Philips Research Laboratory Brussels
Av, E, Van Becelaere 2, Box 8
B-1170 Brussels, Belgium

Working Document WD47

Extraction of Narrow Peaks and Ridges in Images
by Combination of Liocal Low Rank and Max Filters:
Implementation and Applications to Clinical Angiography

Christian Ronse

October 1988

Abstract: We describe a non-linear filter for removing from a digital image narrow positive
features, such as peaks and ridges. It is based on a composition of a low rank filter by a max
filter, and is thus a generalization of the min-max filter of Nakagawa and Rosenfeld, This
new filter is an algebraic opening, and its relation to Mathematical Morphology is briefly
discussed.

The low rank in the first filtering step can be adjusted according to the noise level of
the image. An economical PASCAL implementation is given. Results on digitized X-ray
arterial images are shown, indicating the possible use of this filter in clinical angiography,

I. Description and main properties of the new filter

1.1. Presentation

Suppose that we have a finite set E of points (say, a digital grid in one, two, or more
dimensions), and a set 7 of templates in E (in other words particular subsets of E, for
example squares or circles of a given diameter). For any point p € E, write 7,, for the set
of all templates T' € T containing p. We consider images E — G, where @ is a set of
grey-levels; each such image I associates to every point p € E a grey-level I(p).

Consider an image I from which we want to erase all narrow peak features (for example
isolated peaks or ridges). By ‘narrow’ we mean ‘not large enough to contain a template
T € T'. For example if E is a two-dimensional grid and 7 consists in all d X d squares in
E, then ‘narrow’ means ‘whose width or height is less than d’. Let us now explain what
we mean by ‘erasing’ narrow peaks. A peak is a set of points having a relatively higher
grey-level than the background. Consider a peak §, in other words a set § of points whose
grey-level is not smaller than a background grey-level g. If § contains a template T € 7,
then the peak on T (w.r.t. the background grey-level g) will be preserved, in other words
the points in T will keep their grey-level > g. Thus for any point p € E and grey-level ¢
such that I(p) > g, the grey-level of p in the new image will still be > g, provided that there
exists a template T' € 7 containing p, such that all points in T have grey-level > g. Hence
we obtain from I a new image I' defined by

' .
I'(p) = ﬁ%?};’%ﬂﬂ for pe E. (1)
(Note that when 7, is empty, in other words no element of 7 contains p, then I'(p) is set
equal to the the smallest grey-level in G. But this generally does not happen in practice,
because 7 is usually chosen to cover the whole of E).

With this operation, in every peak each portion not large enough to contain an element
of T is erased. This is illustrated in Figure 1 in the case where F is a one-dimensional grid
and 7 consists in the set of all segments of a given length d. Here all peak portions narrower
than d are simply levelled, leaving only the portions of width at least d.

Figure 1. Levelling all peaks narrower than d.

One usually takes as templates in 7" local windows associated to points of B, in other
words to each p € E corresponds a window W(p) (generally containing it), and 7 is the set
of all W{p) for p € E. Now given any p € E, we define the dual window W*(p) by

ge W*(p) iff peW(q). (2)

1

Thus 7, is the set of all W(») containing p, in other words of all W(g) for ¢ € W*(p). Then
(1) becomes, by substituting W{(¢) for T":

I'(p) = in I for pe E. 3
(p)= max —min I(r) P (3)

We get thus the min-max filter of Nakagawa and Rosenfeld {4]; it is the composition
Mazyw~ o Miny (4)

of the min filter Miny followed by the max filter Mazw -, these two filters being defined
by
M4 I = in 1
inw(I)(p) = min I(g)

d Mazw-(I = x I
an we(I)(p) = max I(q)

for I:E—-G and peg kB, (5)

Often one choose the windows W(p) as translates of a fixed template B about the
origin, in other words for each p € F we have:

W(p)={p+b|be B}. (8)

Then the dual windows W*(p) are translates of the template obtained from B by a central
symmetry, in other words:

W*(p) = {p—b|be B}. ()

The filter described above succeeds in removing from an image narrow peaks and ridges.
Then by subtracting the filtered image from the original one, one obtains an enhanced image
of these peaks and ridges. This will indeed be shown in Chapter 11 with angiographic images.
However, such a filter is too sensitive to dark speckles, for example isolated points of low
grey-level, This is shown in Pigure 2, where the same filter as in Figure 1 is applied to an
image corrupted by speckle noise. One sees that a few isolated points of low grey-level are
sufficient to provoke the deletion of peaks which would have otherwise been preserved.

A LT

— — A\

Figure 2. Peaks wider than d levelled because of holes.

We want to have a filter with the same global behaviour as that min-max filter, but
which preserves such peaks. As we will explain below, this will be possible by using a low
rank filter instead of the min filter in (4), and taking the minimum between the original
image and the one resulting from the low rank and max filterings. The low rank can be
chosen according to the degree of speckle noise. Then a wide peak feature with small holes in
it will be preserved (with its holes of course}. Moreover, by taking templates of small width

2

in 7, our new filter can also be used to erase bright speckle noise, for example isolated points
of high grey-level. Other advantages will be mentioned later. The comparison between the
min-max filter and our new one will be illustrated in practice in Chapter III, where we will
present results on angiographic images.

Let us analyse the behaviour of the min-max filter more closely. Write I for the original
image, and I' for the one obtained after filtering. Given an arbitrary background grey-level
g, we will call ‘high’ all grey-levels > g, and ‘low’ all those < g. A peak can be considered
as a set of points with ‘high’ grey-level. The behaviour of the min-max filter is as follows:

A point p will have a ‘high’ grey-level I'(p) in the filtered image iff there is at least one
template T € T containing p, such that all points ¢ € T have ‘high’ grey-levels I{q) in
the original image. (This requires in particular that I{p) is high).

The problem is that if we have a template 7' such that all points of T except one
have ‘high’ grey-levels, the peak on 7 will not be preserved in I'. We must thus relax the
condition that “all points ¢ € T have ‘high’ grey-levels I(g) in the original image”. Let us
say “most points” instead of “all points” (we will give below the precise meaning of ‘most’).
Now if most points ¢ € T have ‘high’ grey-levels I(g), this does not require that I(p) is high
(p can be an exception); but then a ‘low’ grey-level I{p) in the original image can give rise to
a ‘high’ grey-level I'(p) in the filtered image, in other words a hole in the peak on template
T can be filled. We do not want this, and so we make the specific requirement that “p has a
‘high’ grey-level I(p) in the original image I'” in order to get a ‘high’ I'(p) (this requirement
was redundant in the min-max filter, where “all points” in T included »). We get thus the
following general behaviour:

A point p will have a ‘high’ grey-level I'(p) in the filtered image iff p has a ‘high’ grey-
level I(p) in the original image, and there is at least one template T € T containing p,
such that most points ¢ € T have ‘high’ grey-level I(q) in the original image.

We have thus defined a new class of filters, whose members are specified by the partic-

ular meaning that we give to the expression ‘most points’. This class was first presented in
[6], and a few examples were given. Let us recall two of them here.

Suppose first that “most points” means “all points, except at most k — 1”, where k
is a small positive integer (k = 1 for the min-max filter). Then the filter is given by the
following equation generalizing (1), where rank® is the k-th rank function (which selects the
k-th smallest element in a sample):

! e aund k
I'(p) = nun{I(p),arpeaéz_E r?‘.re%g I(r)} for peE. (8)

In the case where the templates in T are windows associated to points of E, then the filter
has the decomposition

id A [Mazw~ o RE,] (9)

generalizing (4), where A is the minimum operation between two filters, id is the identity
filter, and RY, is the k-th rank filter defined by:

R} (I)(p) = rank® I fi ' B
w(D(p) ;‘gw(p) (9) or ['E-+G and p¢E. (10)

In other words, our new filter applies to an image I the composition of the k-th rank filter
R¥, followed by the max filter Mazw-, and then takes the minimum between the resulting
image and the original one I.

Suppose next that “most points” means “all points, except isolated ones”, in other
words a peak on template 7' can be levelled only if there are two adjacent points of 7' not
belonging to that peak. Then in (8) we must replace the function rank® by the function
mm[I,T] which takes the minimum of all maxima of greylevels in pairs of adjacent points
of T, in other words defined by

mm[l,T] = {p.;?éiﬂ(i") max{I(p),I(q)}, (11)

where A(T') is the set of pairs of adjacent points in T'. We get thus:
I'(p) = nﬁn{I(p),IqéaTx mml[I,T]} for pe E. (12)

Similarly (9) becomes
id A [Maa:w* O me], (13)

where Mmyy is the filter corresponding to the function mm/[I, 7).

As can be seen in Figure 3, in the case where E is a one-dimensional grid and 7 consists
in the set of all segments of length d, the above filter will not level peaks of width > d having
isolated holes of width 1. It will preserve them, without filling their holes of course.

)

Figure 3. Peaks wider than d with isolated holes of width 1 are preserved.

Now (12) gives the general form of our new type of filters, where mm(I,T], instead
of being defined as in (11), can be any function giving a result > g (a ‘high’ grey-level)
whenever ‘most’ of the points of T have a grey-level > g. If M(T) is the set of minimal
subsets of 7' which can be considered as containing ‘most’ points of T, then mm(I, T is
given by

mm{I, T} = s, min I(r). (14)

In other words, mm[I,T] can be any composition of min and max functions on grey-levels
of points in 7. Consequently in (13) Mmy can be any filter applying a composition of min
and max functions inside each window W(p). It is in this form (13) that our class of filters
was presented in [5], and other examples of such filters were suggested. As we will see later
in this chapter, all filters given by (12) share some general properties.

4

However for practical purposes the implementation and angiographic application of
such filters will be restricted to the ones expressed in the form of (9), where all windows
W(p) are translate of a given rectangular mask (see (6) and (7)). In other words, we will
consider those filters where each template is a A X w window, and the function applied within
each window is the k-th rank filter, with 1 < & < hw,

In Section 1.2 we will state without proof general mathematical properties of the filters
given by (12} and (14}, as particular cases of a wider class of image operators called openings.
Then in Section 1.3 some practical and technical considerations on the behaviour of the rank-
max filters of (9) will be discussed. The PASCAL implementation of these rank-max filters
will be deseribed in Chapter II, and their application to digitized angiographic images will
be the object of Chapter III.

1.2, General mathematical properties

Unless one is interested in the general theoretical background in which our new class of
filters has been proposed, this section can be skipped. The main properties of the subclass
of rank-max filters that we have implemented (see Chapter IT) will be recalled in Section L.3.

Call M the set of filters given by (12) and (14). The first important property of the
clements of M is that they are what one calls (algebraic) openings. These are generally
defined as operators on general algebraic structures called complete lattices (see [2,7]), but
we will consider them here as operators on the set T of images I : E — Q. Indeed, if we
assume that G contains the adherent points of every sequence of elements in it (that is, it is
closed in the compact topological space R U {+o0} of real numbers with +co added), then
T will effectively be a complete lattice.

Let us thus first recall the definition and main properties of an opening (on Z). The
ordering < on grey-levels in G extends naturally to images B — G. Indeed, given two
images I,J : E — G, we write I < J iff I(p) < J(p) for every point p € E, and this can also
be written J > I. A map a :Z — T is called an opening iff it is

(¢) antiextensive: for any I € T, a(I) < I.
(é4) idempotent: a o a = a, in other words for any I € Z, a{a(I)) = a(I).
(¢ié) increasing: for any I,J € Z, I < J implies that a(I) < a(J).

As announced, we have the following:

Proposition 1. A filter in M is an opening.

We will not prove this result here. Note that the fact that such a filter applies only
compositions of min and max functions to grey-levels, implies (see [6]) that its behaviour is
determined in a unique way by that of its restriction to binary grey-levels. One has thus
to prove this proposition only for G = {0,1}. That it is antiextensive and increasing ((?)
and (4it) above) is fairly evident, but idempotence (%) requires some reasoning. Note also
that it can be shown that such a type of filter is a particular case of a new type of opening
defined in {7] for complete lattices.

What does it mean in practice that a filter F € M is an opening? Antiextensivity
means that F will delete some positive features from an image I, Idempotence means then
that once F has deleted some features, nothing remains to be deleted in a further application

b

of F; in other words F converges in one pass. Increasingness implies then that if F removes
some positive feature from an image, it should also remove any smaller positive feature. Thus
an opening is an operator which removes from an image all positive features smaller than
‘something’, and does its job in one pass. The definition of a particular opening depends
then on the definition of that ‘something’.

In the algebraic theory underlying Mathematical Morphology (see {2,7]), an opening is
characterized by its set of invariants, and the latter set has an interesting structure. Before
explaining this in detail, we must introduce the structure of complete lattice on T.

We assume that G contains the adherent points of any sequence of elements inside
itself. This is the case for example if G is finite, or if G = R U {oco}. Then any set U of
grey-levels has a supremum sup U and an infimum inf U, both belonging to G. They are
defined as follows:

— The supremum sup U is the least upper bound of U, in other words sup U > u for every

u € U, and for any ¢ € G such that ¢ > u foreveryu € U, sup 7 < 2.

— The infimum inf U is the greatest lower bound of U, in other words inf I/ < u for every

w € U, and for any z € G such that 2 < u for every u € U, inf U > 2.

In particular G has a greatest element Ig = sup G and a least element Og = inf G.
In the same way as one sets an empty sum equal to zero and an empty product equal to
one, we set sup® = Og and inf § = I5. The existence of the supremum and infimum of any
subset of G defines it as a complete lattice.

As the order relation < on G extends to 7, the complete lattice structure of G extends
also to Z. Given a subset J of T, the supremum V J and the infimum A J of J are

respectively the lowest upper bound and the highest lower bound of 7 in Z, and they satisfy
the following:

[V 71(v) = sup{I(p) | T € 7}
and [7)(p) = inf{I(p) | T € 7}
Also T has a greatest element I7 = \/ 7 and a least element O7 = A Z defined by
Iz(p) = 1o
and 04(p) = Oq
We have V) = Oz and A D = I,

We can now turn to the characterization of openings on 7 by their invariants. Given
an opening a on T, an image I € 7 is called an invariant of ¢ if I = a(l). We will write
Inv(a) for the set of all invariants of « in Z. We need now to introduce another concept
in order to characterize these sets Inv(a). Given a subset J of T, we will say that J is
sup-closed if for any subset K of 7, V K € 7 (in particular Oz = V@ € 7). We have then
the following characterization of openings, whose proof can be found in [7]:

for peE.

for pe E.

Proposition 2. There is a bijection between openings on I and sup-closed subsets of T,

An opening « and a sup-closed set J which correspond under this bijection define each

other as follows:
J = Inv(a).

VIeZ, ol)=\[{TeT|J<1I},

6

This correspondence between openings and their sets invariants can also be applied to
order relations between openings, The following result is also proved in [7}:

Proposition 3. Let a and o' be two openings on Z. Then the following four statements
are equivalent:

(#) a<a,
(i) aoad! = a.
(i) o' o = a.
{v) Inv(a) C Inv(a').

In the same way as the order relation < can be extended from T to the set of operators
T — T (and in particular to openings, see Proposition 3), so can the operation \/. For any
set U{ of operators T — T, \/ U is defined by setting

(Vu))y =\/{8() | B e U}

for any image I € T in particular when I = @ we get /i = Oz, where 0Oz(I) = Og for
every I € Z. The following result can then be proved:

Proposition 4. The set of openings on I is sup-closed. Given a setU of openings, Inv(\ U)
is the smallest sup-closed subset of T containing Inv(a) for every a € U. The least opening
is Oz (which maps every image on Oz), and the greatest opening is the identity id.

For example if an opening preserves all horizontal peak features in an image, and
another one preserves all vertical peak features in that image, then their supremum preserves
both horizontal and vertical peak features.

Let us comment these results in the case of openings applying compositions of local
min and max functions to grey-levels. For such an opening a, there is a set 8, of subsets

of the space E, such that for any B € B, and any grey-level g € G, the itmage B (g) defined
by setting for any p € E:

sow={4 Hr<h (15)

is an invariant of the opening «, and every element of T nv(a) is the supremum of a set of
images having that form (15). For example, in the min-max filter given by (1), By = 7,
while in the rank-max filter given by (8), B, contains all sets of the form 7' — X , where
TeT, XCT,and |X| < k.

The set By is found by restricting the set G of grey-levels to the binary set {0,1}, and
by taking the set of all B C E such that B(1) is a minimal non-zero invariant of that opening
a. In the non-binary case, the images B(g) are the basic ‘building blocks’ of I nu(a). As the
invariants B(g) are composed of a flat portion on B superimposed on Oz, such an opening
o applying compositions of min and max functions to grey-levels will be called fat,

Point (iv) of Proposition 3 means that for any B € B, B is the union of some elements
of By, In the next section we will give several conditions for having a < ' in the particular
case of the rank-max filter (9) with rectangular windows.

As the supremum of a finite number of compositions of min and max functions is still a
composition of min and max functions, Proposition 4 implies that the supremum of a set F

7

of flat openings on 7 is again flat, (This holds because such a set F is always finite, due to
the finiteness of E; if we remove the assumption of finiteness on E, we must then explicitly
require that F is finite). Note also that both Oz and id are flat (the former in the extreme
sense that Og is obtained by applying the function max to an empty set of variables).

An interesting property of flat openings is given helow without proof. Write 0 for the
image having grey-level 0 everywhere (this is not necessarily the same as Oz). Then:

Proposition 5. For any image I € T and any flat opening a on Z,
a(l —a(I)) = 0.

Note that this result is not true for any non-flat opening. Its meaning is the following.
The flat opening o removes from an image I all ‘narrow’ positive features, Then I - a(J)
represents all these ‘narrow’ positive features from I. Applying a to these isolated ‘narrow’
positive features, nothing should remain,

I.3. Technical aspects of the rank-max filter with rectangular windows
As we will only implement the particular filters given by (9) with all windows W(p)
being translates of a fixed rectangular mask, it is interesting to give their own properties.

Let us first particularize the mathematical results given in the preceding section (this
especially important for the reader who would have skipped that section). Given a rank-max
filter & and the identity operator id, Propositions 1 and 5 can be expressed as follows:

(2) a <id.
(i) aoa=a.
(#é¢) a is increasing,
(iv) ao(id —a) = 0z, where 07 is the operator mapping every image I onto the zero image
0 having grey-level 0 everywhere.

As said before, () means that « removes positive features, (¢¢) that it does it in one
pass, and (44) that if & removes some positive feature, then it removes any smaller positive
feature. In other words o removes in one pass from an image all positive features which are
small enough. Finally id ~ « extracts from an image the features which are removed by «,
and so (iv) means that applying « to these extracted features removes everything.

We recall that given n images Ih,...,1,, their maximum 5, v - - v I, and minimum
Iy A+ AT, are defined by setting

[Li V.- v L)(p) = max{Li(p), ..., I.(p)}
and [y A+ A LJ(p) = min{Li(p),. .., In(p)}

for every p € F, and these two operations generalize to operators T — 7 (where Z is the set
of images I : I — @), by setting for any n operators f4,...,Bn:

BV v Bal(T) =)V -V Bl
and [y Ao AB(I) = B(I) A A Bo(D)

for every I € 7.

By Proposition 4 (see also the discussion on ‘flat openings’), if one takes the maximum
B =oa1 Ve Vay, of rank-max filters o1,...,ay, then B still satisfies properties () to (iv).

The properties given above hold not only for rank-max filters, but also for all ‘flat

openings’ defined in the previous section. Let us now concentrate on the particular properties
of rank-max filters. We write RM [k, W] for the filter

id A [Mazw- o RY,)

given in (9) for a rank k, a set of windows W(p) associated to points p € E, and a set of
dual windows W*(p) defined in (2) by

ge Wi(p) iff pe W(q).

An image I is invariant under RM{k, W] iff for every p € E there exists some ¢ € E with
p € W(g) (in other words ¢ € W*(p)), such that less than k points » € W(q) have grey-level
I(r) < I(p). We recall that the set of invariants of RM[k, W] is written Inv(RM[k,W]).
This set is generated by taking maxima of sets of images of the form K fg], where g € G,
K C W{(q) for some ¢ € E, and [W(q) — K| = k — 1; these images K[g] are defined by
setting for every p € E:

_ if p € Klgl,
Klgl(p) = {%G if§¢ K[ﬁ],

where Qg is the least grey-level in G.

Given a = RM[k, W] and o' = RM[k',W'), one can compare them. If o < o, this
means that a removes from an image I more than o does. We say then that a is stronger,
or more active, than a'. By Proposition 3, we know that o < o’ iff ac e’ = @, iff ' o =
iff Inv(a) C Inv(a'). Thus when one applies in succession two rank-max filters such that
one is stronger than the other, this amounts to simply applying the stronger filter.

When can we say that « is stronger than «'? If k < k', it is clear that Rk < R,
and so by (9) RM[k,W] < RM([k',W]. There is also a circumstance where we can say
RM(k, W] < RM[k,W'] for two different set of windows. Let us say that the windows
W'(g) cover the windows W {(p) if for every p € E the window W (p) is the union of a certain
number of windows W'{g¢). Suppose indeed that the windows W' (¢) cover the windows
W(p). Given an image I invariant under RM[k, W], for any point p € E there is some
window W(g) containing p such that less than k points » € W(q) have I(r) < I(p); as the
W'(g') cover W(q), there is some ¢' € E such that p € W(g') C W(q), and so less than &
points » € W'(q) have I() < I(p); this means that I is invariant under RM [k, W']. Thus
Inv(RM[k,W]) C Inv(RM[k,W']), and so by Proposition 3 RM[k, W) is stronger than
RMT[k, W'l. We sum up:

— Ifk < k', then RM{k, W] < RM{K' ,W].

— If the windows W'(q) cover the windows W {(p), then RM[k, W] < RM [k, W]

In practice we will suppose that the space FE is a subset of the set 2% of n-tuples of
integers (in other words of the set points in n-dimensional space having integer coordinates).
The points of Z" can be considered as vectors, and so they can be added or subtracted. Given
a subset X of Z", we will write —X for the set of —z for 2 € X, and for any point p € Z"

9

we will write p+ X for the set of points p-+ 2 for 2 € X, and p~ X for p++ (—X). We assume
that the windows W (p) are translates of a fixed template B, in other words W{(p) = p+ B
for every p € E (see (6)). Then it is easy to see that the dual window W*(p) is given by
W*(p) = p— B (see (7).

It should be noted that with this choice of windows the filter RM [k, W] is independent
of the way the window is set about a point p, in other words it does not change if we
replace B by a translate b + B of it. Indeed, if we choose the translated windows Wy(p)
by setting Wi(p) = p + (h + B), then W (p) = p ~ (h + B); it follows that the windows
Wih(q) for for ¢ € W} (p) are given by ¢+ h+ B for ¢ € p — h — B, in other words by
(p—h—-0+h+B=p->b+ B forbe B. The set of such windows is independent of
h, and so Mazwy o R’,:'Vh, which assigns to p the grey-level equal to the maximum, among
such windows, of the k-th rank function of grey-levels inside a window, is independent of A.
It follows then by (9) that RM[k, W,] = RM[k, W]. For example, in our implementation
of the rank-max filters in the case where B is a h X w rectangle, we will set B having 0 at
its bottom right corner; then for any p € B, W(p) will be the i X w rectangle having p as
bottom right corner, and W*(p)} the one having p as top left corner.

Given the windows W(p) = p+ B and the windows W'(p) = p+ B', then the windows
W'(g) cover the windows W'(p) iff B is a union of translates of B'. For example if B is
a h X w rectangle and B’ a h' X w' rectangle, this happens if A' < h and w' < w. Write
RMIk, h X w] for RM[k,W] when W(p) = p+ B for a h X w rectangle B; then we get the
following;:

—Ifk <k, h> A, and w > w', then RM[k,h x w) < RM[k', k' x w'].

We have outlined the implications of the results of the preceding section for the rank-
ax filter, especially for particular choices of the windows W{p). Let us now discuss some
practical issues concerning these filters.

One problem is that for implementation purposes we have assumed that the space E
is finite. If the windows W(p) are translates of a fixed template B, then for certain points
p relatively close to the border of E the window W(p) = p 4+ B will not be completely
contained in F, or p will belong to the window W(g) associated to a point ¢ ¢ E (in other
words, W*(p) = p — B will not be completely contained in E). How then does one define
the behaviour of the filter RM [k, W] on such points?

A possible solution is to restrict each window W{p) and W*(p) to its intersection with
E. In other words, for every p € E, we set W(p) = (p+ B)N E and W*(p) = (p— B) N E.
Then we still have the relation ¢ € W*(p) iff p € W(q) given in (2). In the case where the
size of W (p) is less than the rank k, we select (for the filter R%,) instead of the “k-th lowest
grey-level in W{(p)” the largest grey-level in it. In other words in each window (p + B)n E
we select the r,-th lowest grey-level, where r, = min(k,|(p + B) N E|).

We have not adopted this solution in our implementation. Let us describe the one we
have chosen, The basic idea is to extend the space E by a frame E' such that for every point
p € E the window p + B is included in E U E', and to fill the image by assigning arbitrary
grey-levels to points in E'. This is often done in practical implementations of filters. One
often assigns to points in B’ the grey-levels of their closest neighbors in E. However we
have prefered to assign to them a constant grey-level griz, which is either above every

10

grey-level in I (say Ig or +o0), or below every grey-level in I (say Og or —oo). These
two possible choices for grip give the two variants (respectively ‘plus’ and ‘minus’) of our
implementation. In the ‘plus’ variant, a narrow peak along the border of E will be part of
a wider peak in EU E’, and so it will be preserved. In the ‘minus’ variant, that peak will
not be part of a wider peak in EU E’, and it will be erased. Thus the ‘plus’ variant is to be
prefered when one wants to have the least change along the borders of the image.

In order to justify our solution we will show two things:

First, provided that we make (and for the ‘minus’ variant only) the very reasonable
assumption that for every p € F there is some ¢ € E such that p € ¢+ B C E (for example
if both F and B are rectangular and B is smaller than E), the resulting image does not
depend on the exact value of grig: in each variant, only on the fact that for every p € E we
have grig > I(p) in the ‘plus’ variant and grlg: < I(p) in the ‘minus’ variant. In particalar,
the grey-levels of points in the filtered image I' will always be within the set of grey-levels
of points in the original image I.

Second, despite the addition of the frame E' having constant grey-level grig:, the filter
can still be expressed in the form (9), provided that we define in a proper way the windows
W(p) (and W*(p)) for points p € E'. This is important, because it garantees that the
properties of the filter given above will remain valid with the modification made here.

For any point ¢ in EU F', write f, for rankk,,ew(q) I(r). Thus for every p € E we have

I'(p) = min{I(p), max = max min{I{p),f,}. 18
(p) {I(») (e fa} oS min{I(p) fa} (16)

Let us consider first the ‘plus’ variant. We assume that grlp > max,ep I(p). For
every point p € E, we have two cases:

(a) For every ¢ € W*(p), there are at least k points » of W(g) N E with grey-level
I{r) < I(p). Then whatever the choice of grig:, for every ¢ € W*(p) we have
fq = rankk,.ew(q)ng I{r), which is independent of grig:. Thus by (16) the value of
I'(p) is independent of grig:.

(b) There exists some g € W*(p) such that less than k points » of (¢ + B) N E have grey-
level I(r) < I(p). Then whatever the choice of grlg, f, > I(p) and so by (16) we have
I'(p) = I(p), which is independent of grlz.

Now we can choose %' and the windows W (p) and W*(p) on it in such a way that for
every p € E', there is some ¢ € E' such that p € W(g) C E'. Then rank” e I(r) =
grigp = I(p), and so by applying the filter as expressed in (9) on the image I extended to

EU E!, we will get I'(p) = grlg = I(p) for p € E', and so our construction is coherent with
formula (9).

Let us consider next the ‘minus’ variant, We assume that grig < mingep I(p). Take
any point p € E. For any ¢ € W*(p) we have two possibilities:

(@) [W(q)Nn B'| =4, > k. Then whatever the choice of griz, we have fo = gripe.

(8) IW(g) N B'| = i, < k. Then we have f, = rank"_iﬂ,,ew(q)r,E I{r), whatever the choice
of grig:.

But we said above that we assume that there exists some ¢ € E such that p € W(g) C
E, and we have then ¢ ¢ W*(p) and |W(g) N E'| = 0 < k. Thus the set X, of points of

11

W*(p) satisfying () is not empty, and by (16) we have

I'(p) = nﬁn{f(p),maX{grlEf,;ggﬁ fq}} = min{I(p), max f,}

o k—ig
= min{I(p}, max rank - T ("},

which is independent of grig:.

Now for any choice of the windows W{p) and W*(p) on E', by applying the filter as
expressed in (9) on the image I extended to E U E', for p € E', I'(p) is the minimum
of I{p) = grlp and an expression which is always > grip, in other words we will get
I'(p}) = I(p). Thus our construction is coherent with formula (9).

We have thus shown that in both variants, our solution of extending the space E
leads to a filter which is still coherent with formula (9) (and in particular satisfies all its
properties), and that the actual value of the grey-level grig: on the frame E' extending E
does not influence the behaviour of the filter, provided that:

(¢) this value satisfies the constraint inherent to each variant (grlg > maxpep I(p) in the
‘plus’ variant, and grlp < mingep I(p) in the ‘minus’ variant), and
(#2) in the ‘minus’ variant the space E is equal to a union of windows W{(g) for some points

q € E (a condition which is naturally satisfied when each W(p) == p+ B, where B and
E are rectangular and B is smaller than E).

We said above that the ‘plus’ variant is the most suitable one when one wants to
minimize the changes along the border of the image. Therefore we have used it in our
application of the filter RM[k,h X w] to angiographic images. The behaviour of this filter
on the ridges formed by blood vessels will be described in Chapter III, where we will see
that it has several advantages over the min-max filter of Nakagawa and Rosenfeld.

We have described the main properties of the filter RM [k, W], in particular for rect-
angular windows. We have explained how to apply it to finite images without problems at
the border. Affer these clarifications, we are now ready for the description of the PASCAL
implementation.

12

II. Implementation in PASCAL

We will describe the computer implementation of the rank-max filter RM [k, W], where
each window W (p) is the translate p+ B of a rectangular template B of width w and height
h. The input image must have a fixed width, but can be of any height. The three parameters
k,w, and h, as well as the type of grey-level on the border surrounding the image (maximum
or minimum grey-level) are variables which can be chosen by the user. We first present the
algorithm in a general way, and then give the PASCAL code preceded by a brief explanation.

II.1. Description of the algorithm

We suppose that we have an image [on a rectangular grid F of width N, on which we
want to perform the filter RM [k, W] with windows W (p) being k X w rectangles. For every
point p, we must consider all windows containing it, and in order to avoid problems along
the border, we must extend the grid F by a surrounding frame E' containing h — 1 rows
above and below F and w - 1 columns to the left and right of it. The image I is extended

on E' by assigning to points of E' a constant grey-level, the maximum one or the minimum
one.

For every point p, W(p) = p+ B and W*(p) = p— B for a h X w rectangle B. As
explained before, it does not matter where B is located w.r.t. the origin. Thus we will

set B having 0 at its bottom right corner; then for any p € E, W{p) will be the h x w

rectangle having p as bottom right corner, and W*(p) the one having p as top left corner,
The windows containing p are all W{g) for ¢ € W*(p).

The filter RM[k, h X w] performs the following operation on I: for every point p € E,
one computes for every ¢ € W*(p) the k-th rank function on the grey-levels of points of W(q)
(whose result will be written f,}, then one takes the maximum m(p) of all £, for ¢ € W*(p),
and the minimum of I(p) and m(p) gives the grey-level I'(p) in the filtered image I'.

Figure 4. E, E', and E".

Let E" be the portion of the frame E' remaining after the deletion of its top and
left portions (see Figure 4). With our choice of windows, the set of all ¢ for which fq is
computed, namely the union of W*(p) for p € E, covers EU E", This leads to the following
description of the behavior of the filter. First for every h x w rectangle inside E U E' one
computes the k-th rank of the grey-levels of points inside it, and this value is associated

13

to the bottom right corner g of that rectangle and denoted f,; thus f, is defined for every
g € EU E", Then for every h X w rectangle inside E U E" one computes the maximum of
the values f, of points g inside it, and this value is associated to the top left corner p of that
rectangle and denoted m(p); thus m(p) is defined for every p € E, and the minimum of I(p)
and m(p) gives the grey-level I'(p).

As described above, the filter RM [k, h X w] can be implemented with a memory buffer
consisting of two intermediate images between the original one I and the filtered one I':
first the extension of image I to E U E', then the image of all values f; for ¢ € EU E",
This buffer and the operations leading from the original image I to the filtered image I' are
illustrated in Figure 5.

_Mmin
| max [,
ET/ I'lp)

I

f
O lrankk |_»»

Figure 5, Decomposition of the filter into stages,

However in a sequential implementation of the filter we do not need at every time this
whole buffer, but only a horizontal slice of it, high enough to contain a row of windows
W(g), which will be displaced sequentially from top to bottom. It will be an array of height
h and of width equal to that of E U E' plus that of E U E”, in other words 2N + 3(w — 1),
where N is the width of the grid E. This has two advantages: a reduced memory, and the
possibility to apply the filter to images of any height. We will call this slice the window
array. The process of reading the input image, moving the window array, computing of the
values f, and m(p) over a row, and writing the output image, is performed sequentially row
by row.

The window array {of height A and width 2N -} 3(w — 1)) can be laterally divided into
two parts (see Figure 6). The left part covers the extension of the input image I to EU E',
has width ¥ 4 2(w — 1), and can be subdivided into a left margin of width w — 1, an input
image portion of width N, and a right margin of width w — 1. The right part covers the
intermediate image consisting of values f, for points ¢ inside E U E", has width N +w — 1,
and can be subdivided into an main portion of width N and a right margin of width w — 1.

The following two facts concerning the two parts of the window array follow from
Figure 6, First, to any point of the right part corresponds a unique point of the left part,
namely the point on the same row, but located w — 1 points further from its respective left
border. In particular the points of the left margin of the left part do not correspond to
points of the right part. Second, at the beginning of the scanning of the input image (when

14

Figure 6, Decomposition of the window array.

we read its first row), the A — 1 top rows of the right part are idle; it is only when the window
array is completely below the top part of frame E' (in other words when at least A rows of
the input image I have been read) that the right part of that array can be completely filled
with values fg.

The filter RM{k, h X w] is implemented by the following algorithin. One takes a window
array of height h and width 2N + 3(w — 1) which is initially filled with the constant grey
level grip: associated to points of B'. We repeat the following sequence of operations, which
correspond to a vertical scan of image I, the corresponding calculation of rank and max
functions, and the writing of the resulting lines of the filtered image I'.

First, we must shift the window array downwards by one unit on the buffer; this
corresponds to shifting all rows of that array by one unit upwards, and liberating the last
row. In other words, for i = 1 to h — 1 the i-th row is replaced by the ¢ 4+ 1-th row, and
the A-th row is free. In fact, in our PASCAL implementation, we do not interchange the
contents of these rows, but we have a labels array associating to i = 1,..., Ak the physical
position of the row in the window array corresponding to the i-th row in the algorithm; then
we have only to interchange labels and find a free row whose position will be a new label
associated to A, in other words to the last row of the window array.

Second, in the left part of the window array, the last row must correspond to a new
row of the input image I extended to E U E', If I is not completely read, we get a new
line of it, and write it on the corresponding portion of the last row, namely the input image
portion of the left part. If 7 is completely read, we must read a row of the bottom part of
E', that is a row with constant grey-level grlgs. In our PASCAL implementation, we do
not copy anything in this case, but we associate with h the label 0, which corresponds to a
supplementary row added to the window array, whose left part is already set to the constant
grey-level grig:.

Clearly this process of shifting the rows of the window array and reading the input
image is performed provided that beforehand we have not reached the end of I (if = 1)
or less than b — 1 rows of the bottom part of B’ have been read (if & > 1), Otherwise we
should already have stopped.

Third, the left part of the window array contains N 4w —1 rectangular h X w windows,
For each one of them we compute the k-th rank of its grey-levels, and this value is given to

15

the point in the right part of the window array corresponding to the bottom right corner
of that window. In other words, the result corresponding to the i-th rectangular window in
the left part is given as grey-level to the ¢-th point on the last row of the right part.

If we have not yet read at least h rows of the input image I, then there is still a portion
of the right part which has not been filled. We have then nothing more to compute at this
stage of the scan. On the other hand, if we have read at least h rows of the input image
I, then the whole right part has been filled, and there is a fourth task at hand. The right
part of the window array contains N rectangular b X w windows. For each one of them we
compute the maximum of its grey-levels, and this value is to be compared to the grey-level
of the point in the left part of the window array corresponding to the top left corner of that
window. In other words, the result corresponding to the i-th rectangular window in the
right part is compared to the grey-level of the ¢ + w — 1-th point on the first row of the left
part. We take the minimum of these two grey-levels, and the row of N values obtained in
this way becomes a new row of grey-levels in the filtered image I',

This sequence of three or four operations is continued, as we said above, as long as at
the beginning of it we have not reached the end of the input image I or have not read w — 1
rows of E' after the end of I. The second, third, and fourth operations are illustrated in
Figure 7.

Figure 7. Computations in the window array.

In order to know whether we have already read h rows of the input image I (for deciding
if we have to apply the fourth operation) or h — 1 rows of E’ after the end of T (for deciding

if the algorithm must stop), we take two counters up and down whose values are updated
at each step.

The computation of the k-th rank (in the third operation) or of the maximum (in
the fourth one) of grey-levels in k X w windows is done by the algorithm of Huang et al.
[3]. Let k be the required rank. For any window X and grey-level g, write lower x(g) and
equalx(g) for the number of occurences in X of grey-levels respectively smaller than ¢ and
equal to g. We build an histogram of grey-levels in the first window X,. By scanning that
histogram for g increasing from the smallest grey-level to the largest one, we can iteratively
compute lowerx,(g) as the sum of equaly,(g') for ¢’ < g, and we do so until we have
lowerx,(g) < k < lowerx,(g) + equalx,(g). This gives the required k-th rank grey-level g,
in Xg. The k-th rank in the other windows is built iteratively by the following modification

16

of the histogram. Suppose that we have the histogram of grey-levels in the i-th window X;
and the resulting grey-level g; for k-th rank grey-level; we know also the value of lower x, (g:).
The next window X, is obtained from X; by deleting its leftmost column and by adding
a new rightmost column. For every grey-level g in the removed leftmost column, we must
decrease by 1 the value of equaly,(g), and also the value of lowerx,(g;} if g < g; for every
grey-level ¢' in the added rightmost column, we must increase by 1 the value of equalx,(g'),
and also the value of lowerx, (g:) if ¢’ < g;. This gives then the histogram for X, and
the value of lowerx,,, (9:). If lowerx,,, (g:) < k < lowery, ., (g9:) + equalx,,, (g:), then the
resulting grey-level g;yq is g;; otherwise we move up or down in the histogram until we
obtain lowerx,,, () < k < lowerx,,,(g9)+equalx,,, (g), which gives then the value for g;;1.

I1.2, The PASCAL program

Columns are numbered starting from 0, and so for an image N = 258 pixels wide, they
are numbered from 0 to maxcol=266. We choose a window array of length 640, leading to
the constant arrwm=639. The rectangular windows have their width and height bounded
by maxwwd=32 and maxwht=32 respectively, with the further constraint that their product
cannot exceed maxwsz=256. Grey-levels range between mingrl=0 and maxgrl=255.

The actual width and height of the windows (chosen by the user) are given by the
variables wwd and wht, and their product by wsz. We define also wwdm as wwd-1, and the
width of the left part of the window array is represented by arrhal#f, which is equal to
maxcol+wwd+ywdm,

The two variables up and down play a central role in the execution of the program.
Their value is initialized to 0. Afterwards up gives the number of lines of the input image
which have already been read, but when this number exceeds wht, up remains equal to wht.
The computation of window maxima and the writing of rows of the output image is done
only when we have up=wht. On the other hand down gives the number of lines of the frame
which have been read after the end of the input image. The program stops with the input
image file at end and down=wht-1,

The grey-level of the frame is given by bordergrl, which is set to mingrl in the
‘minus’ variant, and to maxgrl in the ‘plus’ variant.

The window array is represented by the variable windarr, which is a packed array
[0. .maxwht,0..arrwm] of mingrl..maxgrl. Note that the rows of the window array
are numbered starting from 1, contrarily to columns, In fact the rows of windarr do not
correspond directly to the rows of the window array in the algorithm; to the i-th row of
the abstract window array (¢ = 1,...) corresponds the row indexed no[i] of windarr,
where no is an array [1..maxwht] of 0..maxwht. The row of windarr indexed 0
corresponds to a row entirely contained in the frame, and so all entries of its left part keep
the value bordergrl throughout the execution of the program. The rows indexed 1 to
wht correspond to rows of the input image, and the input image portion of their left part
is filled with values from the input image. In other words no[i]=0 when the i-th row is in
the frame, otherwise no[i] lies in the range 1. ,wht.

The variable new is the index of the last row of the window array, in other words
new=no [wht]; we use also first=no[1].

17

The rows of the input and output images are accessed by the variable imrow, which is
a packed array [0..maxcol] of mingrl..maxgrl. These images are sequential files
(called infile and outfile respectively) whose elements are such rows.

The chosen rank for the filter is given by rnk. Inside each window we compute the
grey-level rnkgrl having the required rank (rnk in the left part of the window array,
and wsz in the right part). As said above, this computation is done by the algorithm of
Huang et al., which builds a grey-level histogram of the leftmost window and updates it
along the row. This histogram is represented by the variable histo, which is a packed
array [mingrl..maxgrl] of 0..maxwsz. The number of grey-levels in the window
which are smaller than rnkgrl is given by lower.

The other variables used in the program (see the VAR declaration in the code) are
auxiliary.

Let us now describe what the program and its procedures do. The reader should refer
to the code at the end of this section. There are five minor procedures: choiceofwsize,
choiceofrnk, choiceofbordergrl, makehisto, and movehisto. The first three inter-
actively allow the user to choose the values of wwd, wht, rnk, and bordergrl. The code
of these three procedures is self-explanatory and needs no further comment.

The last two minor procedures makehisto and movehisto are used to compute in
a given window, by the above-mentioned algorithm of Huang et al., the grey-level rokgrl
having a certain rank myrnk, and the number lower of grey-levels smaller than rnkgrl.
(NB: The variable myrnk will be rnk and wsz respectively on the left and right parts of
the window array.) The procedure makehisto is used for the leftmost window, It makes
the grey-level histogram histo of the window by scanning it, and initializes rnkgrl to
mingrl, with lower set to 0; as long as rnkgrl is too small for the rank myrnk (that
is, lower+histo[rnkgrl]<myrnk), it is increased and lower is modified accordingly.
The procedure movehisto is used for following windows. The leftmost column of the
previous window is removed, and the right column of the new window is added, leading to
corresponding modifications of the histogram histo and the number lower; if the value
of rnkgrl is too large for the rank myrank (that is, Lower>=myrnk), it is decreased and
lower is modified accordingly, until the right value is reached; otherwise we eventually
increase rnkgrl as we did in makehisto.

The four major procedures are init, inwvindow, rankwindow, and maxout. The
first one, init, initializes the values of all variables. In particular it calls the procedures
choiceofwsize, choiceofrnk, and choiceofbordergrl, Note that all entries of the
indexing array no are set to O (corresponding to rows entirely contained in the frame),
since we have not yet read any row of the input image, and that the left part of the array
vindarr is filled with the greylevel bordergrl. Note also the VAX/VMS nonstandard
PASCAL commands open used to allow the processing of file variables.

The procedure inwindow corresponds to the operation of shifting the window array
downwards by one unit, and reading one new row of the input image or the frame, We must
in particular update the values of up and down, and find a value for the index new of the
row of windarr corresponding to the new row. Tf up<wht, then only up rows of the input
image have been read, and they are put in the rows 1 to up of windarr; in this case we
increase up by one, and the new value of up is the index of an iddle row of windarr; we

18

choose this value for new. If we are at the end of the input file, then we increase down by
one, and the next row will be completely inside the frame; we set thus new to 0. If it is not
the case, then we read a new row of the input file, and copy it inside the left part of the row
of vindarr indexed new. Finally we update the indexing array no.

The procedure rankwindow finds (using makehisto and movehisto) the grey-level
having rank rnk inside each window in the left part of windarr, and copies it in the
corresponding place on the right part of the row of windarr indexed new,

The procedure maxout finds (using again makehisto and movehisto) the maximum
grey-level inside each window in the right part of windarx, compares it with the grey-level
of the corresponding point in the left part of the row of windarx indexed no[1], and capies
their minimum in a new row of the output file.

Having described all procedures, we come now to the main body of the program
rankmax. We first call init. Afterwards, as long as we have not finished, i.e,, either
we have not reached the end of the input file (for wht=1), or down<wht-1 (for wht>1), we
call inwindow, rankwindow, and if up=wht also maxout.

We have also written a program difcont, which subtracts two images, and linearly
enhaces the contrast of the difference image in order to fill the whole grey-level range. It will

be used to show the narrow peak features in an image which are removed by the rank-max
filter,

We reproduce the code of the two PASCAL programs starting on next page.

19

PROGRAM rankmax(input,cutput,infile,outfile);
{logical names ’inf’ ‘outf’ for ’infile’ ’outfile’}

CONST

maxcol = 255;
arrym = 639;
maxwwd = 32;

maxwht = 32;
maxwsz = 266;
mingrl = 0;
maxgrl = 2b5b;
TYPE

wwdrng = O..maxwud;
whtrng = O..maxwht;
wszrng = 0,.maxvsz;

arrno = array [1..maxwhtl of whtrag;
grl = mingrl. .maxgrl;

colne = 0,.maxcol;

row = packed array [colno] of grl;

arwrng = 0..,arrwm;
whtarr = packed array [whtrng,arwrngl of grl;
hstgrm = packed array [grl] of wszrng;

VAR

wwd, wwdm, jj : wwdrng;

wht, up, down, new, ii, uu, first : whitrng;
wsz, rank, lower : wszrng;

no i arrnoc;

bordergrl, thisgrl, rnkgrl : grl;
imrow : row;

infile, outfile : file of row;

j» arrhalf : arvrng;

windarr : vhtarr;

histo : hstgrm;

20

PROCEDURE choiceofwsize;
VAR
width, height : integer;
BEGIN
REPEAT
writeln('Enter window dimensions, width (1..7,
maxwwd:3,?), height (1..’, maxwht:3, ?),?);
writeln(’with width * height not larger than?, maxwsz:4, ’:’);
writeln(width=’);
readln(width);
writeln(’height=");
readln(height);
UNTIL ((width>0) AND (width<=maxwwd) AND (height>0)
AND (height<=maxwht) AND (width*height<=maxwsz));

wwd:= width;
wht:= height;
wszi= wwddyht;
END;

PROCEDURE choiceofrnk;

VAR

rank : integer;

BEGIN

REPEAT
writeln(’Enter rank (1=MIN ..’,wsz:3,?):?);
readln(rank);
UNTIL ({rank>0) AND (rank<=wsz));

rnk:= rank;

END;

PROCEDURE choiceofbordergrl;
VAR
answer : char;
BEGIN
REPEAT
writeln(’Enter choice of border environment (+,-):%);
readln(answer);
UNTIL ((answer=’+') OR (answer=’-’));
IF answer=’+’ THEN bordergrl:= maxgrl ELSE bordergrl:= mingrl;
END;

21

PROCEDURE makehisto(myj: integer; myrnk: wszrng);
BEGIN
FOR thisgrl:= mingrl TO maxgrl DO histo[thisgrl]:= 0;
FOR ii:= 1 TO wht DO
BEGIN
uu:= noliil;
FOR ji:= O TD wwdm DO
BEGIN
thisgrl:= windarr[wu,myj+jjl;
histo[thisgrl]:= histo[thisgrll+i;
END;
END;
lower:= 0;
rnkgrl:= mingrl;
WHILE lower+histo[rnkgrl]<myrnk DO
BEGIN
lower:= lower+histo[rnkgrl];
rnkgrl:= rnkgrl+il;
END;
END;

PROCEDURE movehisto(myj: integer; myrnk: wszrng);
BEGIN
FOR ii:= 1 TO wht DO
BEGIN
un:= nofiil;
thisgrl:= windarr[uu,myj-11;
IF thisgrl<rnkgrl THEN lower:= lower-1i;
histo[thisgrl]l := histo[thisgri]l-i;
thisgrl:= windarr[uu,myj+wwdm] ;
IF thisgrl<rnkgrl THEN lower:= lower+i;
histo[thisgrl]:= histo[thisgrl]+i;
END;
IF lower>=myrnk
THEN REPEAT
ronkgrl:= rnkgrl-1;
lower:= lower-histol[rnkgrll;
UNTIL lower<myrnk
ELSE WHILE lower+histo[rnkgrl]<myrnk DO
BEGIN
lower:= lowerthisto[rnkgrl];
rakgrl:= rnkgrl+i;
END;
END;

22

PROCEDURE init;
BEGIN
open(infile, ’inf’,01d);
reset(infile);
open{outfile, ’outf’, ,new,,sequential ,fixed);
rewrite(outfile);
up:= 0;
down:= 0;
choiceofwsize;
wwdm:= wwd-1;
arrhalf:= maxcol+wwd+wudm;
choiceofrnk;
choiceofbordergrl;
FOR ii:= 1 TO maxwht DO no[ii}:= 0;
FOR ii:= 0 TO maxwht DO
FOR j:= 0 TO arrwm DO windarr{ii,jl:= bordergrl;
END;

PROCEDURE inwindow;

BEGIN
IF up<wht
THEN BEGIN
up:= up+i;
new:= up;
END

ELSE new:= no[1]:
IF EOF(infile)
THEN BEGIN
down:= down+1;
new:= 0;
END
ELSE BEGIN
imrow:= infile”;
get(infile);
FOR j:= 0 TO maxcol DO windarr[new,wwdm+j]:= imrow[j];
END;
FOR ii:= 1 TO wht-1 DO nofiil:
no[wht] := new;
END;

i

nol[ii+1];

23

PROCEDURE rankwindow;
BEGIN
makehisto(0,rnk);
windarr [new, arrhalf] := rnkgrl;
FOR j:= 1 TO maxcol+wwdm DO
BEGIN
movehisto(j,rnk);
windarr{new,arrhalf+j]:= rnkgrl;
END;
END;

PROCEDURE maxout;
BEGIN
first:= no(1l;
makehisto(arrhalf,ws=z);
thisgrl:= windarr[first,wwdm];
IF rakgrl<thisgrl THEN imrow[0]:= rnkgrl
ELSE imrow[0]:= thisgrl;
FOR j:= 1 TO maxcol DO
BEGIN
movehisto(arrhalf+j,wsz);
thisgrl:= windarr{first,wwdm+jl;
IF rnkgrl<thisgrl THEN imrow([jl:= rakgrl
ELSE imrowl[j]:

]

1

thisgrl;
END;

outfile™:= imrow;

put(outfile);

END;

BEGIN
init;
WHILE (NOT EOF(infile)) OR (down<wht-1) DO
BEGIN
inwvindow;
rankwindow;
IF up=wht THEN maxout;
END;
END.

24

PROGRAM difcont(output,hifile,lofile,outfile);
{logical names ’hif’ ’lof’ ’outf’ for ’'hifile’ ’lofile’ ’outfile’}

CONST

maxcol = 2bb;

mingrl = 0;

maxgrl = 2b6b;

grirng = 255;

TYPE

colne = 0, .maxcol;

grl = mingrl..maxgrl;

row = packed array [colno] of gri;
VAR

jj + colno;

mindif, maxdif, dif, difrng : integer;
hirow, lorow, outrow : row;

hifile, lofile, outfile : f£ile of row:

25

BEGIN

open(hifile, *hif’,0ld);

reset (hifile):

open(lofile, *lof’,0ld);

reset(lofile);

open(outfile, ’outf’,new,,sequential,fixed);
rewrite(ontfile);

maxdif:= mingrl;

mindif:= maxgrl;

WHILE NOT (EOF(hifile) OR EOF(lofile)) DO

BEGIN
hirow:= hifile~™;
get(hifile);

lorow:= lofile”;
got(lofile);
FOR jj:= 0 TO maxcol DO
BEGIN
dif:= hirow[jjl-lorow[jjl;
IF dif< mindif THEN mindif:= dif;
IF dif> maxdif THEN maxdif:= dif;
END;
END;
writeln('minimum difference=’,mindif);
vriteln(’maximum difference=’,maxdif);
IF maxdif>mindif THEN difrng:= maxdif-mindif ELSE difrng:= 1;
rosot(hifile);
reset{lofile);
WHILE NOT (EOF(hifile) OR EOF(lofile)) DD

BEGIN

hirow:= hifile™;

get(hifile);

lorow:= lofile";

get(lofile);

FOR jj:= O TO maxcol DO
BEGIN

dif:= hirow[jjl-lorow[jjl;
outrow[jjl:= mingrl+(((dif-mindif)*grirng) DIV difrng)

END;
outfile™:= outrow;
put (outfile);
END;
END,

26

II1. Applications to X-ray angiographic images

We have described in Chapter I the rank-max filter RM [k, W] and its main properties.
In Chapter II we have given its PASCAL implementation for rectangular h X w windows.
We will now give examples of its application in the processing of digitized X-ray arterial
images.

In Section 1.1 we said that an advantage of the rank-max filter over the min-max filter
is that, as the rank increases, it becomes less sensitive to small holes in peaks and ridges, for
example dark speckle noise. Another advantage is that it produces less artefacts. We assume
that each window W{p) is the translate p + B of a fixed template B. Suppose that we have
a peak or ridge portion X which is large enough to contain a translate of the window B, but
whose outline does not match that of B (see Figure 8). Then with the min-max filter only
the part Xp of X which can be filled by translates of B will be preserved, and X — Xp will
appear in the difference between the original and filtered image. But this difference image
is supposed to show peaks and ridges narrower than B, and so we have an artefact. Now
if we take the filter RAM [k, W] for a value of k a sufficiently large, many points of X — Xp
belong to a translate of B having less than & points outside X, and so the artefact in the
difference image will be greatly reduced.

\ v |
AN %2

B
tx,

Figure 8. Artefact produced by the min-max filter in the difference image

)

é
XX

Let us now give a few examples of the application of the rank-max filter RM [k, h X w)]
to angiographic images. We used digital images on a 256 x 256 grid with 256 grey-levels
(this fact is reflected in the choice of constants of our PASCAL program, see Section I1.2).
The filter was applied with square windows (A = w), and the ‘plus’ variant was adopted
for the choice of grey-level in the frame surrounding the grid (see Section L.3), in order to
minimize changes along the border.

First, by taking very small windows (2 X 2), one can eliminate a large proportion of
bright speckle noise (isolated peaks) or scratches, This is the case indeed for the min-max
filter RM{1,2 X 2], which eliminates all peaks too small to contain four mutually adjacent
points. We have taken the less active filter RM([2,2 x 2], which eliminates all peaks too
small to contain three mutually adjacent points. In Plate 1 we show an image with very
bright thin horizontal scratches. As seen in Plate 2, most of them (those one point wide)
are eliminated by the filter, In Plate 3 we show another image with bright horizontal noise
artefacts (although less conspicuous than in Plate 1), and a close look at Plate 4 shows

27

that they are reduced. This is more visible if we enhance ridges by taking the difference
between the image and the one obtained by a min-max filter with 16 X 16 windows. Plates 5
and 6 show this enhancement applied to Plates 3 and 4 respectively, and the reduction of
horizontal artefacts becomes clear.

The second application of rank-max filters is, as we have just seen with Plates 5 and 6,
the extraction and enhancement of blood vessels. We take relatively large windows (16 x 18),
and the filter RM [k, 16 x 16} will eliminate most blood vessels, since they are ridges narrower
than 16 points. Then the difference between the original and the filtered image shows these
blood vessels. (NB: We linearly enhace the contrast of the difference image in order to fill
the whole grey-level range —see the program difcont at the end of Chapter II). This is
illustrated for k£ = 1 in Plates 5 and 6, which correspond to Plates 3 and 4. Clearly Plate 6
gives cleaner result, and so we can safely restrict our enhancements to Plate 4, We try two
other small values of k£, 2 and 7; this gives Plates 7 and 8. A comparison of Plates 6, 7,
and 8 shows that an increase of the rank k leads to a a diminution of background texture
in the blood vessel enhancement.

The improvement due to the bright noise reduction by RM[2, 2 X 2] and to the increase
of k in the enhancement id —~ RM{[k, 16 X 18] can be quantitatively estimated by comparing
the compression ratio when these images are coded. We have translated these images into
Postcript with a compression by run-length encoding, and the size of the processed images
decreases monotonically from Plate 3 to Plate 8.

Other examples are given in Plates 9 to 12. Here we first apply RM[3,3 x 3] to Plate 3
(see Plate 9), and then enhance blood vessels with id — RM[k, 16 x 16], where we take
successively & = 1, 3, and 9 (Plates 10, 11, and 12). The compression ratio of the run-
length encoding for these four plates is yet stronger than the one for Plates 4, 6, 7, and 8
respectively.

We have thus outlined two stages in the extraction of blood vessels in digitized X-ray
angiographic images. First a reduction of bright speckle noise by RM|a, s x s] for a small s
{say, s = 2) and a of the order of s, then an enhancement by id — RM[k, £ x £], where £ is
relatively large and £ can be chosen in the range between 1 and £,

We have compared the results obtained by the rank-max filter with those given by its
particular case, the min-max filter, the advantage being in a reduction of background noise.
Of course, if we take too large a rank k, very small blood vessels will not be preserved in
the difference image, but we can already obtain interesting results with small values for k.
We can also compare them with what we get by the two methods given in [1]. The ‘basic
method’ (Section II of [1]) uses a smoothing followed by a min filter, and it produces in
the difference image artifactual ridges corresponding to ramps in the original image. The
‘skeleton-controlled’ method (Section ITI of [1]) avoids this type of artefact, but it is based on
complicated and time-consuming skeletonization and skeleton filtering procedures; morecver
it tends to eliminate small or fuzzy portions of blood vessels, while leaving a certain amount
of textural noise artefacts, By relaxing the skeleton-filtering stage, the first defect (loss of
blood vessels) is reduced, but the second one (textural noise) is augmented.

This shows that a simple, but well-conceived filter, can give nice results, while using
only limited computing resources.

28

References

(1] P.A. Devijver, C. Ronse, P. Haaker, E. Klotz, R. Koppe, R. Linde: Pseudomask tech-
nique for digital subtraction angiography (DSA). Mustererkennung 1984, Informatik-
Fachberichte, Vol. 87, Springer-Verlag (1984), pp. 230-236.

[2] H.J.A.M. Heijmans, C. Ronse: The algebraic basis of mathematical morphology; part
I; dilations and erosions. CWI Report AM-R8807, PRLB Manuscript M248 (1988).

[3] T.8. Huang, G.J. Yang, G.Y. Tang: A fast two-dimensional median filtering algorithm.
IEEE Trans. Acoustics, Speech, & Signal Processing, Vol. ASSP-27, no. 1, pp. 13-18,
1879.

f4] Y. Nakagawa, A. Rosenfeld: A note on the use of local min and max operations in
digital picture processing. IEEE Trans. Systems, Man, & Cybernetics, Vol. SMC-8,
no. 8, pp. 632-635, 1978.

[5] C.Ronse: Erosion of narrow image features by combination of local low rank and max
filters. Proceedings of the Second International Conference on Image Processing and
its Applications, London (1986), pp. 77-81.

{6] C. Ronse: Order-configuration functions: mathematical characterizations and applica-
tions to digital signal and image processing. Information Sciences (to appear).

[7] C. Ronse, H.J.A M. Heijmans: The algebraic basis of mathematical morphology; part
IT: openings and closings. (In preparation).

29

Plate 1.
Original image A,

Plate 2,
Al = RM[2,2 x 2}{A).

Plate 3,
Original image B.

Plate 4.
B’ = RM{2,2 x 2](B).

Plate b.
C1 = B — RMI[1,16 x 16)(B).

Plate 6,
¢} = B' — RM][1,16 x 16}{B’).

32

Plate 7.
% = B’ — RM{2, 16 x 16](B’).

Plate 8.
L =B - RMI[T,16 x 16)(B’).

Plate 9.
B" = RM[3,3 x 3}(B)

Plate 10.
C{ =B" — RM|1, 16 x 16}(B").

Plate 11,
C4 = B” — RM[3,16 x 16)(B”).

Plate 12,
Cy = B” — RM|9, 16 x 16](B").

