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Chapter 1

Introduction

The first 3D reconstruction techniques always involved a calibration stage,
i.e. an off-line evaluation of the camera parameters from a specially designed
scene (a calibration grid for example). In fact these parameters can also be
recovered on-line, from the scene which has to be reconstructed. This is
sometimes called “self-calibration”.

Several types of reconstruction are possible without calibration: eu-
clidean, affine and projective. Euclidean (respectively projective, affine)
reconstructions differ from the true reconstruction by an arbitrary euclidean
(respectively projective, affine) transformation. Euclidean reconstructions
preserve angles, proportions and shape. Affine reconstructions do not pre-
serve shape but they preserve parallelism. Projective reconstructions pre-
serve none of these properties and are the poorest type of reconstructions.

The first investigations in self-calibration have been done in the case
of point correspondences. In [4] Faugeras and Maybank showed theorically
that when all the cameras have the same intrisic parameters, an euclidean
reconstruction is possible with at least three images. For a projective recon-
struction, only two images are necessary [3], [9]. The methods of T. Moons
[11] and Koenderink [7] produce an affine reconstruction from two views in
restricted cases: Koenderink assumes weak perspective effects and Moons
supposes a translating camera.

The case of lines has been studied more recently. Up to our knowledge,
there is only the method of Hartley which gives a projective reconstruction
from at least three images [6], [5] and the method of Quan [8] (not yet pub-
lished) which produces an affine reconstruction under unconstrained camera
motion and weak perspective effects (affine camera model).



Chapter 2

Working hypotheses and
terminology

2.1 Definition of the problem

Our goal is to get a 3D reconstruction made of 3D line segments with the
following hypotheses:

1. We have a single translating camera taking several images of a scene.
2. Each image is segmented into line segments approximating the edges.
3. The correspondence between the segments in each image is given.

4. Nothing is known about the camera.

5. The translations are unknown.

It can be shown that under translation, affine reconstruction is the reach-
est type of reconstruction achievable. In order to have a self-calibration
method which is not perturbated by occultation or over-segmentation prob-
lems, we decided to ignore line segment extremities. The determination of
the camera parameters (the two translations in our case) is only based on
the infinite lines containing the line segments. In this condition we need at
least three images. We are now going to show that our goal can be achieved
with this minimum number of images.

2.2 Camera modelisation and terminology

We assume that the camera behaves like a pure perspective projection (pin-
hole model). The projection is defined by two 3D points: F,O and two non
parallel 3D vectors l_", J. We prefer this representation to the usual matrix
representation because it is more explicit and easier to “visualise mentally”.
The point F represents the focal centre of the camera. The plane containing
the point O and parallel to I and J is the image plane. The triple (O, Tl )
is the image coordinate system.

Let P be a 3D point and let L be the line containing P and F. The
image of a 3D point P is defined as the couple of coordinates (z,y) in the



Figure 2.1: Camera model
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image coordinate system of the point P', intersection of L with the image
plane (figure 2.1). Inversely, given any point (z,y) in the image, there is
a unique line L going through F and P' = O + zl + yf. This line is the
interpretation line of (z,y). It is the set of all 3D points which can have the
image (z,y).

The camera coordinate system is the coordinate system defined by (F, I,
J, s K ), with K = O — F. Note that this coordinate system is not necessarily
euclidean: the angles between the vectors f, f,f can take any value and
their norms do not have to be identical. It is an affine coordinate system.

The coordinates of P’ in the camera coordinate system are (z,y,1).
Thus, in (F, f, Vi ; K ) we have directly the parametric equation of the inter-
pretation line of a point (z,y). It is the set of 3D points A(z,y, 1), for any
real number A. The 3D point P’, associated to an image point p, will be
denoted by 7.

The interpretation plane of a 2D line [ in the image is the set of all the
3D points which have an image in [. Let us consider a line segment [a,b] in
I. The interpretation plane of I contains the interpretation line of @ and the
interpretation line of b (fig. 2.2). Therefore it is the plane that contains F,
d and b. Since F is the origin of the camera coordinate system, the equation
of the interpretation plane of [ in (F, ok P_(’) is NNP=0with N=aAb N
is the normal of the interpretation plane of [.



Chapter 3

Method

In this chapter, we give a method for determining the two translations Tj
(from first to second position), T5 (from first to third position) and the 3D
coordinate of the line segments in the camera coordinate system (up to a
scale factor).

3.1 Self calibration constraint

Let us consider a correspondence (s, s',s"”) where s (respectively s',s") is a
segment from the first (respectively second, third) image. We suppose here
that the scene translates instead of the camera. Obviously this does not
change anything to the problem.

Let S, S', S” be the three positions of the 3D line segment corresponding
with s (see figure 3.1). s,s’ and s” are defined in the same image plane. Let
L, L', L" be the infinite 3D lines containing respectively S, S’ and S”. Let
[,I!, I" be the infinite 2D lines containing respectively s,s’ and s”. The
normals of the interpretation planes of [, I’, I" are denoted by N,N',N".
Remember (section 2.2) that we know the coordinates of these vectors in
the camera coordinate system: they can be derived from the extremities of
3,8 and s".

For starting, we suppose that the images of L, L' and L" are exactly
I,I' and I". Note that this allows partial occultation and over-segmentation.
The extremities (s, s’,s") do not have to be the projection of the extremities
of (S,5",5").

Let us take any p point in s. This point is the image of a 3D point P in
L. P is also in the interpretation line of p. Thus, in the camera coordinate
system, P = Ap. After the first translation, P moves to P = P + T} =
Ap + Ti. P’ belongs to L'. Consequently it is in the interpretation plane of
I'. This condition can be written as :

(\p+T1).N' =0 (3.1)

The third position of P is P = P + Ty = Ap + T. This point belongs
to L". Therefore, it is in the interpretation plane of " and:

(M +To).N" =0 (3.2)



Figure 3.1: Self calibration constraint from three segments.

From equation 3.1 we get:

-T1.N'
=" 3.3
3 p.N' (34}
By replacing A by this expression in equation 3.2, we get:
—(T1.N)(p.N") + (T.N")(p.N') = 0 (3.4)

This is our self calibration constraint from one correspondence. It is a
linear constraint on the six dimensional vector U = (X1, Y1, Z1, X9, Y3, Z5)
with Ty = (X1,Y1,Z1) and Ty = (X2, Y5, Z2). We need at least five of these
constraints for determining U up to a scale factor (setting |U]| = 1)

3.2 Determination of the translations

With inexact lines, we can solve the problem by least square. We consider n
segment correspondences (s;, s}, s7),i = 1,...,n. p; is any point in the line ;
containing s;. N/ (respectively N/') is the normal of the interpretation plane
of the line containing s (respectively s). With n > 5, we have an overcon-
strained linear system AU = where A is a matrix of n lines and six columns.
Each line a; of A is the six dimensional vector [—(p;.N}") N/, (p;.N})N}']. The
“optimal” (statistically) solution is the unit vector U minimizing ||AU||%.
This is the eigen vector associated with the smallest eigen value of the 6 x 6
symmetric matrix AT A. We use the Jacobi method for solving this problem.
Another possibility is to do a singular value decomposition of A and to keep
the singular vector associated with the smallest singular value.

3.3 Reconstruction

Once the translations are determined, the reconstruction is very simple. We
reconstruct the end points of each line segment s; = [a;, b;] of the first image.
The 3D points A;, B; associated with a;, b; are simply given by:

Ai=Xd;  Bi=)\b



with
_ =T.N} A — —Ty.N/

Ad

3.4 Bounding reconstruction errors

It can be useful to know which lines are the most reliable and even better:
to bound them by some kind of uncertainty domain.

® ©

Figure 3.2: A) Error bound on a line segment. B) Plane sector. C) Solid
Angle

Such an error bounding technique has been integrated in our affine re-
construction method. In this technique, 3D vectors are bound by convex
domains like for example plane sectors (fig.3.2-A) or solid angles (fig. 3.2-
B).

We suppose that we have a maximal error E,, on the position of the 2D
line segments. The definition of E, is illustrated by figure 3.2-A. [e;, e2]
is a 2D line segment included in a line {. We suppose that the “true” line I*
passes between the two line segments [e], e; ]| and [e], ed] at distance Epy
from [. Using this hypothesis we can compute, for each line [, a solid angle
S; that bounds the normal of the interpretation plane of [*. We bound also
the interpretation line of e; (resp. es) or in other words, the vector €; (resp.
€2) by a plane sector P; (resp. P).

The 3D points associated with e; and es are given by:

~T1.N' _ -T1.N'

Eir=Mé1  Ey=Xé A= N Ag = G

We suppose also that 77 is bound by a solid angle S;. The problem is
to find the lower and upper bounds of A\; and Ay, knowing that 77 € 5,
€1 € P1, é, € P, and N’ € 5] (solid angle bounding the normal of the in-
terpretation plane of I'). This problem is solved with procedures computing
the extremes values of the scalar product of two uncertain 3D vectors and
a procedure computing the bounds of the quotient of two uncertain scalars.
These procedures are described in detail in [2] and [1].



Chapter 4

Results

4.1 Real data

Figure 4.6 and 4.7 show two views of a reconstruction from three 256 x 380
images (fig 4.3, 4.4, 4.5). The object is a dodecahedron with five branch
stars drawn on each face. For this example, 61 line correspondences have
been entered by hand.

4.2 Statistical evaluation of robustness on simu-
lated data

4.2.1 Principle of simulation
Generation of the scene

The scene S (a set of 3D segments) is randomly generated. Each end point
of a segment is a random point on the surface of a sphere centered at the
origin. If the distance between the two end points is too small (below a
certain proportion p of the radius of the sphere), then the two points are
ignored and two other points are genenerated. The random generation of
a scene is parameterized by the number of segments N, the radius of the
sphere R and p.

Camera parameters

The position of the camera is illustrated by figure 4.1.

The position of the camera can not be changed. The focal centre is
always at the origin. The optical axis is parallel to the Z-axis. The lines of
the image are parallel to the X-axis and the columns to the Y-axis. The focal
length is 1 and the equation of the image plane is Z = 1. The coordinates
(x,y) of the image of a point (X,Y, Z) are simply given by:

X Y
‘=g g



Image plane

Focal centre

Figure 4.1: Position of the camera.

Translation of the scene

The scene is translated twice (see figure 4.1). in two random directions (3D
unit vectors) Dy, D,. Tt is also possible to fix the angle between the first
and the second translation. In this case the second translation vector is
randomly generated in the surface of a cone with an axis parallel to the
first translation. This additional possibility was introduced for testing the
influence of the angle between the two translations.

The amplitude of the two translations are defined by two parameters ¢,
to. After translation, three scenes S, S’, §” are stored in memory, with:

§'={[la+t:D1,b+t: D], [a,b] € S}

5" = {[a + t, Dy + toDa,b + t, Dy + toDs], [a,b] € S}

Distance scene/camera

The minimum distance Z,;, between the scene and the camera is a param-
eter of the simulation. It is more exactly the minimum depth of the end
points of all the segments in S U S’ US”. The three scenes are translated in
the Z direction so that the minimum Z coordinate becomes Z;,.

Creation of the three images

The three images, or more exactly the three sets of 2D segments, are gen-
erated by projecting the segments of §, §' and S”. If the scene contains N
segments, we shall have also N segments in each image.

10



Dimension of a pixel

The dimension of the retina is not fixed in advance. All the segments of the
three scenes are always entirely visible. After projection of the three seg-
ments sets S, S’ and §”, we compute the minimal and maximal coordinate
of the end points of all 2D segments (in the three images). The length [ of
a pixel is defined as:

Ml Xeae = Kodori Y= Vo)

fh= 512

Where X, Xme are the minimal and maximal 2 coordinates of images
points and Yy, Yo are the minimal and maximal y coordinates of images
points.

This means that the “resolution” of the image is always 512 x 512.

Adding noise

The addition of noise is done by translating each end point of each 2D
segment by a vector s€. s is a random number which can be equal to 1 or
-1. €'is always perpendicular to the segment. The norm of e, denoted by ¢ is
fixed. It represents the noise level. It is a parameter of the simulation (given
in number of pixels). With this technique after adding noise to a segment,
the result can only be one of the four segments of picture 4.2.

Figure 4.2: Adding noise to a 2D segment: the four possibilites.

Some phenomenons happening in real images are not reproduced by
simulation: with real data, line segments are frequently shorter than they
should or cut in several parts. In fact this is not really a problem in our case
because when a line segment is cut the extremities remain on the infinite
line containing the segment. Since the determination of the translation only
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depends on the infinite lines containing the line segments, this kind of data
error does not have any importance here.

4.2.2 Experiments

The graphs presented here show the influence of various parameters on the
robustness of the program. For each parameter value, the program was
executed F times. The ordinate represents the proportion P of program
executions for which a certain level of precision is reached. For all the
results presented here Z,;, = 40, t; = 20, {, = 20, p = 0.2, R = 40.

Figure 4.8 shows how much precision is required on the translation es-
timation in order to get a reconstruction of “reasonable” quality. For each
reconstructed point P; , we measured the relative error on the depth coef-
ficient A;. To get the relative error, we divided the absolute error by the
difference between the maximum and minimum value of all the A;’s of the
exact reconstruction. The ordinate represents here the proportion of points
(over 6000) reconstructed with a relative error not exceeding a threshold.
In this experiment N = 20,e = 0.5 and F = 150. The abscissa is the error
on the direction of the first translation T;. Note that even with a perfect
translation, there is still 10 percent of points with a relative error larger
than 10 percent. This is due to the presence of unstable lines.

The influence of the noise on the translation estimation is shown in
figure 4.9 (N = 20 and E = 220). P is the proportion of executions for
which the error on the first translation (in degrees) is lower than a threshold.
Figure 4.10 shows that the robustness of the translation estimation increases
significantly with the number of lines (e = 0.5, E = 100).

We also compare the results with those of our previous method [10] which
was restricted too parallel translations. The conclusion is quite interesting.
First of all, if we apply the current method with parallel translations, the
robustness is slightly lower than the robustness of the previous method .
This is shown in figure 4.11 (N = 20, and E = 100). In this figure P is
the proportion of program executions for which the error on the translation
was smaller than two degrees. This phenomenon can be explained by the
fact that in the previous method, we had only to estimate two parameters
(direction of the translation) instead of five for the current method.

But it is quite surprising to see that, in the case of non parallel transla-
tions the results are much better than before. This seems to indicate that
translating twice the camera in the same direction leads to a degenerated
situation which is numerically unstable. We did another experiment to con-
firm this. It is shown in figure 4.12. In this experiment we measured the
precision reached for various values of the angle between the two transla-
tions (with e = 0.5, N = 20, E = 400). P is the percentage of program
executions for which the error on 7} is smaller than a threshold. The graph
shows clearly that the robustness increases when the angle between the two
translations increases also and tends toward 90 degrees.

12
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Figure 4.3: Segments from first image.
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Figure 4.7: 8D reconstruction, second view.
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Figure 4.8: Influence of translation errors on reconstructions.

15




i < 0.5 degrees
90 b - - - - < 2degrees

70

60

50

40

30

20

10

8 1.0 1.2 1.4 1.6 1.8 2.0

0.2 0.4 0.6 0.
Noise level (pixels)

Figure 4.9: Noise influence on translation estimation.
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Figure 4.11: Noise influence with parallel translations.
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