

Figure 1. Grey-level profiles (across the normal direction) of seven primary types of edges.

Figure 2. Secondary types of edges can be built by combining edges of primary type in two ways: a) linear superposition; b) succession. We show in both cases the grey-level profiles across the normal direction.

Figure 3. Vertical grating whose horizontal sections are varying from a triangular wave to a square one. In the middle, where both waves are superposed, the edges (combining a step and a roof) are seen slightly to the left of their true location. This is consistent with the phase congruence model for the human perception of edges.

Figure 4. Grey-level profile across a horizontal line in the middle of Figure 3.

Figure 5. A bar edge profile shown in its original size, then magnified 4 times, and finally 16 times. Arrows indicate the position of edges at each scale.

Figure 6. Decomposition of $\mathbf{x} \in \mathcal{E}$ into $(\mathbf{y},t) \in \mathcal{E}_n^0 \times \mathbb{R}$.

Figure 7. Typical pattern for the signs taken by the values of the two filters.

Figure 8. Top left: two-dimensional Heaviside step edge. Top right: geometrical illustration of the convolution of F_{θ} by the Heaviside step edge, calculated at a point $\mathbf{p} = (p_t, p_n)$ Below: two possible profiles for the function *f*, one even-symmetric and the other odd-symmetric.

Figure 9. Signs and zero-crossings of the function F (the product of a Gabor sine function in the normal direction and a Gabor cosine function in the tangential direction) given in (4.38).

Figure 10. Choose the Gaussian derivative filter given in (4.43) with $\tau = 5$ and $\nu = 3$. The support of the filter is represented by an ellipse with great axis τ and small axis ν , where we show the long axis (corresponding to the tangential axis, which is the locus of zero-crossings of the filter). Orientation selectivity holds for points at distance $p \le 3.75$ from the true edge position. We show the support of the filter rotated by the angle θ_p given by (4.49), for which the energy function is highest, for the values p = 3.75 ($\theta_p = 0^\circ$), p = 5 ($\theta_p = 27.88^\circ$), p = 7 ($\theta_p = 43.40^\circ$), p = 9 ($\theta_p = 52.62^\circ$).

Figure 11. As the scale increases from (a) to (c), a non-causal local maximum of the energy function is created.

Figure 12. Some types of bi-directional features: a) a corner; b) a T-junction; c) a line termination; d) an X-junction; e) a peak (or blob).

Figure 13. a) The four quadrants. b) The sign of the Fourier transforms of the four filters in each of the four quadrants.

Figure 14. a) We derive from the basis $\{v_1, v_2\}$ the conjugate basis $\{w_1, w_2\}$. b) The four filters G_0 , G_1 , G_2 , and G_3 oriented along the basis $\{v_1, v_2\}$ have their Fourier transforms whose signs are constant in the four quadrants determined by w_1 and w_2 , shown here.

Figure 15. A Y-junction is a tri-directional feature which does not correspond to the model described in Subsection 5.2