

maxima of E correspond to points of maximal phase congruence for frequencies in the half-plane

E+
n . In particular by (ii), a point where all phases become strictly equal gives an absolute maximum

of E. Thus edges whose normal direction is parallel to n will be localized at points where E has

a maximum in the normal direction. Whether such maxima are purely local or should be over a

certain range will be discussed later.

The next result shows how the value around which all phases at p are clustered is obtained

from the argument of the complex number J(p). This generalizes a similar finding in [14] in the case

of one-dimensional periodic signals. For any x ∈ E , define the angle ϕ(x) (uniquely modulo 2π) by

J(x) = |J(x)| · ei ϕ(x), (4.11)

in other words

(I ∗C)(x) = |J(x)| · cosϕ(x) and (I ∗ S)(x) = |J(x)| · sinϕ(x). (4.12)

This will be the angle around which all phases cluster:

Proposition 4.6. For every p ∈ E ,

|J(p)| · ei ϕ(p) = 2

∫

E+
n

IA(u)A(u) exp
[
i IΦ(u,p)

]
du, (4.13)

∫

E+
n

IA(u)A(u) sin
[
IΦ(u,p)− ϕ(p)

]
du = 0, (4.14)

and

2

∫

E+
n

IA(u)A(u) cos
[
IΦ(u,p)− θ

]
du

{
= |J(p)| θ = ϕ(p);
< |J(p)| for θ 6= ϕ(p).

(4.15)

Furthermore if for all u ∈ E+
n , IΦ(u,p) = θ, where θ is constant, then θ = ϕ(p).

Proof. (4.13) follows from the inverse Fourier transform formula (3.11), combined with (3.14) and

(4.1). Now (4.13) gives

|J(p)| = 2 exp
[
−i ϕ(p)

] ∫

E+
n

IA(u)A(u) exp
[
i IΦ(u,p)

]
du

= 2

∫

E+
n

IA(u)A(u) exp
[
i
(
IΦ(u,p)− ϕ(p)

)]
du.

The imaginary part of this equality gives (4.14), and the real part of it gives the equality in (4.15)

for θ = ϕ(p). Now for θ 6= ϕ(p), we have

|J(p)| > ℜ
(
ei (ϕ(p)−θ)|J(p)|

)
= ℜ

(
e−i θJ(p)

)
= ℜ

(
2e−i θ

∫

E+
n

IA(u)A(u) exp
[
i IΦ(u,p)

]
du

)

=2ℜ
(∫

E+
n

IA(u)A(u) exp
[
i
(
IΦ(u,p)− θ

)]
du

)
= 2

∫

E+
n

IA(u)A(u) cos
[
IΦ(u,p)− θ

]
du,
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giving the inequality in (4.15). Finally if IΦ(u,p) = θ for all u ∈ E+
n , then (4.13) gives

|J(p)| · ei ϕ(p) = 2ei θ
∫

E+
n

IA(u)A(u) du,

from which we deduce that θ = ϕ(p).

Let us comment this result, and the equations within it. Equation (4.13) shows that ei ϕ(p) is

a weighted linear combination (with non-negative weights) of all exp
[
i IΦ(u,p)

]
for u ∈ E+

n ; in

particular when all IΦ(u,p) are equal, they must coincide with ϕ(p). Equation (4.14) is another

way of expressing that ϕ(p) is some form of average between the IΦ(u,p), u ∈ E+
n . Finally (4.15)

implies that

|J(p)| = 2 max
θ∈[0,2π[

∫

E+
n

IA(u)A(u) cos
[
IΦ(u,p)− θ

]
du. (4.16)

Here, the closer are all IΦ(u,p) to θ, the higher are all cos
[
IΦ(u,p) − θ

]
, and the higher is the

resulting integral. This means that ϕ(p) is the angle which is on the average the closest to each

IΦ(u,p), in other words the angle of maximum congruence of the phases IΦ(u,p) at p for u ∈ E+
n .

We call thus ϕ(p) the average phase at p.

We define the phase congruence function of image I as the function
(∫

E I
AA

)−1 · |J |; indeed
(4.16) and the symmetry of IAA give:

|J(p)|∫
E I

AA
= max

θ∈[0,2π[

∫
E+
n

IA(u)A(u) cos
[
IΦ(u,p)− θ

]
du

∫
E+
n

IA(u)A(u) du
. (4.17)

This function measures the degree to which all Fourier phases at p are concentrated around ϕ(p).

Clearly it does not change when I is multiplied by a constant factor, and it takes values in the

interval [−1, 1]. It has value 1 at points p where all IΦ(u,p) for u ∈ E+
n are equal, in other words

I has constant Fourier phase at p. Such a phase congruence function was considered in [14] in the

case of one-dimensional periodic signals.

Note that in all the above equations, to each frequency u corresponds the non-negative weight

IA(u)A(u); thus the value of the average phase ϕ(p), and the existence of a maximum of E at

point p, depend not only on the phases IΦ(u,p), but also on the amplitude spectra of both I and

C. In particular, it is sensitive to the choice of C and S; another pair of filters satisfying the same

requirements could lead to other values for ϕ(p), and to other positions for the maxima of the energy

function E. However this change should in general be moderate, since the profile of our filters and of

their Fourier transforms is highly constrained by the requirements and spatial constraints we imposed

on them.

Let us now see how behave Fourier phases of edge profiles described in Section 2, in particular

whether such edges will be properly detected and localized by the phase congruence model. As

when dealing with the spatial constraints in the preceding subsection, we assume that we have an

image I forming a one-dimensional profile P , namely I(xt, xn) = P (xn) as in (4.8). Given (4.9) and

Proposition 4.3, we can apply then the phase congruence model with P and F/n instead of I and

F , and so we have only to look at the Fourier transform of P . For the sake of simplicity, we assume

that P is integrable.

We consider first an ideal line edge profile. We have the following:
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Proposition 4.7. Let P : IR → IR be integrable, even-symmetric, having non-negative values, and

convex on IR+, in other words such that for 0 ≤ a < b and 0 ≤ λ ≤ 1 we have P
(
λa + (1 − λ)b) ≤

λP (a) + (1− λ)P (b). Then P has constant zero Fourier phase.

Proof. Since P is even-symmetric, we have

P̂ (ν) = 2

∫ ∞

0

P (x) cos[2πνx] dx. (4.18)

Obviously P̂ (0) ≥ 0 since P ≥ 0. For ν > 0, let us define the period L = 1/ν. Take any integer

n ≥ 0. The change of variable y = x− nL (x = nL+ y) gives

∫ nL+L/4

nL

P (x) cos[2πνx] dx =

∫ L/4

0

P (nL+ y) cos[2πνy] dy;

the change of variable y = nL+ L/2− x (x = nL+ L/2− y) gives

∫ nL+L/2

nL+L/4

P (x) cos[2πνx] dx = −
∫ L/4

0

P (nL+ L/2− y) cos[2πνy] dy;

the change of variable y = x− nL− L/2 (x = nL+ L/2 + y) gives

∫ nL+3L/4

nL+L/2

P (x) cos[2πνx] dx = −
∫ L/4

0

P (nL+ L/2 + y) cos[2πνy] dy;

the change of variable y = nL+ L− x (x = nL+ L− y) gives

∫ nL+L

nL+3L/4

P (x) cos[2πνx] dx =

∫ L/4

0

P (nL+ L− y) cos[2πνy] dy.

Adding the four equations, we get thus

∫ nL+L

nL

P (x) cos[2πνx] dx =

∫ L/4

0

[
P (nL+ y) + P (nL+ L− y)− P (nL+ L/2− y)− P (nL+ L/2 + y)

]
cos[2πνy] dy.

(4.19)

Now for every y ∈ [0, L/4], by taking λ = (L−4y)/(2L−4y), we have 0 ≤ λ ≤ 1, 1−λ = L/(2L−4y),

and also

λ(nL+y)+(1−λ)(nL+L−y) = nL+L/2+y and (1−λ)(nL+y)+λ(nL+L−y) = nL+L/2−y;

since nL+ y, nL+ L/2− y, nL+ L/2 + y, nL+ L− y ≥ 0, the convexity condition implies that

λP (nL + y) + (1− λ)P (nL + L− y) ≥ P (nL+ L/2 + y)

and (1 − λ)P (nL+ y) + λP (nL+ L− y) ≥ P (nL+ L/2− y);

adding the two inequations, and subtracting the resulting right member from the left one, we get:

P (nL+ y) + P (nL+ L− y)− P (nL+ L/2− y)− P (nL+ L/2 + y) ≥ 0.

Combining this with (4.19), we get

∫ nL+L

nL

P (x) cos[2πνx] dx ≥ 0.

Since this holds for every integer n ≥ 0, (4.18) gives P̂ (ν) ≥ 0 for all ν > 0, and so P has constant

zero phase.
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If we look at the ideal line edge profile shown in Figure 1, we see that it satisfies the hypothesis

of Proposition 4.7; this result implies then that such a profile has constant zero phase, and so by

Proposition 4.5, the energy function will have an absolute maximum at the edge position. On the

other hand, the ideal bar profile shown next to it in Figure 1 will have a Fourier transform of the

form P̂ (ν) = sin(aν)/(bν), where a and b are positive constants, so that its Fourier phase alternates

between 0 and π. We explained in Section 2 that following Horn’s model [2], we considered the line as

physically more realistic than the bar. We see here that this physical choice has also a mathematical

advantage.

Note that there are other line profiles which do not satisfy the hypothesis of Proposition 4.7,

but which have nevertheless constant zero phase (for example a Gaussian).

Let us now consider ideal step edge profiles. We have the following:

Proposition 4.8. Let P : IR → IR be integrable, odd-symmetric, having decreasing non-negative

values on IR+, in other words such that for 0 ≤ a < b we have P (a) ≥ P (b) ≥ 0. Then P has

constant −π/2 Fourier phase.

Proof. Since P is odd-symmetric, we have

P̂ (ν) = −2i

∫ ∞

0

P (x) sin[2πνx] dx. (4.20)

In particular P̂ (0) = 0. For ν > 0, let us define the period L = 1/ν. Take any integer n ≥ 0. The

change of variable y = x− nL (x = nL+ y) gives

∫ nL+L/2

nL

P (x) sin[2πνx] dx =

∫ L/2

0

P (nL+ y) sin[2πνy] dy;

the change of variable y = x− nL− L/2 (x = nL+ L/2 + y) gives

∫ nL+L

nL+L/2

P (x) sin[2πνx] dx = −
∫ L/2

0

P (nL+ L/2 + y) sin[2πνy] dy.

Adding both equations, we get

∫ nL+L

nL

P (x) sin[2πνx] dx =

∫ L/2

0

[
P (nL+ y)− P (nL+ L/2 + y)

]
sin[2πνy] dy,

and as P (nL+ y) ≥ P (nL+ L/2 + y) for all y ∈ [0, L/2] (since P is decreasing on R+), we get

∫ nL+L

nL

P (x) sin[2πνx] dx ≥ 0.

Since this holds for every integer n ≥ 0, (4.20) gives sgn(P̂ (ν)) = −i for all ν > 0, and so P has

constant −π/2 phase.

It follows that an odd-symmetric sharp step, where the grey-level jumps discontinuously from neg-

ative to positive, and then decreases, will have constant −π/2 phase. This is however not the

necessarily the case with the gradual step shown in Figure 1.

Note that there are other step profiles which do not satisfy the hypothesis of Proposition 4.8,

but which have nevertheless constant −π/2 phase (for example minus the derivative of a Gaussian).
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We consider now compound edges consisting of the linear superposition of a line and a step.

We can assume that the line and step have constant phases 0 and −π/2 (resp. π/2), so that all phases

of the compound edge will be in the same quadrant [−π/2, 0] (resp. [0, π/2]). Thus the congruence

of phases will be relatively high at that edge position, but we might have a higher congruence at a

neighbouring location. Consider for example a middle row in Figure 3, whose grey-level profile, the

addition of a square wave and a triangular wave, is shown in Figure 4. As a periodic function of x,

it can be decomposed as a Fourier series of the form

a+
∞∑

n=1

( α
n2

cos[2πnfx]− β

n
sin[2πnfx]

)
,

where f is the fundamental frequency, a is a constant corresponding to the frequency 0, and the

constants α, β > 0 determine the degree of mixture between the two waves; thus the Fourier coef-

ficient for frequency nf will be α
n2 + iαn , and in particular the corresponding Fourier phase will be

arctan[nβ/α]. Hence the phase increases with frequency, so that for small ε > 0, the phases

PΦ(nf,−ε) = arctan
[nβ
α

]
− 2πnfε

at −ε will generally be more congruent than at the origin. This accords with our visual perception

of Figure 3, where in a middle row the feature appears as a combination of an edge and of a Mach

band extending slightly to the left of the feature’s true position.

Therefore the edge localization given by the phase congruence model can be slightly to the

left (or to the right) of the true edge position, but this is not a serious problem, since this offset is

generally small. As we will see in the next subsection, a much worse problem would arise with usual

methods where one applies the two filters separately, the even-symmetric one in order to detect lines,

and the odd-symmetric one in order to detect steps: the two edges detected by both filters would

not coincide.

4.3. Other quadratic operators, and the relation to classical edge detectors

We will study here all quadratic combinations of I ∗ C and I ∗ S, and give their interpretation in

terms of phases and phase congruence; in particular we will consider traditional edge detectors using

a single filter, and show that they lead to an edge model which is a restricted form of the phase

congruence approach.

Let us define

Γ = I ∗ C and Σ = I ∗ S, (4.21)

so that J = Γ + iΣ. We already have the quadratic operator associating to the image I its energy

E = |J |2 = Γ2 +Σ2. We introduce two new quadratic combinations of Γ and Σ:

X = Γ2 − Σ2 = ℜ(J2) and Y = 2ΓΣ = ℑ(J2), (4.22)

in other words

X + i Y = J2 = (Γ + iΣ)2.

We can also write

X =
J2 + J

2

2
and Y =

J2 − J
2

2i
.
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We have then

X2 + Y 2 = |J2|2 = E2. (4.23)

Note that since Γ and Σ are in n-quadrature, X = Γ⊙Γ and Y = Γ⊙Σ according to the definition of

⊙ by [55] (cfr. Subsection 3.5). We have the following interpretation of X and Y in terms of phases:

Proposition 4.9. Assume that I is in L1 + L2, in other words I = I1 + I2, where I1 is in L1 and

I2 is in L2. Then X and Y are in n-quadrature, and X̂ and Ŷ are integrable. Furthermore:

(i) If for a given p ∈ E we have IΦ(u,p) = φ for all u ∈ E+
n , then XΦ(u,p) = 2φ and Y Φ(u,p) =

2φ− π/2 for all u ∈ E+
n .

(ii) For every p ∈ E we have

X(p) = 4

∫∫

E+
n
×E+

n

IA(u)A(u)IA(v)A(v) cos
[
IΦ(u,p) + IΦ(v,p)

]
dudv;

Y (p) = 4

∫∫

E+
n
×E+

n

IA(u)A(u)IA(v)A(v) sin
[
IΦ(u,p) + IΦ(v,p)

]
dudv.

(4.24)

Proof. We refer to the proof of Proposition 4.5; thus Ĵ = 2posnAÎ, (J
2)

∧
= Ĵ ∗ Ĵ , and the latter

is integrable. As J2 = X + i Y , (J2)
∧
= X̂ + i Ŷ , and so both X̂ and Ŷ are integrable. Since Ĵ

vanished outside E+
n , so does (J2)

∧
= Ĵ ∗ Ĵ , and from Subsection 3.5 it follows that X and Y are in

n-quadrature.

If IΦ(u) = φ for all u ∈ E+
n , then Ĵ = 2eiφposnAI

A and X̂+ i Ŷ = (J2)
∧
= 4e2iφ(posnAI

A)∗
(posnAI

A), from which we get (with (3.25)) that

X̂(u) = 2e2iφ
[
(posnAI

A) ∗ (posnAIA)
]
(u),

for all u ∈ E+
n , so that XΦ(u) = 2φ. As X and Y are in n-quadrature, we get Y Φ(u) = 2φ− π/2. If

IΦ(u,p) = φ for all u ∈ E+
n , then this means that

(
τ−p(I)

)Φ
= φ for all u ∈ E+

n , thus
(
τ−p(X)

)Φ
= 2φ

and
(
τ−p(Y )

)Φ
= 2φ− π/2, that is XΦ(u,p) = 2φ and Y Φ(u,p) = 2φ− π/2, and (i) holds.

By (3.11) and (3.14) we have

J(p) = 2

∫

E+
n

IA(u)A(u) exp
[
i IΦ(u,p)

]
du,

from which we derive that

X + i Y = J2 = 4

∫∫

E+
n
×E+

n

IA(u)A(u)IA(v)A(v) exp
[
i IΦ(u,p)

]
exp

[
i IΦ(v,p)

]
dudv

=4

∫∫

E+
n
×E+

n

IA(u)A(u)IA(v)A(v)
(
cos

[
IΦ(u,p) + IΦ(v,p)

]
+ i sin

[
IΦ(u,p) + IΦ(v,p)

])
dudv.

Taking the real and imaginary part of both sides, (4.24) results.

Note that changing the sign of I does not modify X and Y ; thus the latter two functions are invariant

to a shift of all phases by π.

It follows from (i) that if for a given p ∈ E we have IΦ(u,p) = φ for all u ∈ E+
n , then:

— If φ = 0 or φ = π, then τ̂−p(X) ≥ 0.

— If φ = π/4 or φ = −3π/4, then τ̂−p(Y ) ≥ 0.

— If φ = ±π/2, then τ̂−p(X) ≤ 0.
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— If φ = 3π/4 or φ = −π/4, then τ̂−p(Y ) ≤ 0.

Alternately, using (ii), we see that X(p) and Y (p) measure the extent to which all phases IΦ(u,p)

are clustered around certain multiples of π/4.

(i) As all IΦ(u,p) get close to 0 (resp. π), all IΦ(u,p) + IΦ(v,p) will approach 0, and so the

their cosines and sines will tend to 1 and 0 respectively; thus X(p) will increase towards E(p)

and Y (p) will approach 0.

(ii) As all IΦ(u,p) get close to π/4 (resp. −3π/4), all IΦ(u,p) + IΦ(v,p) will approach π/2, and

so the their cosines and sines will tend to 0 and 1 respectively; thus X(p) will approach 0 and

Y (p) will increase towards E(p).

(iii) As all IΦ(u,p) get close to π/2 (resp. −π/2), all IΦ(u,p) + IΦ(v,p) will approach π, and so

the their cosines and sines will tend to −1 and 0 respectively; thus X(p) will decrease towards

−E(p) and Y (p) will approach 0.

(iv) As all IΦ(u,p) get close to 3π/4 (resp. −π/4), all IΦ(u,p) + IΦ(v,p) will approach −π/2,
and so the their cosines and sines will tend to 0 and −1 respectively; thus X(p) will approach

0 and Y (p) will decrease towards −E(p).

More generally, we can link X(p) and Y (p) with ϕ(p), the average phase at p. Combining (4.11)

and (4.22), we see that

X(p) + i Y (p) = J2(p) = E(p)e2iϕ(p),

in other words

X(p) = E(p) cos[2ϕ(p)] and Y (p) = E(p) sin[2ϕ(p)]. (4.25)

While E(p) measures the extent to which there is a feature at a point p, the additional

information provided by X(p) and Y (p) allows us to give the average phase modulo π at that point,

and so to describe the type of feature encountered, where each type includes both the positive and

negative feature. For example a line edge at p (either dark or light) has X(p) close to E(p) and

Y (p) close to 0, while a step edge at p (either dark to light or light to dark) has X(p) close to −E(p)

and Y (p) close to 0. On the other hand a compound line plus step edge as in Figure 2 (a), having

phases close to −π/4, will give X(p) close to 0 and Y (p) close to −E(p); a left-right symmetry of

this profile would have phases close to π/4, and so Y (p) close to E(p). As we consider lines and

steps as basic edges, we will give more importance to the function X than to its counterpart Y .

Another classification of the type of a feature is given in [14]; it relies on an examination of

maxima, minima, and zero-crossings of Γ and Σ rather than X and Y ; in other words (cfr. (4.12)

and (4.25)), it is based on ϕ(p) rather than on 2ϕ(p).

An interesting fact is that any quadratic combination of Γ = I ∗C and Σ = I ∗S, being of the

form aΓ2 + bΣ2 + cΓΣ, will be a linear combination of E = Γ2 + Σ2, X = Γ2 − Σ2, and Y = 2ΓΣ.

Thus every quadratic combination of Γ and Σ can be interpreted in terms of Fourier phases.

As an illustration, we consider Γ2 and Σ2, which are associated to traditional approaches to

edge detection. Usually one convolves the image I with a single filter G, which can be a derivative

of a Gaussian, a Gabor cosine or sine function, etc.; generally one of the following holds:

(a) With the aim of detecting line edges, G is even-symmetric, and has constant zero Fourier

phase; thus one can consider that G = C.

(b) With the aim of detecting step edges, G is odd-symmetric, and has constant Fourier phase

π/2 (or −π/2); thus one can consider that G = ±S.
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Then edges are localized at local maxima of |I ∗G|, or equivalently of (I ∗G)2. Thus we have only

to consider maxima of Γ2 (in (a)) or Σ2 (in (b)). Since Γ2 = (E +X)/2 and Σ2 = (E −X)/2, (4.10)

and (4.24) give:

Γ2(p) =

2

∫∫

E+
n
×E+

n

IA(u)A(u)IA(v)A(v)
(
cos

[
IΦ(u,p)− IΦ(v,p)

]
+ cos

[
IΦ(u,p) + IΦ(v,p)

])
dudv;

Σ2(p) =

2

∫∫

E+
n
×E+

n

IA(u)A(u)IA(v)A(v)
(
cos

[
IΦ(u,p)− IΦ(v,p)

]
− cos

[
IΦ(u,p) + IΦ(v,p)

])
dudv.

(4.26)

Thus Γ2 and Σ2 measure mixed aspects of phase congruence. Both phase congruence in general and

congruence of phases around 0 (or π) contribute to maxima of Γ2; thus congruence of phases around

an angle θ ∈ [0, π/4] will give a relatively high value fo Γ2. Similarly, both phase congruence in general

and congruence of phases around π/2 (or −π/2) contribute to maxima of Σ2; thus congruence of

phases around an angle θ ∈ [π/4, π/2] will give a relatively high value fo Σ2. In other words the

“phase tuning” of Γ2 and Σ2 is broader than that of X . We have also the following analogue of

item (ii) of Proposition 4.5:

(a) If for a given p ∈ E we have IΦ(u,p) = 0 for all u ∈ E+
n , then ΓΦ(u,p) = (Γ2)

Φ
(u,p) = 0 for

all u ∈ E+
n , and Γ2(p) > Γ2(x) for all x ∈ E such that x 6= p.

(b) If for a given p ∈ E we have IΦ(u,p) = π/2 for all u ∈ E+
n , then ΣΦ(u,p) = (Σ2)

Φ
(u,p) = 0

for all u ∈ E+
n , and Σ2(p) > Σ2(x) for all x ∈ E such that x 6= p.

Thus perfect edges for the single filter line detector using Γ2 are given by constant zero (or π) phase

signals, perfect edges for the single filter step detector using Σ2 are given by constant π/2 (or −π/2)
phase signals, while perfect edges in the phase congruence model are given by all constant phase

signals, whatever the value of that constant phase. In other words the phase congruence model

generalizes previous approaches.

We can also consider a variant of the model where the phase of C in E+
n would be θ instead of

0, with (C, S) still an n-quadrature pair. We define thus Cθ and Sθ by Cθ
A = Sθ

A = A (cfr. (4.1)),

while we have Cθ
Φ(u) = θ and Sθ

Φ(u) = θ − π/2 for u ∈ E+
n . In fact we have

Cθ = cos θC − sin θS,

Sθ = sin θC + cos θS,

in other words

Cθ + i Sθ = eiθF.

Defining Γθ = I ∗ Cθ and Σθ = I ∗ Sθ, then we get eiθJ instead of J , the same energy E (since

Γ2
θ +Σ2

θ = |J |2 = Γ2 +Σ2), and
Xθ = cos 2θX − sin 2θY,

Yθ = sin 2θX + cos 2θY,

in other words

Xθ + i Yθ = e2iθJ2.

Note that such Cθ and Sθ give the same result on an image I as would C and S on an image Iθ

having the same amplitude spectrum as I, but satisfying Iθ
Φ(u) = IΦ(u) − θ for u ∈ E+

n . All the
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above formulas apply if we replace in them IΦ(u) by IΦ(u) − θ and IΦ(u,p) by IΦ(u,p) − θ. This

generalization of C and S allows us to see C and S, and similarly X and Y , as two particular case

of a single class of functions:

C = C0 = Sπ/2, S = S0 = C−π/2, Sθ = Cθ−π/2;

Γ = Γ0 = Σπ/2, Σ = Σ0 = Γ−π/2, Σθ = Γθ−π/2;

X = X0 = Yπ/4, Y = Y0 = X−π/4, Yθ = Xθ−π/4.

Some authors [13,16,17,18,19,29,30,31,33] have considered quadratic edge detectors using two

filters having constant Fourier phases 0 and −π/2 respectively, but having different amplitude spec-

tra, for example: the Gabor cosine and sine functions, the first and second derivatives of a Gaussian,

etc. What kind of edges do they detect? We have the following result:

Proposition 4.10. Let G and Z be two real-valued continuous integrable functions such that

GΦ(u) = 0 and ZΦ(u) = −π/2 for all u ∈ E+
n . Let I be in L1 +L2, and set Q = (I ∗G)2 + (I ∗Z)2.

Suppose that there is some point p ∈ E and some angle θ such that IΦ(u,p) = θ for all u ∈ E+
n .

Then QΦ(u,p) = 0 for all u ∈ E , and Q(p) > Q(x) for all x ∈ E such that x 6= p, provided that one

of the following holds:

(i) GA ≥ ZA and θ = 0 or π.

(ii) GA ≤ ZA and θ = ±π/2.

Proof. As in Proposition 4.2, I ∗ G and I ∗ Z are uniformly continuous and square-integrable,

with (I ∗G)∧ = ÎĜ and (I ∗ Z)∧ = ÎẐ. We have (τ−p(I))
Φ
(u) = θ for all u ∈ E+

n , so that

(τ−p(I ∗G))Φ(u) = θ and (τ−p(I ∗ Z))Φ(u) = θ − π/2. If (i) holds then τ−p(I ∗ G) has constant

phase 0 or π on E , τ−p(I ∗ Z) has constant phase ±π/2 on E+
n , and so it is odd-symmetric; as

(I ∗G)A ≥ (I ∗ Z)A, by Proposition 3.14, τ−p(Q) = τ−p(I ∗ G)2 + τ−p(I ∗ Z)2 has a real positive

Fourier transform. If (ii) holds then τ−p(I ∗ Z) has constant phase 0 or π on E , τ−p(I ∗ G) has

constant phase ±π/2 on E+
n , and so it is odd-symmetric; as (I ∗ Z)A ≥ (I ∗G)A, by Proposition 3.14,

τ−p(Q) = τ−p(I ∗Z)2+τ−p(I ∗G)2 has a real positive Fourier transform. Thus in both cases τ−p(Q)

has constant zero Fourier phase. As Q is continuous, Q̂ is integrable by Proposition 3.5. The same

argument as in the proof of Proposition 4.5 (in fact, an application of Corollary 3.4) shows then that

Q(p) > Q(x) for x 6= p.

For example, if G and Z are the Gabor cosine and sine functions, as GA ≥ ZA, the edge detector will

detect perfect line edges, which have a constant phase 0. For signals having constant phase ±π/2,
the detection of the corresponding edge is not guaranteed.

Another way of using two filters is to build two edge detectors, one for line edges using the even-

symmetric filter, and one for step edges using the odd-symmetric filter, and to apply both detectors

in parallel to the image. We show below that for a compound edge formed by the superposition

of two signals with constant phases 0 and π/2 respectively, this leads to edge duplication: the two

detectors localize edges on both sides of the true edge location:

Proposition 4.11. Let I(xt, xn) = P (xn), where P is neither even-symmetric nor odd-symmetric,

and PΦ(ν) ∈ [0, π/2] for all ν > 0. Consider two integrable functions G and Z, with g = G/n and

z = Z/n, such that

(i) P ∗ g and P ∗ z are continuous;

46



(ii) g is even-symmetric and has constant zero Fourier phase;

(iii) z is odd-symmetric and has constant Fourier phase −π/2;
(iv) P̂ ĝ, P̂ ẑ, ξP̂ ĝ, and ξP̂ ẑ are integrable, in other words∫

IR
(1 + |x|)|P̂ (x)|(|ĝ(x)| + |ẑ(x)|) dx <∞.

Then I ∗G and I ∗ Z are derivable in xn, and

∂[(I ∗G)2]
∂xn

(xt, 0) ·
∂[(I ∗ Z)2]

∂xn
(xt, 0) < 0.

Proof. Clearly (I ∗G)(xt, xn) = (P ∗ g)(xn) and (I ∗Z)(xt, xn) = (P ∗ z)(xn) (see (4.8) and (4.9)).

Since P ∗ g and P ∗ z are continuous and their Fourier transforms P̂ ĝ and P̂ ẑ are integrable, we can

apply Lemma 3.2, and so P ∗ g = (P̂ ĝ)
∨
and P ∗ z = (P̂ ẑ)

∨
.

Let Pe = (P + Pρ)/2 and Po = (P − Pρ)/2 be the even-symmetric and odd-symmetric parts

of P , in other words P = Pe + Po, where Pe is even-symmetric and Po is odd-symmetric. Since P

is neither even-symmetric nor odd-symmetric, Pe and Po are non-zero. As PΦ(ν) ∈ [0, π/2] for all

ν > 0, we deduce that PΦ
e (ν) = 0 and PΦ

o (ν) = π/2 for all ν > 0. Since the Fourier transform is

linear and commutes with the reflection ρ, we have Pe ∗ g = (P̂eĝ)
∨
, Po ∗ g = (P̂oĝ)

∨
, Pe ∗ z = (P̂eẑ)

∨

and Po ∗ z = (P̂oẑ)
∨
. Moreover, as ξP̂ ĝ and ξP̂ ẑ are integrable, the same will be true for ξP̂eĝ,

ξP̂oĝ, ξP̂eẑ, and ξP̂oẑ; by the L1 Fourier derivative formula, Pe ∗ g, Po ∗ g, Pe ∗ z, and Po ∗ z will

be derivable, with (Pe ∗ g)′ = 2πi (ξP̂eĝ)
∨
, (Po ∗ g)′ = 2πi (ξP̂oĝ)

∨
, (Pe ∗ z)′ = 2πi (ξP̂eẑ)

∨
and

(Po ∗ z)′ = 2πi (ξP̂oẑ)
∨
.

As Pe and g are even-symmetric while Po and z are odd-symmetric, we deduce that Po ∗ g,
Pe ∗ z, (Pe ∗ g)′, and (Po ∗ z)′ are odd-symmetric; in particular

(Po ∗ g)(0) = (Pe ∗ z)(0) = (Pe ∗ g)′(0) = (Po ∗ z)′(0) = 0.

We obtain then:

[(P ∗ g)2]′(0) = 2(P ∗ g)(0)(P ∗ g)′(0)
=2

[
(Po ∗ g)(0) + (Pe ∗ g)(0)

][
(Po ∗ g)′(0) + (Pe ∗ g)′(0)

]
= 2(Pe ∗ g)(0)(Po ∗ g)′(0)

and [(P ∗ z)2]′(0) = 2(P ∗ z)(0)(P ∗ z)′(0)
=2

[
(Po ∗ z)(0) + (Pe ∗ z)(0)

][
(Po ∗ z)′(0) + (Pe ∗ z)′(0)

]
= 2(Po ∗ z)(0)(Pe ∗ z)′(0).

(4.27)

Now (3.11) gives:

(Pe ∗ g)(0) =
∫

E
P̂e(ν)ĝ(ν) dν,

(Po ∗ g)′(0) =
∫

E
2πi νP̂o(ν)ĝ(ν) dν,

(Po ∗ z)(0) =
∫

E
P̂o(ν)ẑ(ν) dν,

and (Pe ∗ z)′(0) =
∫

E
2πi νP̂e(ν)ẑ(ν) dν.

(4.28)

Now since PΦ
e (ν) = gΦ(ν) = 0, PΦ

o (ν) = π/2, and zΦ(ν) = −π/2 for all ν > 0, we have thus for all

ν 6= 0: sgn(P̂e(ν)) = sgn(ĝ(ν)) = 1, sgn(P̂o(ν)) = i sgn(ν), and sgn(ẑ(ν)) = −i sgn(ν), so that:

sgn
(
P̂e(ν)ĝ(ν)

)
= 1 · 1 = 1,

sgn
(
2πi νP̂o(ν)ĝ(ν)

)
= i · sgn(ν) · i sgn(ν) · 1 = −1,

sgn
(
P̂o(ν)ẑ(ν)

)
= i sgn(ν) · [−i sgn(ν)] = 1,

and sgn
(
2πi νP̂e(ν)ẑ(ν)

)
= i · sgn(ν) · 1 · [−i sgn(ν)] = 1.
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Combining this with (4.28) gives:

sgn
(
(Pe ∗ g)(0)

)
= 1, sgn

(
(Po ∗ g)′(0)

)
= −1, sgn

(
(Po ∗ z)(0)

)
= 1, and sgn

(
(Pe ∗ z)′(0)

)
= 1.

Hence (4.27) gives

sgn
(
[(P ∗ g)2]′(0) · [(P ∗ z)2]′(0)

)

=sgn
(
(Pe ∗ g)(0)

)
· sgn

(
(Po ∗ g)′(0)

)
· sgn

(
(Po ∗ z)(0)

)
· sgn

(
(Pe ∗ z)′(0)

)

=1 · (−1) · 1 · 1 = −1.

Since (I ∗G)(xt, xn) = (P ∗g)(xn) and (I ∗Z)(xt, xn) = (P ∗z)(xn), we have ∂[(I ∗G)2]/∂xn(xt, 0) =
[(P ∗ g)2]′(0) and ∂[(I ∗ Z)2]/∂xn(xt, 0) = [(P ∗ z)2]′(0). Therefore the result follows.

Thus at the line xn = 0 given by the profile P , one of |I ∗G| and |I ∗ Z| is strictly increasing in xn,

while the other is strictly decreasing in xn. Therefore the maxima of |I ∗G| and |I ∗Z| in the normal

direction n lie on both sides of the true line xn = 0.

4.4. Orientation selectivity

Many previous studies of quadratic models for edge detection, in particular of the phase congruence

model [8,9,13,14,15,16,17,18,22] assumed one-dimensional signals and filters. Here we will consider

two-dimensional signals and the problems associated with the choice of the filter orientation. Up to

now, we have supposed that the filters C and S have a fixed orientation n, and all one-dimensional

edge profiles were chosen to have their normal orientation parallel to it. We will now examine what

happens when the orientation of the filters is allowed to vary.

We take thus d = 2; for every real number θ modulo 2π, let Rθ be the rotation of angle θ on

E :
(xt, xn) 7→ (xn sin θ + xt cos θ, xn cos θ − xt sin θ), (4.29)

and write tθ and nθ for the unit vectors resulting from the rotation Rθ applied to t and n respectively,

in other words
tθ = Rθ(t) = cos θ t− sin θ n,

nθ = Rθ(n) = sin θ t+ cos θ n.
(4.30)

We can also apply Rθ to filters and signals, and so for every function G : E → C we define Gθ = Rθ(G)

by

Gθ

(
Rθ(x)

)
= G(x),

in other words

Gθ(x) = G
(
R−1

θ (x)
)
= G

(
R−θ(x)

)
, (4.31)

that is:

Gθ(xt, xn) = G(−xn sin θ + xt cos θ, xn cos θ + xt sin θ). (4.32)

From (4.5) and (4.31) we obtain for all x ∈ IR:

[Gθ]/n(x) =

∫

R

[Gθ](x·n+y ·t) dy =
∫

R

G
(
R−θ(x·n+y ·t)

)
dy =

∫

R

G(x·n−θ+y ·t−θ) dy = G/n−θ
(x),

so that

[Gθ]/n = G/n−θ
. (4.33)

48



We know that the rotation Rθ commutes with all algebraic operations on functions, that it distributes

the convolution, namely

(G ∗H)θ = Gθ ∗Hθ,

and that it commutes with the Fourier transform, in other words

(Gθ)
∧
= (Ĝ)θ;

we write thus Ĝθ for the Fourier transform of G rotated by θ. Note that (sgnn)θ = sgnnθ
, so that

given C and S in n-quadrature, Cθ and Sθ will be in nθ-quadrature.

We will now consider the behaviour of the rotated filters Cθ, Sθ, and Fθ = Cθ + i Sθ on an

image I forming a one-dimensional profile P in the normal direction n, that is I(xt, xn) = P (xn)

(cfr. (4.8)); by (4.9) and (4.33) we have

(I ∗ Fθ)(xt, xn) = (P ∗ [Fθ]/n)(xn) = (P ∗ F/n−θ
)(xn). (4.34)

Now (4.6) together with (4.30, 4.31, 4.32) gives for every ν ∈ IR:

(
[Fθ]/n

)∧
(ν) =

(
F/n−θ

)∧
(ν) = F̂θ(ν · n) = F̂ (ν · n−θ) = F̂ (−ν sin θ, ν cos θ). (4.35)

The same can be written with C or S instead of F . We obtain thus the following result:

Proposition 4.12. Let d = 2 and I be given by I(xt, xn) = P (xn) for a one-dimensional profile P .

Then for |θ| < π/2, the phase spectrum of the one-dimensional profile of I ∗Fθ (resp., I ∗Cθ, I ∗Sθ)

does not depend on θ. In particular if P is in L1+L2 and has local phase PΦ(ν, p) constant at point

p for all ν > 0, then the energy function will have an absolute maximum at the line xn = p.

Proof. Indeed n−θ ∈ E+
n for |θ| < π/2, so that by Proposition 4.3, C/n−θ

, S/n−θ
, and F/n−θ

satisfy

Requirements 1, 2’, and 3 for d = 1. From Proposition 4.2 and (4.35) we deduce that the phases

of P ∗ C/n−θ
, P ∗ S/n−θ

, and P ∗ F/n−θ
do not depend on θ. By Proposition 4.5, the constancy of

the local phase PΦ(ν, p) at p for ν > 0 leads to an absolute maximum of |P ∗ F/n−θ
|2 at p, in other

words by (4.34), the energy function |I ∗ Fθ|2 has an absolute maximum at the line xn = p.

For |θ| > π/2, we have θ = η ± π with |η| < π/2, and the fact that C is even-symmetric and S is

odd-symmetric implies that

Cη±π = Cη and Sη±π = −Sη.

Thus, since the energy function takes the sum of squares of convolutions by Cθ and Sθ, Proposi-

tion 4.12 remains essentially true for |θ| > π/2. Note that for θ = ±π/2 we have F/n−θ
= F/±t,

which is identically zero by (4.7).

The concrete meaning of this result is that a one-dimensional feature can be correctly localized

even when the normal orientation of the filters does not match that of the feature, provided that they

are not perpendicular. In practice, as θ, the angle between the normal orientations of the feature

and of the filters, tends to ±π/2, the amplitude of F/n−θ
will diminish, and quantization errors will

prevent the localization of maxima of the energy function.

After the localization of the edge, the next problem is the determination of its orientation.

Traditional approaches based on the convolution of the image with a single mask rotated into several
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orientations, select at every point the orientation for which the absolute value of the convolution is

the highest. The early rationale behind this procedure was that the grey-level profile of the mask was

chosen to represent a local template of an ideal (step or line) edge, and edge detection could thus be

achieved as a form of template matching: the higher the correlation with a template with a certain

orientation, the higher the likelihood of having there such an edge template with that orientation.

Since we are using convolution kernels specified by analytic properties, in particular in the

Fourier domain, and do not consider them as templates for an edge profile, the approach derived from

template matching is not guaranteed to work properly. We will show it with three simple examples

involving some peculiar filters applied to a two-dimensional Heaviside step edge given by

I(xt, xn) = P (xn) =

{
0 if xn < 0,
1 if xn > 0,

(4.36)

as illustrated in Figure 8.

Let us consider first a filter F whose support is restricted to the normal direction, having no

extent in the tangential direction. The filter can be considered as a generalized function (xt, xn) 7→
δ(xt) · f(xn), where δ is the Dirac impulse and f is an integrable function IR → IR. Take an angle

θ such that |θ| < π/2; the rotated filter Fθ takes then the form Fθ(xtθ + ynθ) = δ(x) · f(y), so that

the convolution I ∗ Fθ gives at every point p = (pt, pn):

(I ∗ Fθ)(p) =

∫

IR2
I(p− xtθ − ynθ)Fθ(xtθ + ynθ) dxdy =

∫

IR2
I(p− xtθ − ynθ)δ(x)f(y) dxdy

=

∫

IR
I(p− ynθ)f(y) dy =

∫

IR
I(pt − y sin θ, pn − y cos θ)f(y) dy =

∫

IR
P (pn − y cos θ)f(y) dy.

Since the profile P is given by the Heaviside step function (4.36), we have P (pn − y cos θ) = 1 for

y < pn/ cos θ, and 0 for y > pn/ cos θ, so that we get

(I ∗ Fθ)(pt, pn) =

∫ pn/ cos θ

−∞
f(y) dy. (4.37)

Geometrically speaking, this convolution by Fθ is constructed as follows: at every point p = (pt, pn),

draw a line making an angle θ with the normal direction; we integrate on this line the reflected

function fρ multipled by the edge profile, which means in fact that we integrate fρ on the portion

of this line lying on the right side of the Heaviside step edge. This is illustrated in Figure 8.

There is no reason for having a maximum of the absolute value of (4.37) for θ = 0. Indeed

for pn = 0 the value of (4.37) does not depend on θ. Furthermore, we show below how for pn 6= 0

it is possible to have for the absolute value of (4.37) an absolute maximum at θ 6= 0, but no local

maximum at θ = 0. We illustrate in Figure 8 two possible profiles for the function f , one even-

symmetric and the other odd-symmetric. We make the simple assumption that the zero-crossings of

f are −a, a in the even-symmetric case, and −a, 0, a in the odd-symmetric case; here f(x) ≥ 0 for

−a ≤ x ≤ 0 and f(x) < 0 for x < −a. Let

α =

∫ 0

−a

f(y) dy and β = −
∫ −a

−∞
f(y) dy,

so that α, β > 0. Take pn such that −a < pn < 0. As |θ| decreases from π/2 to arccos[pn/(−a)],
pn/ cos θ increases from −∞ to −a, so that (4.37) decreases from 0 to −β; as |θ| decreases further
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from arccos[pn/(−a)] to 0, pn/ cos θ increases from −a to pn, so that (4.37) increases to −β+
∫ pn

−a
f ,

remaining smaller than α − β. This means thus that the
∣∣(I ∗ Fθ)(pt, pn)

∣∣ has a maximum at

θ = ± arccos[pn/(−a)] and an extremum at θ = 0; this extremum is a minimum if
∫ pn

−a
f < β, in

particular if α < β, but it is a maximum otherwise; it will be an absolute maximum (i.e., greater

than the maximum at θ = ± arccos[pn/(−a)]) if
∫ pn

−a
f > 2β, which requires that α > 2β.

Therefore it is possible for
∣∣(I ∗ Fθ)(pt, pn)

∣∣, as a function of θ to have an absolute minimum

at θ = 0 for some pn 6= 0, while for pn = 0 it will be constant. Note that (4.37) as a function of pn

and θ is discontinuous at θ = ±π/2; as θ increases from 0 to π/2, its evolution w.r.t. pn becomes

faster: the energy profile around pn = 0 becomes steeper. We have thus two reasons for requiring

the filter to have some width in the tangential direction: continuity of the convolution w.r.t. position

and orientation, and orientation selectivity, in other words the possibility to determine the edge

orientation as the one giving the highest result for the energy function. In practice, if the filter has

a wide support in the normal direction but a narrow one in the tangential direction, orientation

selectivity will not be achieved, and for θ 6= 0 the edge in the filtered image will be sharper than for

θ = 0. In fact, it has been verified experimentally [31] that orientation selectivity increases with the

ratio of tangential width over normal width, and that it is even necessary to take the width in the

tangential direction equal to three times the width in the normal direction.

Let us now consider a second example with a step edge detector using a separable odd-

symmetric filter defined as the product of a Gabor sine function in the normal direction and a Gabor

cosine function in the tangential direction:

F (xt, xn) = Gσ(xt) cos(2παxt) ·Gσ(xn) sin(2παxn), (4.38)

where Gσ is the Gaussian (cfr. (3.21)). We show in Figure 9 the sign and zero-crossings of F . Since

the Gaussian has a Gaussian-type Fourier transform, it is easy to check that F has constant phase

−π/2 on E+
n , in other words that sgn(F̂ (ut, un)) = −isgn(un). Using (4.32) and the rotational

symmetry of the two-dimensional Gaussian Gσ(xt)Gσ(xn), we deduce that

Fπ/4(xt, xn) = Gσ(xt)Gσ(xn) cos
(
2πα

[
−xn sin

π

4
+ xt cos

π

4

])
sin

(
2πα

[
xn cos

π

4
+ xt sin

π

4

])

= Gσ(xt)Gσ(xn) cos
(
2πα[−xn + xt]/

√
2
)
sin

(
2πα[xn + xt]/

√
2
)

=
1

2
Gσ(xt)Gσ(xn)

(
sin(2πα

√
2xt) + sin(2πα

√
2xn)

)
.

(4.39)

Since Ĝσ(t) = exp[−2(πσt)2] (cfr. formula 7.4.6 of [61]), we obtain that

F/n(xn) =

∫

IR
F (xt, xn) dxt = Gσ(xn) sin(2παxn)

∫

IR
Gσ(xt) cos(2παxt) dxt

= Ĝσ(α)Gσ(xn) sin(2παxn) = exp[−2(πσα)2]Gσ(xn) sin(2παxn)

(4.40)

and

[Fπ/4]/n(xn) =

∫

IR
Fπ/4(xt, xn) dxt

=
1

2
Gσ(xn)

(∫

IR
Gσ(xt) sin(2πα

√
2xt) dxt + sin(2πα

√
2xn)

∫

IR
Gσ(xt) dxt

)

=
1

2
Gσ(xn)

(
0 + sin(2πα

√
2xn)Ĝσ(0)

)
=

1

2
Gσ(xn) sin(2πα

√
2xn).

(4.41)
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Now (4.34) and (4.36) give

(I ∗ F )(xt, xn) = (P ∗ F/n)(xn) =

∫ xn

−∞
F/n(t) dt

and similarly

(I ∗ [Fπ/4])(xt, xn) = (P ∗ [Fπ/4]/n)(xn) =

∫ xn

−∞
[Fπ/4]/n(t) dt.

From formula 7.4.7 of [61] we have

∫ 0

−∞
Gσ(t) sin 2πft dt = − 1√

π
exp[−2(σπf)2]

∫ √
2σπf

0

es
2

ds,

so that (4.40) and (4.41) give

(I ∗ F )(xt, 0) =
∫ 0

−∞
F/n(t) dt =

∫ 0

−∞
exp[−2(πσα)2]Gσ(t) sin(2παt) dt

= − 1√
π
exp[−(2πσα)2]

∫ √
2σπα

0

es
2

ds, and

(I ∗ [Fπ/4])(xt, 0) =

∫ 0

−∞
[Fπ/4]/n(t) dt =

∫ 0

−∞

1

2
Gσ(t) sin(2πα

√
2t) dt

= − 1

2
√
π
exp[−(2πσα)2]

∫ 2σπα

0

es
2

ds.

(4.42)

From the properties of Dawson’s integral (see formulas 7.1.17 and 7.1.18 and Table 7.5 of [61]), the

function
∫ x

0 e
s2 ds tends to ex

2

/(2x) for x→ +∞. Thus for σα large enough we have

1

2

∫ 2σπα

0

es
2

ds ≈ exp[4(σπα)2]

8σπα
≫ exp[2(σπα)2]

2
√
2σπα

≈
∫ √

2σπα

0

es
2

ds,

so that (4.42) gives ∣∣(I ∗ [Fπ/4])(xt, 0)
∣∣ ≫

∣∣(I ∗ F )(xt, 0)
∣∣.

This means in practice that the larger we take σ and α, the more will show the tendency of the

filter to detect edges making a an angle of 45 degrees with the normal orientation. If we refer to

Figure 9, as σ and α increase, among the square regions enclosed by the zero-crossings around the

origin, the number of those in which the absolute value of F is non-negligible will increase, so that

the grey-level profile of F becomes dominated by an alternation of diagonal bands made from square

regions of respectively positive and negative sign.

One could raise an objection against the latter example, that the Gabor cosine function is

not a smoothing function like the Gaussian, but rather a feature detector; thus the filter being the

product of feature detectors in the normal and tangential directions, should in fact detect features

in the intermediate diagonal directions.

We now give a third example to show that even with a standard edge detector formed as the

product of of a Gaussian in the tangential direction and a Gaussian derivative in the normal direction

(cfr. [7]), the detection of the edge orientation is sometimes possible only in a close neighbourhood

of the edge position. Let the filter F be defined by

F (xt, xn) = xnGν(xn) ·Gτ (xt), where τ > ν. (4.43)
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Here Gτ and Gν are Gaussians of respective standard deviations τ and ν (cfr. (3.21)), and we have

assumed (as in [31]) that the support of the filter is wider in the tangential direction than in the

normal one. Take an angle θ with |θ| < π/2. Let us define β, γ, δ by

β2 = τ2 sin2 θ + ν2 cos2 θ, with β > 0,

γ = (τ2 − ν2) sin θ cos θ,

δ2 = τ2 cos2 θ + ν2 sin2 θ.

(4.44)

It is easily verified that δ2β2 = γ2 + τ2ν2. A straightforward computation gives then

(−xn sin θ + xt cos θ)
2

τ2
+

(xn cos θ + xt sin θ)
2

ν2
=
xtβ

2 + 2xnxtγ + x2nδ
2

τ2ν2

=
xtβ

2 + 2xnxtγ + x2n(γ
2 + τ2ν2)β−2

τ2ν2
=

(
xt + xnγβ

−2
)2
β2

τ2ν2
+
x2n
β2
,

so that we obtain

Gτ (−xn sin θ + xt cos θ)Gν(xn cos θ + xt sin θ)

=
1

τ
√
2π

exp
[
− (−xn sin θ + xt cos θ)

2

2τ2

]
· 1

ν
√
2π

exp
[
− (xn cos θ + xt sin θ)

2

2ν2

]

=
1

2πτν
exp

[
−1

2

((−xn sin θ + xt cos θ)
2

τ2
+

(xn cos θ + xt sin θ)
2

ν2

)]

=
1

2πτν
exp

[
−1

2

((xt + xnγβ
−2)2β2

τ2ν2
+
x2n
β2

)]

=
β

τν
√
2π

exp
[
−(xt + xnγβ

−2)2
β2

2τ2ν2

]
· 1

β
√
2π

exp
[
− x2n
2β2

]
= Gτν/β(xt + xnγβ

−2)Gβ(xn).

Therefore we have by (4.32):

Fθ(xt, xn) = (xn cos θ + xt sin θ)Gτ (−xn sin θ + xt cos θ)Gν(xn cos θ + xt sin θ)

= (xn cos θ + xt sin θ)Gτν/β(xt + xnγβ
−2)Gβ(xn).

(4.45)

It is easily verified from (4.44) that β2 cos θ − γ sin θ = ν2 cos θ, so that

xn cos θ + xt sin θ = xn cos θ − xnγβ
−2 sin θ + xt sin θ + xnγβ

−2 sin θ

= xnβ
−2(β2 cos θ − γ sin θ) + (xt + xnγβ

−2) sin θ

= xnβ
−2ν2 cos θ + sin θ(xt + xnγβ

−2).

Thus (4.45) gives

Fθ(xt, xn) = xnβ
−2ν2 cos θ Gβ(xn) ·Gτν/β(xt + xnγβ

−2)

+Gβ(xn) sin θ · (xt + xnγβ
−2)Gτν/β(xt + xnγβ

−2).

Then we obtain

[Fθ]/n(xn) =

∫

IR
Fθ(xt, xn) dxt

=xnβ
−2ν2 cos θ Gβ(xn)

∫

IR
Gτν/β(xt + xnγβ

−2) dxt

+Gβ(xn) sin θ

∫

IR
(xt + xnγβ

−2)Gτν/β(xt + xnγβ
−2) dxt

=xnβ
−2ν2 cos θGβ(xn) · 1 +Gβ(xn) sin θ · 0 =

ν2

β2
xn cos θ Gβ(xn).

(4.46)

53



From (4.34) and (4.36) we get

(I ∗ Fθ)(xt, p) = (P ∗ [Fθ]/n)(p) =

∫ p

−∞
[Fθ]/n(xn) dxn

=
ν2

β2
cos θ

∫ p

−∞
xnGβ(xn) dxn =

ν2

β2
cos θ · (−β2)Gβ(p)

= −ν
2 cos θ

β
√
2π

exp[−p2/2β2].

(4.47)

The energy function at point (xt, p) for the filter Fθ is the square of this expression, which is a

function of p and θ:

G(p, θ) =
ν4 cos2 θ

2πβ2
exp[−p2/β2],

where β =
(
τ2 sin2 θ + ν2 cos2 θ

)1/2
(see (4.44)). Note that G is symmetric in both p and θ. Let

β′ = dβ/dθ; then we have

ββ′ =
1

2

d

dθ
(β2) =

1

2

d

dθ
(τ2 sin2 θ + ν2 cos2 θ) = (τ2 − ν2) cos2 θ.

This gives thus

∂

∂θ
G(p, θ) =

ν4 cos θ

πβ6
exp[−p2/β2]

(
−β4 sin θ − β3β′ cos θ + p2ββ′ cos θ

)

=
ν4 cos θ sin θ

πβ6
exp[−p2/β2]

(
−τ4 + (τ2 + p2)(τ2 − ν2) cos2 θ

)
,

whose sign (for |θ| < π/2) is given by

sin θ
(
−τ4 + (τ2 + p2)(τ2 − ν2) cos2 θ

)
. (4.48)

This expression is antisymmetric in θ, while it is symmetric in p and increasing with |p|. Let us fix

|p|; we have then two cases:

(a) |p| ≤ τν/
√
τ2 − ν2.

Then (τ2 + p2)(τ2 − ν2) ≤ τ4, and so for every θ 6= 0 we have

−τ4 + (τ2 + p2)(τ2 − ν2) cos2 θ < −τ4 + (τ2 + p2)(τ2 − ν2) ≤ 0,

so that G(p, θ) increases for θ < 0, reaches a maximum at θ = 0, and then decreases for θ > 0.

(b) |p| > τν/
√
τ2 − ν2.

Then (τ2 + p2)(τ2 − ν2) > τ4. Let

θp = arccos
( τ2√

(τ2 + p2)(τ2 − ν2)

)
. (4.49)

We have 0 < θp < π/2, and θp increases from 0 to π/2 as |p| increases from τν/
√
τ2 − ν2 to

∞. Then (4.48) has the sign of θ for 0 < |θ| < θp, vanishes for θ = 0 or ±θp, and has the sign

of −θ for θp < |θ| < π/2. Hence G(p, θ) increases for −π/2 < θ < −θp, reaches a maximum

at θ = −θp, decreases for −θp < θ < 0, reaches a local minimum at θ = 0, increases again for

0 < θ < θp, reaches again a maximum at θ = θp, and finally decreases for θp < θ < π/2.
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This shows that the correct orientation of the step edge is obtained only at points whose distance to

the edge position does not exceed τν/
√
τ2 − ν2. We illustrate this fact in Figure 10.

Note that the whole argument relies on the fact that τ > ν. Thus, following [31] and the

result of the first example, we took a wider extent of the filter in the tangential direction in order to

improve orientation selectivity, but we remark that precisely this wider extent restricts orientation

selectivity to the neighbourhood of the edge position. We will thus seek criteria in order to guarantee

correct orientation selection at the edge position only, knowing from Proposition 4.12 that the edge

position can be found even when its orientation is not known. We introduce the following:

Requirement 7. When d = 2, for every ν > 0, Ĉ(νnθ) as a function of θ is strictly increasing for

−π/2 ≤ θ < 0, has a maximum at θ = 0, and is strictly decreasing for 0 < θ ≤ π/2.

Note that by Requirement 4 (that C and S are symmetric in xt), we have Ĉ(νnθ) = Ĉ(νn−θ), so

that the statement of Requirement 7 concerning −π/2 ≤ θ < 0 is redundant; moreover, we know

that Ĉ(νnπ/2) = Ĉ(νt) = 0, so that we can also omit the case where θ = π/2. We obtain then the

following result:

Proposition 4.13. Let d = 2 and I be given by I(xt, xn) = P (xn) for a one-dimensional profile

P in L1 + L2. Let p ∈ IR with local phase PΦ(ν, p) constant for all ν > 0. Then for xt ∈ IR and

|θ| ≤ π/2, |I ∗ Fθ|2(xt, p), the energy function at (xt, p), is strictly increasing in θ for −π/2 ≤ θ < 0,

has a maximum at θ = 0, and is and strictly decreasing in θ for 0 < θ ≤ π/2.

Proof. By Proposition 4.3, C/n−θ
, S/n−θ

, and F/n−θ
satisfy Requirements 1, 2’, and 3 for d = 1. By

(4.34) and (4.35), the one-dimensional profile of I∗Fθ is given by P ∗[Fθ]/n, with the Fourier transform

of [Fθ]/n being given by F̂ (νn−θ). By Proposition 4.5, in particular (4.10), the corresponding energy

function at point (xt, p) is

4

∫∫

IR+×IR+
PA(u)[Fθ]/n

A
(u)PA(v)[Fθ ]/n

A
(v) cos

[
PΦ(u, p)− PΦ(v, p)

]
dudv

=4

∫∫

IR+×IR+
PA(u)A(un−θ)P

A(v)A(vn−θ) dudv,

where A = CA (see (4.1)). The integrand is positive, strictly increasing in θ for −π/2 ≤ θ < 0, has

a maximum at θ = 0, and is strictly decreasing in θ for 0 < θ ≤ π/2.

In [Fousse] Requirement 7 was studied in the case where the filter F is separable, in other words

C(xt, xn) = b(xt)·c(xn) and S(xt, xn) = b(xt)·s(xn), where b, c, and s are continuous and integrable,

b and c are even-symmetric, s is odd-symmetric, b̂ and ĉ have real non-negative values, and (c, s) is

a quadrature pair (see (4.2)). It was shown that this led to very strong conditions on b̂ and ĉ. We

have the following (with IR+ being the set of reals x ≥ 0):

Lemma 4.14. Let β and γ be derivable functions IR+ → IR+; assume that γ is not monotonously

increasing. Then the following three statements are equivalent:

(i) For every u > 0, γ(u cos θ)β(u sin θ) is monotonously decreasing on θ ∈ [0, π/2].

(ii) For every x, y > 0 such that γ(x) > 0 and β(y) > 0, we have:

β′(y)

yβ(y)
≤ γ′(x)

xγ(x)
.

(iii) β is monotonously decreasing, and there is some K > 0 such that
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(a) For every y > 0 having β(y) > 0,

|β′(y)|
yβ(y)

≥ K.

(b) For every x > 0 having γ(x) > 0 and γ′(x) < 0,

|γ′(x)|
xγ(x)

≤ K.

Proof. Note that for every x > 0, if γ(x) = 0, as γ has only non-negative values, γ has a minimum

at x and so γ′(x) = 0. Similarly for every y > 0, if β(y) = 0, then β′(y) = 0.

We show first the equivalence between (i) and (ii). By the finite increment theorem, (i) is

equivalent to:

∀u > 0, ∀θ, 0 < θ < π/2,
∂

∂θ

(
γ(u cos θ)β(u sin θ)

)
≤ 0.

Now

∂

∂θ

(
γ(u cos θ)β(u sin θ)

)
= −u sin θγ′(u cos θ)β(u sin θ) + u cos θγ(u cos θ)β′(u sin θ),

so that the condition becomes

u cos θγ(u cos θ)β′(u sin θ) ≤ u sin θγ′(u cos θ)β(u sin θ) for u > 0 and 0 < θ < π/2.

Now the set of pairs (u cos θ, u sin θ) for u > 0 and 0 < θ < π/2 coincides with the set of pairs (x, y)

for x, y > 0. Thus (i) is equivalent to

∀x, y > 0, xγ(x)β′(y) ≤ yγ′(x)β(y). (4.50)

Two special cases arise:

— γ(x) = 0, so that γ′(x) = 0.

— β(y) = 0, so that β′(y) = 0.

In both cases the inequality of (4.50) is trivially verified as 0 ≤ 0. We have thus only to consider

the remaining case where γ(x), β(y) > 0, and dividing each member of the inequality xγ(x)β′(y) ≤
yγ′(x)β(y) by the positive factor xγ(x)yβ(y), (4.50) becomes (ii).

We show next that (iii) implies (ii). If (iii) is verified, as β is decreasing, for every y > 0 we

have β′(y) ≤ 0; if β(y) > 0, then (a) gives

− β′(y)

yβ(y)
=

|β′(y)|
yβ(y)

≥ K.

Taking x > 0 with γ(x) > 0, either γ′(x) ≥ 0 and so

− γ′(x)

xγ(x)
≤ 0 ≤ K,

or γ′(x) < 0 and (b) gives

− γ′(x)

xγ(x)
=

|γ′(x)|
xγ(x)

≤ K.
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Combining both inequalities, we get

− β′(y)

yβ(y)
≥ K ≥ − γ′(x)

xγ(x)
,

which gives (ii) by a change of sign.

We show finally that (ii) implies (iii). Since γ is not monotonously increasing, there exist a, b

with 0 ≤ a < b and γ(a) > γ(b). By the finite increment theorem, there is thus some c > 0 (with

a < c < b) such that γ′(c) < 0; we must then have γ(c) > 0. By (ii), for every y > 0 such that

β(y) > 0, we have:
β′(y)

yβ(y)
≤ γ′(c)

cγ(c)
< 0,

in other words β′(y) < 0; on the other hand for β(y) = 0 we have β′(y) = 0. Thus β is monotonously

decreasing. Let

K = sup
{
− γ′(z)

zγ(z)
| z > 0 and γ(z) > 0

}
.

By (ii) we have for every y > 0 with β(y) > 0:

−|β′(y)|
yβ(y)

=
β′(y)

yβ(y)
≤ inf

{ γ′(z)
zγ(z)

| z > 0 and γ(z) > 0
}
= −K,

so that (a) holds. On the other hand for x > 0 with γ(x) > 0 and γ′(x) < 0 we have trivially

−|γ′(x)|
xγ(x)

=
γ′(x)

xγ(x)
≥ inf

{ γ′(z)
zγ(z)

| z > 0 and γ(z) > 0
}
= −K,

so that (b) holds.

Now, by the symmetry of b and c, Requirement 7 reduces to the fact that for u > 0, Ĉ(unθ) =

b̂(u sin θ)ĉ(u cos θ) is decreasing in θ for 0 ≤ θ ≤ π/2. Taking β and γ the restriction of b̂ and ĉ to

non-negative frequencies, we have thus precisely condition (i); under the relatively weak assumptions

that β and γ are derivable and that γ is not monotonously increasing, it is equivalent to (ii) and to

(iii). These conditions were found by Fousse in [62], where the equivalence between (i) and (ii) and

the sufficiency of (iii) were shown. If we return to our above examples where orientation selectivity

fails, in the first one we had b = δ, the Dirac impulse, whose Fourier transform is constant 1, so that

condition (ii) gives γ′(x) ≥ 0 whenever γ(x) > 0, in other words γ = ĉ is increasing on IR+, which

contradicts our assumption (indeed, this is impossible for c in L1 + L2). On the other hand in the

second example, b was a Gabor cosine function, whose Fourier transform is not decreasing on IR+,

contradiciting condition (iii).

In the case of filters with polar-separable Fourier transforms (see (4.3)), Requirement 7 is more

easily expressed in terms of the angular function.

We mentioned above the observation by Perona that orientation selectivity is improved when

the spatial extent of the edge detection filter is greater in the tangential direction than in the normal

one. Requirement 7 provides a rationale for it. Indeed, the wider the spatial extent of F in the

tangential direction, the narrower the spatial extent of its Fourier transform F̂ in that direction, and

so the lower will be F̂ (u cos θ, u sin θ) for u > 0 and θ 6= 0.

The traditional method for localizing edges with an edge-detecting filter F consists in two

steps:
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(1◦) First compute at every point p the angle θ for which the energy function |(I ∗ Fθ)(p)|2 is the

greatest; write it θ(p).

(2◦) Second select as edge position the set all points p such that |(I ∗Fθ(p))(p)|2 ≥ |(I ∗Fθ(q))(q)|2
for all points q in a neighbourhood of p in the normal direction.

The neighbourhood in (2◦) can be purely local, or have some extent depending on the width of the

filter F (we will return to this question in the next subsection). This method, although introduced

in an empirical framework based on template matching, is justified in the phase congruence model

by Propositions 4.12 and 4.13. Indeed, assume as above an image I forming a one-dimensional edge

profile P in the normal direction: I(xt, xn) = P (xn). Then we know that the phase of |(I ∗ Fθ(p))|2
does not depend on θ(p) (provided that θ(p) is not oriented in the edge tangential direction), so

that if p is not on the edge, we will have

|(I ∗ Fθ(p))(p)|2 < |(I ∗ Fθ(p))(q)|2 ≤ |(I ∗ Fθ(q))(q)|2

for some neighbouring point q in the normal direction; on the other hand if p is on the edge, then

we know that θ(p) will be along the normal direction of the edge. Thus (2◦) will eliminate points

which do not lie on the edge, while (1◦) will give the edge orientation on edge points.

Of courses, this argument based on an ideal one-dimensional edge is justified for straight

edges, and does not hold when we have strongly curved edges (in other words edges whose radius of

curvature is comparable to the spatial extent of the filter).

4.5. Authentication of edges, and scale-space behaviour of the energy function

A priori, any local maximum of the energy function in the normal direction could be selected as

an edge point. But this could produce spurious edges, for example a point where the local phases

of the image are only slightly less discordant than in its neighbourhood. Moreover, as we saw in

Subsection 4.1 when we introduced three spatial constraints on the filters, it cannot be excluded that

filters satisfying our seven requirements may respond to a pure edge (an ideal step, line, or roof) with

an energy function having one global maximum at the edge location and also other local maxima

which do not correspond to any perceptually meaningful feature in the image. We must thus find

methods for avoiding spurious maxima in the energy function. In the first place, we can select the

filters carefully in order to satisfy the three spatial constraints, as well as any others which might

arise from other models of perfect edges. However we need also to eliminate some of the maxima

obtained in the energy function. Two general criteria can be envisaged:

(i) The peak in the energy function must be high enough.

(ii) The peak in the energy function must be wide enough.

If we follow (i) and require high peaks, we must first calibrate the energy function in order to make

it independent of the average image contrast: if the image grey-levels are all multiplied by a positive

constant, the energy function should not change. We can for example use as measure of the energy

at a point p the phase congruence function

|J(p)|∫
E I

AA
(4.51)

introduced in (4.17), whose values range in the interval [−1, 1] and is equal to 1 only when all phases

IΦ(u,p) at p for all frequencies u ∈ E+
n are equal to a constant. We can also take some variants
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such as
|J(p)|

‖Î‖∞ · ‖Ĉ‖1
(4.52)

when I is integrable, or
|J(p)|

‖Î‖2 · ‖Ĉ‖2
=

|J(p)|
‖I‖2 · ‖C‖2

(4.53)

when I is square-integrable; note that ‖Î‖∞ · ‖Ĉ‖1 and ‖Î‖2 · ‖Ĉ‖2 are both ≥
∫
E I

AA, thanks to

Hölder’s inequality, so that the values of (4.52) and (4.53) range also in the interval [−1, 1]. Then

we might select as edge points only maxima of the energy function for which one of the measures

(4.51, 4.52, 4.53) of phase congruence exceeds some threshold (say, 1/2).

On the other hand, requiring wide peaks as in (ii) does not necessitate a calibration of the

energy function, but rather a standard width to compare the peaks with. We can consider that this

must be the width of the grey-level profile of F in the normal direction, because |F |2 is the energy

function for the input signal given by a Dirac impulse. This width can be measured as

‖ξnF‖1
‖F‖1

=

∫
E |xnF (xt, xn)| dxtdxn∫
E |F (xt, xn)| dxtdxn

or
‖ξnF‖2
‖F‖2

=

(∫
E x

2
n|F (xt, xn)|2 dxtdxn∫

E |F (xt, xn)|2 dxtdxn

) 1
2

,

or the least w such that for |xn| > w we have |F (xt, xn)| < ε‖F‖p (where p = 1, 2, or ∞), or such

that
∫
|xn|>w

|F |p < ε
∫
E |F |p (where p = 1 or 2), with ε being chosen very small (say, 1/100). We

can also take as standard input signal a one-dimensional line constant in the tangential direction

and making a Dirac impulse in the normal one, and so we replace F by F/n in the above formulas.

Then we might select as edge points those for which the energy function is greater than that

of all points at distance at most kw of it in the normal direction, where k is some threshold smaller

than 1 (say, 1/2). In other words we admit edges separated by a distance between kw and w, but for

closer edges one of them must be condidered as spurious. We might also require of an edge point p

that for all points q in the normal direction w.r.t. p and at distance less than kw from it, the ratio

of energies E(p)/E(q) must increase with the distance between p and q according to some function

of that distance:
E(p)

E(q)
≥ ψ

(
d(p,q)

)
;

this function ψ could be selected from the what happens with the Dirac impulse (or Dirac impulse

line) as input signal, in other words the grey-level profile of |F |2 (or |F/n) around the origin. The

effect of this stronger criterion would be to consider a close succession of edges as texture or noise,

which should not appear in the edge map.

The two approaches could be combined, so that we might require peaks to be both wide and

high, or that the product of the peak height and width should exceed a given threshold. These

considerations are speculative, we have no mathematical result justifying them, and the criteria

suggested above should be experimented with natural images. Morphological operators [63] could

also be applied in order to eliminate spurious peaks, and the watershed transformation could be used

instead of non-maxima deletion in order to produce closed contours.

We said in Section 2 that each feature corresponds to a certain scale, that a change of scale

can lead to modifications of the edges; this was illustrated with Figure 5. Now it should be clear
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that the scale corresponding to an edge is proportional to the above-mentioned width w of the filter

F detecting it. Consider for example the slanted ridge profile shown in Figure 5. When the filter F

is very narrow (say, w is 1/40-th the width of the ridge), the energy function will have four peaks

corresponding to the four Mach bands; these peaks will be well separated and will not interfere. As

the filter width increases (say, w going up to to 1/6-th the width of the ridge), the two energy peaks

at the extremities of each step will interfere, and will at a certain scale merge into a single peak;

thus two steps are detected. Increasing further the filter width (say, until w becomes larger than the

width of the ridge), the two energy peaks located at each step will interfere and finally merge into a

single peak; thus a single bar edge is detected.

In this example we see that as the scale (i.e., the width) of the filter increases, features can

merge into other ones whose nature is different; we had here no new feature arising at a certain

scale from nothing, or a feature dividing into several ones at a wider scale. This is the principle

of causality, and we could require that features should abide to it. Thus any feature existing at a

certain scale which does not arise from one at a smaller scale must be considered as spurious.

Note that points where the Fourier phases of the image are equal to a constant lead to an

absolute maximum of the energy function at all scales. This is true either if we scale the filter F

(taking at scale s the filter Fs defined by Fs(x) = F (x/s)), or if we smooth the image with a function

W having constant zero phase (say, a Gaussian of increasing scale), because the phases of I ∗W are

the same as those of I (cfr. [Ronse]).

Kube and Perona [17] have shown in the case of one-dimensional signals that quadratic edge

detectors using a Hilbert transform pair of filters are non-causal in scale space; this was illustrated in

concrete examples with the pair of filters consisting of a Gaussian derivative and its Hilbert transform.

For quadratic operators where one of the filters is the derivative of the other, only for a certain class

of filters which includes the Gaussian and its derivatives, is the causality property verified. Thus the

phase congruence model introduces spurious non-causal features which are not detected by quadratic

edge detectors using Gaussian derivatives. A typical pattern of causality failure, where a new feature

arises from nothing as scale increases, is shown in Figure 11 (see also Figures 2 and 3 of [17]). We

see here that a purely local maximum arises in the energy function, which could be eliminated by

taking as edge points only regional maxima of the energy function, as explained above. It would be

interesting to know if the two above-mentioned approaches for authenticating edges could allow the

elimination of all causality failures.

5. Related questions and conclusion

We will discuss here miscellaneous problems concerning the phase congruence model, in particular:

(i) how to adapt it to a digital framework and digitize the filters specified by our requirements in the

Euclidean framework; (ii) possible ways to extend it towards the detection of bi-directional features

(corners, end-stopped edges, or strongly curved edges); (iii) applications to other vision tasks. We

end then with the conclusion.

5.1. Digitization of the filters

Any practical implementation must assume that images and filters are sampled, and that filters have

bounded support. The classical signal processing approach to digitization, based on the Shannon

sampling theorem, is unsuitable for the analysis of visual features, because it assumes unnecessarily
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that the signal can be band-limited, gives a secondary role to the spatial localization of masks,

which is however crucial to to the spatial localization of features, and does not guarantee that our

mathematical results will extend to the digital case. It is better to take the approach suggested by

Hummel and Lowe [64], which we describe here in general mathematical terms.

We already have the Euclidean space E = IRd; consider now the corresponding digital space

D = ZZd. Let I(E), I(D), F(E), F(D) be the families of respectively Euclidean images, digital

images, Euclidean filters, and digital filters. Theory gives us a Euclidean filter F = C + i S; practice

gives us a digital input image I; we must be able to apply F to I, and for this we must digitize

F . The basic idea underlying the method of Hummel and Lowe is that the sampling of filters must

be considered as corresponding to an extrapolation of digital images into Euclidean ones. Thus the

filter sampling Σ : F(E) → F(D) corresponds to the image extrapolation Ξ : I(D) → I(E) in such a

way that for every F ∈ F(E) and I ∈ I(D) we have

∫

D
I · Σ[F ] =

∫

E
Ξ[I] · F. (4.54)

Note that in this equation, integration on E is done w.r.t. the Lebesgue measure, while integration on

D is done w.r.t. the discrete measure, in other words
∫
D I ·Σ[F ] must be read as

∑
z∈D I(z) ·Σ[F ](z).

Assuming that Ξ and Σ commute with the reflection ρ and with all translations by points in D,

(4.54) gives:

∀p ∈ D,
(
I ∗ Σ[F ]

)
(p) =

(
Ξ[I] ∗ F

)
(p). (4.55)

Here the first convolution is made on D (with the integral becoming a series), and the second one

on E . Given an even-symmetric bounded integrable function W : E → IR, we define Ξ and Σ by

Ξ[I] =
∑

z∈D
I(z)τz(W ) : x 7→

∑

z∈D
I(z)W (x − z)

and Σ[F ] : z 7→ (W ∗ I)(z) =
∫

E
dxW (z− x)F (x).

(4.56)

It is easily checked that Ξ and Σ commute with the reflection and with all translations by points in

D, and (4.55) is verified as follows:

(
I ∗ Σ[F ]

)
(p) =

∫

E
dx

∑

z∈D
I(z)W (p − z− x)F (x)

=
∑

z∈D

∫

E
dx I(z)W (p − z− x)F (x) =

(
Ξ[I] ∗ F

)
(p).

This equality holds indeed if we assume I in ℓ1 + ℓ2 (i.e., to be the sum of a summable image and a

square-summable one). This was the choice for Ξ and Σ in [64], where several examples of functions

W were considered, and the advantages of this new sampling method over the classical one was

experimentally demonstrated.

Note that by (4.55) the digital image I ∗ Σ[F ] resulting from the application of the sampled

filter Σ[F ] to the original digital image I, is equal to the classical sampling (in other words, the

digital trace) of the Euclidean image Ξ[I]∗F resulting from the application of the original Euclidean

filter F to the extrapolated image Ξ[I]. Now the mathematical properties of the phase congruence

model can be applied to Ξ[I] ∗ F , of which I ∗ Σ[F ] is a sampling. We can thus expect that some

properties of Ξ[I] ∗ F will be inherited by I ∗ Σ[F ]. For example if I is a digital edge profile, with a
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proper choice of W , Ξ[I] will be a Euclidean edge profile, so that |Ξ[I] ∗ F | will have a peak at the

edge location x. Now assuming I to be in ℓ1 + ℓ2, Ξ[I] will be in L1 + L2, so that Ξ[I] ∗ F will be

uniformly continuous (by Proposition 4.2), so that we know that at the digital point z closest to the

peak x of |Ξ[I] ∗ F |, we will have

∣∣(I ∗ Σ[F ]
)
(z)

∣∣−
∣∣(Ξ[I] ∗ F

)
(x)

∣∣ =
∣∣(Ξ[I] ∗ F

)
(z)

∣∣ −
∣∣(Ξ[I] ∗ F

)
(x)

∣∣ ≤ ψ(z− x),

where ψ is the modulus of continuity of Ξ[I] ∗F , so that this difference can become arbitrary small,

provided that the digitization step is taken small enough. Thus we can expect a peak in |I ∗ Σ[F ]|
at some digital point close to x.

Of courses, it is possible to make a theory of phase congruence for digital images. Note that

the Fourier spectrum of digital signals is periodic, so that the distinction of “positive” and “negative”

frequencies becomes arbitrary.

5.2. Bi-directional features

We suppose again that d = 2, that is E = IR2. Up to now we have assumed features with a significant

event in the grey-levels along a direction n, but without such grey-level events in the perpendicular

direction t. We will now briefly consider features having perceptually significant grey-level changes in

two directions given by unit vectors n1 and n2, which are not necessarily perpendicular. We will first

consider the case where n1 and n2 are perpendicular and coincide with the canonical basis vectors

e1 and e2 of E ; the general case where n1 and n2 are not perpendicular will be dealt with later,

thanks to a change of basis of E . Let us start with some examples of ideal bi-directional features:

(a) Corners. An ideal corner (see Figure 12 (a)) has its grey-levels given by:

I(x1, x2) =

{
a if x1 > 0 and x2 > 0,
b if x1 < 0 or x2 < 0,

where a and b are constants. Recall the Heaviside step function defined by

H(x) =

{
0 if x < 0,
1 if x > 0;

(4.57)

then we have

I(x1, x2) = b+ (a− b)H(x1)H(x2).

Thus we have, up to a constant, the product of a step edge in x1 and one in x2.

(b) T-junctions. An ideal T-junction (see Figure 12 (b)) can be modeled as

I(x1, x2) =

{
a if x1 > 0 and x2 > 0,
b if x1 < 0 and x2 > 0,
c if x2 < 0,

with a, b, and c being constants. This can be written as

I(x1, x2) = c+H(x2)
[
(b − c) + (a− b)H(x1)

]
.

We get again, up to a constant, the product of a step edge in x1 and one in x2.
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(c) Line terminations. We can model a line termination (see Figure 12 (c)) as an image con-

taining a line edge on one side, and nothing on the other side; it is thus given by the following

grey-level function:

I(x1, x2) = a+ E(x1)H(x2) =

{
a if x2 < 0,
a+ E(x1) if x2 > 0,

where a is a constant and E is the line edge profile in the normal direction. We have here, up

to a constant, the product of a feature in x1 and of a step edge in x2.

(d) X-junctions. An ideal X-junction (see Figure 12 (d)) can be modeled as the grey-level

function

I(x1, x2) =





a if x1 > 0 and x2 > 0,
b if x1 < 0 and x2 > 0,
c if x1 > 0 and x2 < 0,
d if x1 < 0 and x2 < 0,

with a, b, c, and d being constants. We have two cases:

(d1) a+ d− b − c = 0. Then we have

I(x1, x2) = d+ (c− d)H(x1) + (b − d)H(x2).

Here we have, up to a constant, the sum of a step edge in x1 and one in x2.

(d2) a+ d− b − c 6= 0. Let us define the two step edges

S1(x) = (b− d) + (a+ d− b− c)H(x) =

{
b− d if x < 0,
a− c if x > 0,

S2(x) = (c− d) + (a+ d− b− c)H(x) =

{
c− d if x < 0,
a− b if x > 0;

Then we can write:

I(x1, x2) =
1

a+ d− b− c

[
ad− bc+ S1(x1)S2(x2)

]
.

We get, up to a constant, the product of a step edge in x1 and one in x2.

(e) Peaks. An ideal peak (see Figure 12 (e)) can be considered as the product of a line in x1

and a line in x2.

We see that in all these examples, except (d1), the image can be decomposed as the sum of a constant

signal and of the product E of an ideal feature E1 in x1 and another one E2 in x2. The constant

signal contributes to the zero frequency in the Fourier plane. According to the phase congruence

model, there are two constant phase φ1 and φ2 such that

EΦ
1 (ν) = sgn(ν)φ1 and EΦ

2 (ν) = sgn(ν)φ2.

Note that if E1 or E2 involves a constant signal (the “dc level”), this contributes to the frequency

zero. We get then

EΦ(ν1, ν2) = EΦ
1 (ν1) + EΦ

2 (ν2) = sgn(ν1)φ1 + sgn(ν2)φ2 =





φ1 + φ2 if ν1 > 0 and ν2 > 0,
φ1 − φ2 if ν1 > 0 and ν2 < 0,

−φ1 + φ2 if ν1 < 0 and ν2 > 0,
−φ1 − φ2 if ν1 < 0 and ν2 < 0.
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The Fourier component along the axes ν1 = 0 and ν2 = 0 corresponds to the constant base signal

(or “dc level”) involved in E1, E2, or E, and we will neglect it. Thus, instead of having a constant

phase in a half-plane E+
n , and the opposite constant phase in the opposite half-plane E−

n , we will

have constant phases in all quadrants of the plane.

From the point of view of filters, taking (C1, S1) and (C2, S2) two pairs of one-dimensional

filters satisfying Requirements 1, 2’, and 3, the edge in the one-dimensional signal E1 will produce a

peak in the energy function

(E1 ∗ C1)
2 + (E1 ∗ S1)

2 =
∣∣(E1 ∗ C1)± i (E1 ∗ S1)

∣∣2,

while the edge in E2 will also produce a peak in the energy function

(E2 ∗ C2)
2 + (E2 ∗ S2)

2 =
∣∣(E2 ∗ C2)± i (E2 ∗ S2)

∣∣2,

so that the bi-directional feature in E will produce a peak in the function

[
(E1 ∗ C1)

2(x1) + (E1 ∗ S1)
2(x1)

]
·
[
(E2 ∗ C2)

2(x2) + (E2 ∗ S2)
2(x2)

]

=
∣∣∣
[
E1 ∗ (C1 ± i S1)

]
(x1) ·

[
E2 ∗ (C2 ± i S2)

]
(x2)

∣∣∣
2

.

This amounts to convolving E with the four filters C1(x1)C2(x2), S1(x1)C2(x2), C1(x1)S2(x2),

S1(x1)S2(x2), and taking the sum of the squares of these convolutions. Note that these four two-

dimensional filters have a null Fourier component along the axes ν1 = 0 and ν2 = 0, and so they do

not respond to any component of the input image which is constant in direction x1 or x2.

We can generalize the above discussion into a phase congruence model for bidirectional edges

and a quadratic filter approach to their detection. We write Q++, Q+−, Q−+, and Q−−, for the

four quadrants given repectively by the equations

{
x1 > 0,

x2 > 0,

{
x1 > 0,

x2 < 0,

{
x1 < 0,

x2 > 0,

{
x1 < 0,

x2 < 0,

see Figure 13 (a). We write P++, P+−, P−+, and P−−, for the characteristic functions of Q++,

Q+−, Q−+, and Q−− respectively, that is:

P++ = pose1
· pose2

,

P+− = pose1
· nege2

,

P−+ = nege1
· pose2

,

P−− = nege1
· nege2

.

We will consider as a bidirectional edge at point p an image such that the local phases at p

are maximally congruent for frequencies in each quadrant. Since Fourier phase is odd-symmetric,

we have to check phase congruence only in two quadrants making an half-plane, say Q++ and Q+−.

An ideal edge, as above, will have a constant phase in each of these two quadrants.

We take as convolution kernels four functions F0, F1, F2, and F3 satisfying Requirements 2’

and 3 (namely, they are continuous and integrable), and the following variant of Requirement 1:

F0 6≡ 0, F0 and F3 are even-symmetric, F1 and F2 are odd-symmetric, F̂0 has real non-

negative values, (F0, F1) and (F2, F3) are e1-quadrature pairs, while (F0, F2) and (F1, F3) are

e2-quadrature pairs.
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The signs of the Fourier transform of F0, F1, F2, and F3 in the four quadrants is shown in Fig-

ure 13 (b). Note that the four filters satisfy Propositions 4.1 and 4.2. Moreover, each of them has a

zero response on a signal which is constant in direction e1 or e2, in particular to a one-dimensional

feature oriented in one of these two directions. This corresponds to the fact that, due to the quadra-

ture relations, their Fourier transforms vanish on the two axes x1 = 0 and x2 = 0. Let us write A

for the Fourier transform of F0 (cfr. (4.1)).

Let us remark that the pair (F0, F1) satisfies Requirement 1 for the “normal” direction e1,

and similarly the pair (F0, F2) satisfies Requirement 1 for the “normal” direction e2; however they

do not give an edge detector in these two directions, because they do not satisfy Requirement 6:

they give a zero response to an image whose greylevels are constant in the “tangential” direction

and vary according to the “normal” direction (as in (4.8)).

Given an image I, let us write J0, J1, J2, and J3 for the convolution of I by F0, F1, F2, and

F3 respectively. Then I gives rise to the energy function

E = J2
0 + J2

1 + J2
2 + J2

3 = (I ∗ F0)
2 + (I ∗ F1)

2 + (I ∗ F2)
2 + (I ∗ F3)

2. (5.1)

Edge points are localized at points where E forms a maximum in both directions e1 and e2. Let

us show that this energy function measures phase congruence in both quadrants Q++ and Q+−, by

giving an analogue of Proposition 4.5:

Proposition 5.1. Assume that I is in L1 + L2. Then

Ê = 8
[
(P++ ÎA) ∗ (P−− ÎA) + (P+− ÎA) ∗ (P−+ ÎA)

]
,

and it is an integrable function. Furthermore:

(i) If IΦ is constant both on Q++ and on Q+−, then

Ê = 8
[
(P++ IAA) ∗ (P−− IAA) + (P+− IAA) ∗ (P−+ IAA)

]
,

a real-valued non-negative function, and EΦ is constant zero.

(ii) If for a given p ∈ E we have IΦ(u,p) constant both for u ∈ Q++ and for u ∈ Q+−, then

EΦ(u,p) = 0 for all u ∈ E , and E(p) > E(x) for all x ∈ E such that x 6= p.

(iii) For every p ∈ E we have

E(p) = 8

∫∫

[Q++×Q++]∪[Q+−×Q+−]

IA(u)A(u)IA(v)A(v) cos
[
IΦ(u,p)− IΦ(v,p)

]
dudv.

(5.2)

Proof. Since F0 and F1 are in e1-quadrature, we have (F0 + i F1)
∧ = 2pose1

· F̂0 = 2pose1
· A.

Since (F0, F2) and (F1, F3) are e2-quadrature pairs, F0 + i F1 and F2 + i F3 are in e2-quadrature, so

that for
F++ = (F0 + i F1) + i (F2 + i F3) = (F0 − F3) + i (F1 + F2)

and F+− = (F0 + i F1)− i (F2 + i F3) = (F0 + F3) + i (F1 − F2)

we have
(F++)

∧
= 2pose2

· (F0 + i F1)
∧
= 4pose2

· pose1
· A = 4P++A

and (F+−)
∧
= 2nege2

· (F0 + i F1)
∧
= 4nege2

· pose1
· A = 4P+−A.
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Let us write J++, and J+− for the convolution of I by F++, and F+− respectively. Thus

J++ = (J0 − J3) + i (J1 + J2), (J++)
∧
= 4P++ÎA,

J+− = (J0 + J3) + i (J1 − J2), (J+−)
∧
= 4P+−ÎA.

(5.3)

Now we can verify that

J++J++ + J+−J+− = |J++|2 + |J+−|2

= (J0 − J3)
2 + (J1 + J2)

2 + (J0 + J3)
2 + (J1 − J2)

2 = 2
(
J2
0 + J2

1 + J2
2 + J2

3

)
= 2E.

(5.4)

Our result is then obtained by applying the same argument as in the proof of Proposition 4.5,

replacing F and J first by F++ and J++, next by F+− and J+−, and using (5.3); adding the

formulas obtained for the partial energy functions |J++|2 and |J+−|2, we get those for the global

energy function E thanks to (5.4).

Thus bidirectional features correspond to points of maximum phase congruence within each quadrant

instead of each half-plane (as was the case with unidirectional features). We may ask what are the

analogues of Requirements 4 to 7. Requirement 4 becomes that:

F0 is symmetric in both directions e1 and e2, in other words

∀x1, x2 ∈ IR, F0(x1, x2) = F0(−x1, x2) = F0(x1,−x2) = F0(−x1,−x2).

From the quadrature relations between the filters, it follows that F1 is odd-symmetric along e1 and

even-symmetric along e2, F2 is even-symmetric along e1 and odd-symmetric along e2, while F3 is

odd-symmetric in both directions e1 and e2; in summary, we can write:

∀η, ζ = ±1 and i, j = 0, 1, F2i+j(ηx1, ζx2) = ζiηjF2i+j(x1, x2).

Although it corresponds to traditional intuition about edge detection, Requirement 4 was not used

in any of our mathematical results, except for simplifying the statement of Requirement 7. We may

expect the same for its present analogue.

Requirement 5 can be taken verbatim with the filters Fi intead of C and S. Requirement 6

may be translated as follows:

For every unit vector v 6= ±e1,±e2, (F0)/v is not identically zero, in other words F̂0(u ·v) 6= 0

for some u ∈ IR.

It follows from these analogues of Requirements 5 and 6 that for an edge forming a signal constant

in a tangential direction and varying in the orthogonal normal direction according to a given one-

dimensional profile, convolution with the filters will give a zero output if the normal direction is

aligned either with e1 or with e2; on the other hand if this normal direction is oblique w.r.t. e1 and

e2, then taking either F0 or F3 with either F1 or F2 (in fact filters in each pair give the same result,

up to a ±1 factor), the requirements of the one-dimensional phase congruence model will be satisfied,

and so Proposition 4.12 will be verified.

We see no way of generalizing Requirement 7, because it applies to the case of an image

forming a unidirectional grey-level profile. If we consider an ideal bidirectional edge as an image

I given by I(x1, x2) = P1(x1)P2(x2) for two one-dimensional functions P1 and P2 having constant

Fourier phase for postive frequencies, the argument underlying Proposition 4.13 would require the
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condition that for every angle θ with |θ| ≤ π/2, if Aθ is the rotation by θ of A = F̂0 (cfr. (4.31)), we

must have ∣∣∣
∫∫

Q
Aθ(u1, u2)P̂1(u1)P̂2(u2) du1du2

∣∣∣

decreasing for θ going from 0 to ±π/2 both for Q = Q++ and Q = Q+−.

We have up to now considered features aligned along the two axes given by the canonical

basis vectors e1 and e2. We suppose now that they are aligned along two directions which are not

necessarily perpendicular. We suppose that these two directions are given by two vectors v1 and v2

forming an angle θ > 0, and such that |v1| · |v2| · sin θ = 1. Let λ be the linear transformation of IR2

mapping e1 and e2 onto v1 and v2 respectively; its determinant det(λ) verifies

det(λ) = |v1| · |v2| · sin θ = 1.

Write λ−1, λT , and λ−T for respectively the inverse, the transpose, and the inverse transpose of λ;

then λ−T maps e1 and e2 onto two vectors w1 and w2 respectively, which are uniquely defined by

the relations

vi ·wj = δij =

{
1 if i = j,
0 if i 6= j,

(i, j = 1, 2).

The basis {w1,w2} is said to be conjugate to the basis {v1,v2}. In fact w1 and w2 are obtained

repectively from v2 rotated by −π/2 and v1 rotated by +π/2 (see Figure 14 (a)).

Suppose that the image I has a bidirectional feature oriented along directions v1 and v2; then

I is obtained by applying λ to an image J having a bidirectional feature oriented along e1 and e2,

in other words

I(λ(x)) = J(x) or equivalently I(x) = J(λ−1(x)) (5.5)

for all x ∈ IR2. Similarly, applying λ to a filter Fi oriented along e1 and e2 gives a filter Gi defined

by

Gi(λ(x)) = Fi(x) or equivalently Gi(x) = Fi(λ
−1(x)) (5.6)

for all x ∈ IR2, oriented along directions v1 and v2. Since convolution commutes with linear trans-

forms of IR2 having determinant ±1, applying λ to J ∗ Fi gives I ∗ Gi. Thus for any combination

of the filters Fi extracting the features in J , the same combination of the filters Gi will detect cor-

responding features in I. Since we used the energy function (5.1), we will consider here the energy

function

E = (I ∗G0)
2 + (I ∗G1)

2 + (I ∗G2)
2 + (I ∗G3)

2,

where each Gi is given by (5.6). In the Fourier domain (5.6) gives

Ĝi(λ
−T (u)) = F̂i(u) or equivalently Ĝi(u) = F̂i(λ

T (u)) (5.7)

for every u ∈ IR2. This means that Ĝi results from applying λ−T to F̂i. Thus (G0, G1) and (G2, G3)

are w1-quadrature pairs, while (G0, G2) and (G1, G3) are w2-quadrature pairs. The signs of the

Fourier transforms of G0, G1, G2, and G3 in the four quadrants determined by w1 and w2 is shown

in Figure 14 (b).

There are no experimental data on the efficiency of the approach introduced here for bidirec-

tional features. Other models using bidirectional filters (also called “end-stopped” detectors) have

been considered [27,28,29,30,31,32]. The problem of orientation selection is much more complicated

67



here than in the unidirectional case, since we have to determine two directions instead of one, and we

do not know how to generalize Requirement 7 and Proposition 4.13. Note also that there exist other

types of features involving more than two directions, for example Y-junctions (see Figure 15); such a

feature involves 3 directions. Moreover, strongly curved edges can be considered as multidirectional

features, and it has been suggested in [27,28] that “end-stopped” bidirectional filters can be used to

calculate curvature.

It might also be possible to detect bidirectional features with unidirectional filters, as in the

standard phase congruence model of Section 4. Here we must abandon Requirement 4 (namely, that

the filters are even-symmetric w.r.t. the tangential direction), in order to have a non-zero energy

function on corners. Let us mention for example the use in [31] of “one-sided” filters where the

extent of the filter in the tangential direction is truncated on one side. Here, taking into account

Requirement 1, instead of truncating the filters C and S on one side along the tangential direction,

we might modulate them by a cisoid function in that direction, in other words shift the Fourier

spectrum of C towards one side, so that the support of the spectrum of F = C + i S would be

centered in one half-plane, say xt < 0.

5.3. Some applications, and conclusion

The phase congruence model has been constructed to be used for the detection and localization of

edges. Here the precision of the localization of edge points demands that the filters C and S have a

narrow support in the spatial domain.

On the other hand this model can also be used for other tasks than feature localization, but in

order to make measurements on whole regions, and this time with C and S having a narrow support

in the Fourier domain. Let us mention the model proposed by [65] for the measurement of stereo

disparity. We assume that Ĉ and Ŝ have their energy concentrated in two narrow strips around the

lines |u1| = d for some distance d > 0, where u1 represents the horizontal component of vector u.

Thus the spectrum of F = C + i S is concentrated around the line u1 = d. We have two images I1

and I2. Suppose first that there is a uniform horizontal disparity h between them, in other words

I1(x1, x2) = I2(x1 + h, x2) for all points (x1, x2); then we have Î1(u1, u2) = Î2(u1, u2) · exp(2πi u1h)
for all frequency vectors (u1, u2). Hence we get Î1(u1, u2)F̂ (u1, u2) and Î2(u1, u2)F̂ (u1, u2) both

very weak for u1 far from d, while for u1 in the vicinity of d we will have Î1(u1, u2)F̂ (u1, u2) ≈
Î2(u1, u2)F̂ (u1, u2) exp(2πi dh); therefore Î1F̂ ≈ Î2F̂ exp(2πi dh), in other words I1∗F will be “close”

to exp(2πi dh)(I2 ∗ F ). Removing the assumption of uniform disparity, the local disparity between

I1 and I2 at a point (p1, p2) will be the value h such that I1(x1, x2) is “close” to I2(x1 +h, x2) in the

neighbourhood of of (p1, p2); it can be estimated as the argument of (I1 ∗F )(p1, p2)/(I2 ∗F )(p1, p2).
Such an approach for computing stereo disparity can also be used for measuring region motion

between two images. In [65] a three-dimensional model of disparity measurement using filters in

quadrature is given for the integration of stereo and motion.

Let us now conclude. The phase congruence model for edge detection comprises several as-

pects:

(i) Edges are characterized as points of maximum Fourier phase congruence in the image. This

type of definition is objective and scale-independent; in particular points where all Fourier

phases coincide give an absolute maximum of the energy function at all scales. However there

is no precise qualification of the notion of maximum phase congruence, since purely local
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maxima can be meaningless and do not respect the principle of causality in scale-space [17].

(ii) Edge detection is achieved by looking for maxima of the sum of squares of convolutions of the

image with two filters C and S satisfying the requirements given in Section 4, or equivalently of

the absolute value of the convolution of the image with the complex-valued filter F = C + i S.

The use of two filters C and S, respectively even- and odd-symmetric, rather than a single

one, is justified by the existence of several types of edges (see Figure 1), but one could envisage

using more than two filters [18] if necessary. The Fourier amplitude and phase characteristics

of C and S are justified from mathematical considerations, since interesting facts result from

the nature of the Fourier spectrum of F (with positive values on E+
n , and vanishing on E−

n );

in particular we could characterize orientation selectivity in this framework. Their phase

characteristics are also justified from a physiological point of view [25]. However the equality

of Fourier amplitudes of C and S can be challenged, since derivative pairs have some advantage

over Hilbert transform pairs, for example causality in scale space [17].

Our study does not attempt to justify this model as the one corresponding to the functioning of

human or animal visual detection of edges, nor does it claim any validity w.r.t. the photometric

relevance of the edges that it gives. Furthermore the practical effectiveness of this model compared

to other ones, in particular with methods using only one filter for each orientation, or using several

filters separately, should be ascertained through experimental work. Probably this model would

be most advantageously exploited in combination with radically different approaches, for example

region-based segmentation (in particular watersheds).

More theoretical and practical studies are needed for the characterization and detection of mul-

tidirectional features and keypoints. We have only hinted at one possibility, without any justification

of its validity.

The notion of Fourier phase congruence is not spatially localized, which contradicts the local

nature of visual edges. A refined theory using concepts of localized Fourier phases, which could for

example be based on wavelets, is needed.
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